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Abstract—This paper is concerned with a consumer-resource
system described by a mutual interference model with feedback
controls on time scale. By using time scale calculus theory and
differential inequality, some verifiable conditions are obtained
for the permanence of the above system. Further, by some
important inequalities, the uniform asymptotical stability of
the model have been studied. An example and numerical
remarks are provided to illustrate the main results of this paper.
Finally, a conclusion is also given to discuss how the feedback
control and mutual interference of the system influence the
permanence.

Index Terms—Consumer-resource; permanence; feedback
control; mutual interference; asymptotical stability.

I. INTRODUCTION

IT is well known that the dynamic relationship between
predator and prey has been extensively studied in both

economy and mathematical ecology by several scholars[1-
7]. However, there were few papers considering the mutual
interference until Hassell introduced it as constant m(0 <
m ≤ 1) in 1971, see paper [8-10] for more details. On the
basis of the results in[8], further research was done by Feng
Zhang in[11], the system as follows:{

x′(t) = x(t)[a(t)− b(t)xθ(t)]− a(t)x(t)ym(t),

y′(t) = y(t)[d(t)− e(t) y(t)x(t) ],
(1.1)

where a(t) and d(t) stand for the intrinsic growth rates of
the prey and the predator at time t, respectively, a(t)

b(t) is the
carrying capacity of the prey in the absence of predation,
e(t) is a measure of the food quantity that prey provides and
converted to predator birth, 0 < m, θ ≤ 1.

On the other hand, the consumer-resource(C-R) interac-
tion, which has become a central principle for understanding
interspecific interactions, play a very important role and
received much attention [12-16]. Motivated by the above
reasons and based on the system (1.1), we present a specific
consumer-resource system described by a model with mutual
interference and feedback control:

N ′
1(t) = N1(t)[a(t)− b(t)Nθ

1 (t)− c(t)Nm
2 (t)]

−α(t)u(t),
u′(t) = −f1(t)u(t) + p1(t)N1(t− τ),

N ′
2(t) = N2(t)[d(t)− e(t)N2(t)

N1(t)
]− β(t)v(t),

v′(t) = −f2(t)v(t) + p2(t)N2(t− τ),

(1.2)
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where N1(t) and N2(t) represent the population density
of the resource and the consumer at time t, respectively.
a(t) and d(t) denote the intrinsic growth rate of the resource
and consumer, a(t)

b(t) stands for its carrying capacity when in
isolation from the resource, c(t)N1(t) represents the decrease
in the growth of the resourcee(t) is a measurement of
consumption of resource, 0 < m, θ ≤ 1, u(t) and v(t) denote
the feedback control variables. If m = 1, there is no mutual
interference between the consumer and resource, hence in
this paper we just consider the system with 0 < m < 1.
But any economy models are set up in either continuous or
discrete model. So, time scale approach is more flexible and
realistic. Motivated by the above reasons and based on the
system (1.2), we present a specific consumer-resource system
described by a model with mutual interference and feedback
control on time scale:

N∆
1 (t) = a(t)− b(t) exp{θN1(t)}

−c(t) exp{mN2(t)} − α(t)u(t),
u∆(t) = −f1(t)u(t) + p1(t) exp{N1(t− τ)},
N∆

2 (t) = d(t)− e(t) exp{N2(t)−N1(t)} − β(t)v(t),
v∆(t) = −f2(t)v(t) + p2(t) exp{N2(t− τ)},

(1.3)

where all the variables have the same meaning of the system
(1.2) and are rd-continuous positive. Clearly, if we choose
T = R, then the system (1.3) can be reduced to (1.2). System
(1.3) satisfies the initial values:

N1(s) = φ(s) ≥ 0, s ∈ [−τ, 0)T ,
φ ∈ Crd([−τ, 0)T , R), φ(0) > 0;
N2(s) = ϕ(s) ≥ 0, s ∈ [−τ, 0)T ,
ϕ ∈ Crd([−τ, 0)T , R), ϕ(0) > 0;
u(0) > 0, v(0) > 0.

