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Abstract—A generalized model for a multi-objective matrix
game with fuzzy goals and fuzzy payoffs via fuzzy relation
approach is presented in this paper. It is shown that solving
such a game is equivalent to solving a pair of multi-objective
non-linear optimization problems, and then the pair of multi-
objective non-linear optimization problems can be reduced to
two mutually dual multi-objective linear programming prob-
lems.

Index Terms—Multi-objective game, Fuzzy relation, Multi-
objective non-linear optimization.

I. INTRODUCTION

A multi-objective zero-sum game is an extension of the
standard two person zero-sum game. The two person

zero-sum game is also referred to a matrix game because it
can be expressed by a pair of payoff matrices. As conflicting
interests appear not only between different decision makers,
but also within each individual, the study of multi-objective
fuzzy games is very important.

Blackwell [5] first applied the concepts of maxmin and
minmax values to deal with the theory of multi-objective
games as a generalization of the theory of scalar games.
Zeleny [19] studied the multi-objective zero-sum games
by aggregating multiple pay-offs into a single payoff via
weighting coefficients approach. Ghose et al. [9] proposed
the concepts of Pareto-optimal Security Strategies (POSS) for
multi-objective two person zero-sum games and solved this
games problems by the weightage average approach. After-
wards, Fernandez et al. [8] studied the same game model and
proved the equivalence between POSS and efficient solutions
of a pair of multi-objective programming problems.

Though single objective fuzzy matrix games have been
extensively studied in [2], [3], [21], [22], the results on multi-
objective scenario are rather scarce. These main contribution
in this direction have been worked in [1], [18]. Sakawa et
al. [18] studied fuzzy multi-objective games model by the
concepts of maxmin value. Inspired by [8], [9], Aggarwal et
al. [1] applied the concepts of POSS and security levels for
players to study fuzzy multi-objective matrix game model
and proved that solving such a game model can be obtained
by solving a pair of multi-objective linear programming
problems. In [12], B. Jiang and D. Qiu considered the
expansion of linear inequality and some related theorems in
the fuzzy case, and proposed an optimization criterion of
fuzzy linear problems. Taking motivation from [1], [21] we
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present a new generalized model for a multi-objective matrix
game with fuzzy goals and fuzzy payoffs by fuzzy relation
approach.

This paper is divided into five sections. The background
of this paper is introduced in Section 1. Section 2 introduces
some basic definitions and recalls some results that regard to
crisp multi-objective matrix games and the fuzzy relations.
In Section 3, a new generalized model for a multi-objective
matrix game with fuzzy goals and fuzzy payoffs via fuzzy
relation approach is established. Section 4 presents a kind of
multi-objective linear programming problems. In Section 5,
the results of this paper are illustrated with a small numerical
example.

II. PRELIMINARIES

In this section, we begin to describe a crisp multi-objective
matrix game in [1]. For this we recall some definitions.

Definition 1: [9] (mixed strategy). A mixed strategy x =
(x1, x2, · · · , xm)T for Player I is a probability distribution
on the set I of his pure strategies, where xT is the trans-
position of x. The set of mixed strategies for Player I is
represented by

Sm = {x = (x1, x2, · · · , xm)T ∈ Rm|
m∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · ,m.}
(1)

Similarly, The set of mixed strategies for Player II is repre-
sented by

Sn = {y = (y1, y2, · · · , yn)T ∈ Rn|
n∑
j=1

yj = 1,

yj ≥ 0, j = 1, 2, · · · , n.}
(2)

where Rm and Rn are m- and n-dimensional Euclidean
spaces. The sets Sm and Sn are the convex ploy-topes.

In multi-objective two-person matrix games, a multiple
payoff matrix of the Player I and Player II are defined as
follows [9]:

A1 =

 a111 · · · a11n
...

. . .
...

a1m1 · · · a1mn

 , Ar =

 ar11 · · · ar1n
...

. . .
...

arm1 · · · armn


(3)

where we assume that each of the two players has r ob-
jectives. Mixed strategies correspond to the rows and the
columns of each matrix Ak (k = 1, ..., r) for Player I and
Player II, respectively. And it is a convention to assume that
Player I is a maximizing player and Player II is a minimizing
player.