This article is organized as follows: Section 2 provides some
definitions and notations, we show the permanence of the
system (1.3) in section 3, Finally we give some examples.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions
and lemmas on time scales, which can be found in [17].

Definition 1. ([17]) A time scale T is an arbitrary nonempty
closed subset of the real numbers R, the set T inherits the
standard topology of R.

Definition 2. ([17]) The forward and the backward jump
operators σ, ρ : T → T, and the graininess µ : T → R+ =
[0,∞) are defined, respecting, by

σ(t) = inf{s ∈ T : s > t},

ρ(t) = sup{s ∈ T : s < t},
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µ(t) = σ(t)− t for t ∈ T.

If σ(t) = t, then t is called right-dense (otherwise: right-
scattered), and if ρ(t) = t, then t is called left-dense
(otherwise: left-scattered).

Definition 3. ([17]) A function f : T → R is said to be
rd-continuous if it is continuous at right-dense points in T
and its left-sided limits exists (finite) at left-dense point in
T. The set of rd-continuous function f : T → R will be
denoted by Crd(T,R).

Definition 4. ([17]) Assume f : T → R is a function and let
t ∈ T. Then we define f∆(t) to be the number (provided it
exists) with the property that given any ϵ > 0, for all s ∈ U ,
there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ϵ|σ(t)− s|

In this case, f∆(t) is called the delta (or Hilger) derivative of
f at t. Moreover, f is said to be delta or Hilger differentiable
on T if f∆(t) exists for all t ∈ T. The set of functions
f : T → R that are delta-differentiable and those delta-
derivative are rd-continuous functions is denoted by C1

rd =
C1

rd(T) = C1
rd(T,R).

Definition 5. ([17]) A function F : T → R is called a
antiderivative of f : T → R provided F∆(t) = f(t) for all
t, s ∈ T. Then we write∫ s

r

f(t)∆t = F (s)− F (r).

Lemma 1. ([17]) Every rd-continuous function has an an-
tiderivative and every continuous function is rd-continuous.

Lemma 2. ([17]) Assume −a ∈ R+, x(t0) > 0, t0 ∈ T.

(i) If x∆(t) ≤ b− ax(t), when t ≥ t0, one has

x(t) ≤ x(t0)e(−a)(t, t0) +
b

a
(1− e(−a)(t, t0)),

particularly, when a > 0, b > 0, one has

lim
t→+∞

supx(t) ≤ b

a
;

(ii) If x∆(t) ≥ b− ax(t), when t ≥ t0, one has

x(t) ≥ x(t0)e(−a)(t, t0) +
b

a
(1− e(−a)(t, t0)),

particularly, when a > 0, b > 0, one has

lim
t→+∞

inf x(t) ≥ b

a
.

Let f be a continuous bounded function on T and set
fu = sup

t∈T
f(t), f l = inf

t∈T
f(t), one assumes the following

hypothesis holds:

(H1) a(t), b(t), c(t), d(t), e(t), fi(t), pi(t)α(t), β(t) are
all positive and rd-continuous(i = 1, 2);

(H2) du + el(M1 − 1) > 0;
(H3) au − bl > 0.

Definition 6. For any solution (N1(t), u(t), N2(t), v(t))
T of

system (1.3), exist mi, li,Mi, Li > 0(i = 1, 2) , such that:

m1 ≤ lim
t→+∞

inf N1(t) ≤ lim
t→+∞

supN1(t) ≤ M1,

m2 ≤ lim
t→+∞

inf N2(t) ≤ lim
t→+∞

supN2(t) ≤ M2,

l1 ≤ lim
t→+∞

inf u(t) ≤ lim
t→+∞

supu(t) ≤ L1,

l2 ≤ lim
t→+∞

inf v(t) ≤ lim
t→+∞

sup v(t) ≤ L2.

III. PERMANENCE

This section studies the permanence of system (1.3), for
convenience we put:

M1 =
au − bl

θbl
, L1 =

pu1 exp{M1}
f l
1

,

M2 =
du + el(M1 − 1)

el
, L2 =

pu2 exp{M2}
f l
2

m1 =
1

θ
ln

al − cu exp{mM2} − αuL1

bu
, l1 =

pl1 exp{m1}
fu
1

m2 = m1 + ln
dl − βuL2

eu
, l2 =

pl2m2

fu
2

.

Theorem 1. Suppose the system (1.3) satisfies the conditions
(H1)-(H3) and the following conditions:

(H4) al − cu exp{mM2} − αuL1 > 0,
(H5) dl − βuL2 > 0,

then the system (1.3) is permanence.

Proof: (1)From the first equation of the system (1.3),
it follows that

N∆
1 (t) ≤ a(t)− b(t) exp{θN1(t)}

≤ a(t)− b(t)(1 + θN1(t))

≤ au − bl − θblN1(t). (3.1)

Applying lemma 2.2 and condition (H3) to (3.1), we obtain

lim
t→+∞

supN1(t) ≤
au − bl

θbl
= M1. (3.2)

From (3.2), we know that there exists a t1 ∈ T enough
large such thatN1(t) ≤ M1, t ≥ t1 > 0. Then, there exists
t2 = t1 + τ such that, for any t ≥ t2 > 0, N1(t− τ) ≤ M1.
By the second equation of the system (1.3), we get:

u∆(t) ≤ −f l
1u(t) + pu1 exp{M1}, (3.3)

in view of Lemma 2.2, it follows from (3.3) that

lim
t→+∞

supu(t) ≤ pu1 exp{M1}
f l
1

= L1. (3.4)

Similarly, by the third equation of system (1.3), we have

N∆
2 (t) ≤ d(t)− e(t)(1 +N2(t)−N1(t))

≤ du − el − elN2(t) + elM1. (3.5)

It follows from Lemma 2.2 and condition (H2) that

lim
t→+∞

supN2(t) ≤
du + el(M1 − 1)

el
= M2. (3.6)

With (3.6) we know that there exists a t3 ∈ T such that,
for any t ≥ t3 > 0, N2(t) ≤ M2. Therefore, there exists
t4 = t3 + τ, for any t ≥ t4 > 0, such that N2(t− τ) ≤ M2.
Then, we can get the following results easily:

v∆(t) ≤ −f l
2v(t) + pu2 exp{M2}, (3.7)
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lim
t→+∞

sup v(t) ≤ pu2 exp{M2}
f l
2

= L2. (3.8)

(2) In view of (3.4), there exists a t5 ∈ T, for any t ≥ t5 >
0, such that u(t) ≤ L1. Let t6 = max{t3, t5}, for t > t6,
we get N2 ≤ M2, u(t) ≤ L1 and

N∆
1 (t)

≥ a(t)− b(t) exp{θN1(t)} − c(t) exp{mN2(t)} − α(t)L1

≥ al − bu exp{θN1(t)} − cu exp{mM2} − αuL1. (3.9)

Hence, when t ≥ t5 > 0, we get

al − bu exp{θN1(t)} − cu exp{mM2} − αuL1 ≤ 0.(3.10)

Otherwise, suppose that exists t′ ≥ t5 such that

al − bu exp{θN1(t)} − cu exp{mM2} − αuL1 > 0,

and for t ∈ [t5, t
′)T , we get

al − bu exp{θN1(t)} − cu exp{mM2} − αuL1 ≤ 0.

So

N1(t
′) <

1

θ
ln

al − cu exp{mM2} − αuL1

bu
,

for t ∈ [t5, t
′)T , we obtain that

N1(t
′) ≥ 1

θ
ln

al − cu exp{mM2} − αuL1

bu
, x∆(t′) < 0,

which conflicts with known conditions.
Therefore, (3.10) is establishment, hence, for t ≥ t5,

N1(t) ≥
1

θ
ln

al − cu exp{mM2} − αuL1

bu
= m1,

thus

lim
t→+∞

inf N1(t) ≥ m1. (3.11)

From the second equation of system (1.3), we obtain that:
u∆(t) ≥ −fu

1 u(t)+ pl1 exp{m1}. By Lemma 2.2, we have:

lim
t→+∞

inf u(t) ≥ pl1 exp{m1}
fu
1

= l1. (3.12)

Similarly, we can get:

lim
t→+∞

inf N2(t) ≥ m1 + ln
dl − βuL2

eu
= m2, (3.13)

lim
t→+∞

inf v(t) ≥ pl2m2

fu
2

= l2. (3.14)

With equation (3.2),(3.4),(3.6),(3.8) and (3.11)-(3.14), the
system (1.3) is permanence.

This completes the proof.

IV. UNIFORM ASYMPTOTICAL STABILITY

The main result of this paper concerns the uniformly
asymptotically stable of system (1.3).

Theorem 2. Let τ = 1 in system (1.3). Suppose (H1)-(H5)
and the following condition hold:

(H6) there exists a constant µ such that

θbleθm1 − eueM1+M2−2m1 − pu1e
M1 > µ,

elem2−M1 −mcuemM2 − pu2e
M2 > µ,

f l
1 − αu > µ, f l

2 − βu > µ,

where M1, M2, m1 and m2 are defined as that in Theorem
1. Then system (1.3) is uniformly asymptotically stable.

Proof: Suppose that Z(t) =
(N1(t), N2(t), u(t), v(t))

T and Z∗(t) =
(N∗

1 (t), N
∗
2 (t), u

∗(t), v∗(t))T are any two solutions of
system (1.3).

In view of system (1.3), we have

[N1(t)−N∗
1 (t)]

∆

= −b(t)[exp{θN1(t)} − exp{θN∗
1 (t)}]

−c(t)[exp{mN2(t)} − exp{mN∗
2 (t)}]

−α(t)[u(t)− u∗(t)],

which implies that

D+|N1(t)−N∗
1 (t)|∆ ≤ −θbleθm1 |N1(t)−N∗

1 (t)|
+mcuemM2 |N2(t)−N∗

2 (t)|
+αu|u(t)− u∗(t)|,

similarly,

D+|N2(t)−N∗
2 (t)|∆ ≤ −elem2−M1 |N2(t)−N∗

2 (t)|
+eueM1+M2−2m1 |N1(t)−N∗

1 (t)|
+βu|v(t)− v∗(t)|,

D+|u(t)− u∗(t)|∆ ≤ −f l
1|u(t)− u∗(t)|

+pu1e
M1 |N1(t)−N∗

1 (t)|,

D+|v(t)− v∗(t)|∆ ≤ −f l
2|v(t)− v∗(t)|

+pu2e
M2 |N2(t)−N∗

2 (t)|.

Set V (t) = |N1(t)−N∗
1 (t)|+ |N2(t)−N∗

2 (t)|+ |u(t)−
u(t)|+ |v(t)− v(t)|. Then

D+V (t)∆

≤ [−θbleθm1 + eueM1+M2−2m1 + pu1e
M1 ]|N1(t)−N∗

1 (t)|
+[−elem2−M1 +mcuemM2 + pu2e

M2 ]|N2(t)−N∗
2 (t)|

+[−f l
1 + αu]|u(t)− u∗(t)|+ [−f l

2 + βu]|v(t)− v∗(t)|
≤ −µV (t). (4.1)

Therefore, V is non-increasing. Integrating (4.1) from 0
to t leads to

V (t) + µ

∫ t

0

V (s) ds ≤ V (0) < +∞, ∀t ≥ 0,

that is, ∫ +∞

0

V (s) ds < +∞,

which implies that

lim
s→+∞

|N1(t)−N∗
1 (t)| = lim

s→+∞
|N2(t)−N∗

2 (t)| = 0,

lim
s→+∞

|u(t)− u∗(t)| = lim
s→+∞

|v(t)− v∗(t)| = 0.

Thus, system (1.3) is uniformly asymptotically stable. This
completes the proof.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_10

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



V. AN EXAMPLE AND NUMERICAL SIMULATIONS

Example 1. Let T = R, considering the coefficients of
system (1.2) as follows:

a = 3.2 + 0.4 sin 2t, b = 1.1 + 0.2 sin t, c = 0.08,

d = 1.5 + 0.2 cos 2t, e = 0.9 + 0.3 sin t,m = 0.02, θ = 0.8,

f1 = 1.8 + 0.6 sin 3t, f2 = 2.5 + 0.3 cos 3t, α = 0.015,

p1 = 0.3 + 0.2 sin 2t, p2 = 0.4 + 0.2 cos 2t, β = 0.013.

By calculating, it satisfies the conditions (H1)-(H5), in view
of Theorem 3.1, we obtain that system (1.2) is permanent.
This following figure establishes the dynamic behavior of
system (1.2).
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Fig. 1 Dynamic behavior of system (1.2) with the initial condition
(N1(0), u(0), N2(0), v(0)) = (1.5, 1.3, 2.1, 1.1)T , and τ = 0.

Remark 1. Let θ = 1,m = 1, τ = 0 in system (1.3) and
T = R, the system (1.3) can be simplified as follows:

N ′
1(t) = N1(t)[a(t)− b(t)N1(t)− c(t)N2(t)]

−α(t)u(t),
u′(t) = −f1(t)u(t) + p1(t)N1(t),

N ′
2(t) = N2(t)[d(t)− e(t)N2(t)

N1(t)
]− β(t)v(t),

v′(t) = −f2(t)v(t) + p2(t)N2(t),

(5.1)

we can get the system (4.1) is permanent by using theorem
3.1, and if we let the coefficients of system (4.1) and (1.2)
to be the same, we can use figure 2 to establish the dynamic
of system (4.1).

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

t

N
1(t

),
N

2(t
),

u,
v

 

 
N

1
(t)

N
2
(t)

u
v

Fig. 2 Dynamic behavior of system (1.2)with the initial condition
(N1(0), u(0), N2(0), v(0)) = (1.5, 1.3, 2.1, 1.1)T , and τ = 0.

Remark 2. Suppose that system (1.3) without feedback
control, and let θ = 1,m = 1, τ = 0, we can get the
following system:{

N∆
1 (t) = a(t)− b(t) exp{N1(t)} − c(t) exp{N2(t)},

N∆
2 (t) = d(t)− e(t) exp{N2(t)−N1(t)}.

(5.2)

Suppose condition (H1)-(H3) hold, then the system (3.16)
is permanent. Suppose further that T = R and all the
coefficients of system (3.16) to be the same with example
(3.1), we use figure 3 to establish the dynamic.
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Fig. 3 Dynamic behavior of system (3.16) with the initial condi-
tion (N1(0), N2(0)) = (1.5, 2.1)T .

By comparing figure 2 and figure 3, we can obtain that the
feedback control is harmless to the permanence of system.

Remark 3. Suppose that system (1.3) without feedback
control but has mutual interference just as follows:{
N∆

1 (t) = a(t)− b(t) exp{θN1(t)} − c(t) exp{mN2(t)},
N∆

2 (t) = d(t)− e(t) exp{N2(t)−N1(t)},

With the condition (H1)-(H3), we get this system is perma-
nence. Let T = R, the above system can be simplified to be
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as follows:{
N ′

1(t) = N1(t)[a(t)− b(t)Nθ
1 (t)]− c(t)N1(t)N

m
2 (t),

N ′
2(t) = N2(t)[d(t)− e(t)N2(t)

N1(t)
].

(5.3)

The coefficients a(t), b(t), c(t), d(t), e(t) and the initial
condition N1(0), N2(0) are the same to example 1, let
θ = 0.5,m = 0.6 and θ = 0.3,m = 0.8 in addition, by
calculating, we know they satisfy all the condition of theorem
(3.1), the figures ia as follows:
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Fig. 4 The dynamic behavior of system 4.3 with θ = 0.5,m =
0.6.
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Fig. 5 The dynamic behavior of system 4.3 with θ = 0.3,m =
0.8.

By comparing with the figure 4 and figure 5, we can get
the mutual interference is harmless for the permanence of the
system but has a great influence on the population density
of the resource and consumer.

VI. CONCLUSION

Make a comparison with our results, from the remark 1-3,
we can easy to see that the C-R system (1.3) can maintain
persistence with the appropriate condition, feedback control
and mutual interference have less influence on the perma-
nence of the C-R system, while the latter has a great influence

on the population density of the resource and consumer. In
addition system (1.3) can be seen a generalization of paper
[11].
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