A two-person zero-sum multi-objective matrix game
(MOG) [1] is defined by

MOG = (Sm, Sn, Ak(1, 2, · · · , r)),
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where Sm (respectively, Sn) is the strategy space for Player
I (respectively, Player II).

Definition 2: [9] (expected payoff of multi-objective ma-
trix game). When Player I chooses a mixed strategy x ∈ Sm
and Player II chooses a mixed strategy y ∈ Sn, a vector

E (x, y) = xTAy = [E1 (x, y) , E2 (x, y) , · · · , Er (x, y)]
=
[
xTA1y, xTA2y, · · · , xTAry

]
(4)

is called an expected payoff of Player I. As the multi-
objective game (MOG) is zero-sum, the payoff for Player
II is −xTAy.

Definition 3: A pair (x̄, ȳ) ∈ Sm×Sn is called a solution
of the multi-objective game (MOG) if

x̄Aky ≥ V̄ k, ∀y ∈ Sn,

xAkȳ ≤ V̄ k, ∀x ∈ Sm.

Here, x̄ (respectively ȳ) is called the optimal strategy for
Player I (respectively Player II) and V̄ k(k = 1, 2, · · · , r) are
called the valued of the multi-objective game (MOG).

Given a multi-objective game (MOG), its solution can
be obtained by solving the following pair of multi-objective
linear programming problems for Player I (MOGLP ) and
Player II (MOGLD), respectively.

(MOGLP ) max (V 1, V 2, · · · , V r)

such that
m∑
i=1

(aij)
kxi ≥ V k, (k = 1, 2, · · · , r, j = 1, 2, · · · , n),

∀x ∈ Sm,∀y ∈ Sn,

(MOGLD) min (W 1,W 2, · · · ,W r)

such that
n∑
j=1

(aij)
kyj ≤W k, (k = 1, 2, · · · , r, i = 1, 2, · · · ,m),

∀x ∈ Sm,∀y ∈ Sn.

Next we present some basic definitions and results related
to fuzzy numbers and fuzzy relations.

A fuzzy set B̃ of R is characterized by a membership
function uB̃ : R → [0, 1] [25]. An α-level set of B̃
is given as [B̃]α = {x ∈ R : uB̃(x) ≥ α} for each
α ∈ (0, 1]. And a strict α-level set of B̃ is given by
(B̃)α = {x ∈ R : uB̃(x) > α} for each α ∈ (0, 1]. We
define the set [B̃]0 by [B̃]0 = {x ∈ R : uB̃(x) > 0}, where
B denotes the closure of a crisp set B. A fuzzy set B̃ is said
to be a fuzzy number if it satisfies the following conditions
[7]:
(1) B̃ is normal, i.e., there exists an x0 ∈ R such that
uB̃(x0) = 1;
(2) B̃ is convex, i.e., uB̃(λx1 + (1 − λ)x2) ≥
min{uB̃(x1), uB̃(x2)}, for all x1, x2 ∈ R and λ ∈ [0, 1];
(3) B̃ is upper semi-continuous;
(4) [B̃]0 is compact.

Let X and Y be any non-empty sets. Then a binary relation
P between the elements of X and Y is a subset of the
cartesian product X × Y , i.e. P ⊂ X × Y. In fuzzy set

theory, for this let F (X), F (Y ), and F (X × Y ) be the
sets of all fuzzy subsets of X , Y and X × Y , respectively.

Definition 4: [11](valued relation). A fuzzy subset P ⊂
F (X × Y ) is called a valued relation on X × Y i.e., P :
X × Y → [0, 1].

Definition 5: [11] (fuzzy relation). A valued relation P
on F (X × Y ) is called a fuzzy relation on X × Y and it is
denoted by P̃ , i.e., P̃ : F (X × Y )→ [0, 1].

Definition 6: [11] (fuzzy extension of a valued relation
P). Let P be a valued relation on X × Y . A fuzzy relation
Q̃ on X × Y with uQ̃(x, y) = uP(x, y) ∀x ∈ X,∀y ∈ Y is
called a fuzzy extension of the relation P.

Definition 7: [11] (dual fuzzy extension of a valued
relation P). Let P be a valued relation on X . Let ucP be
the membership function of the valued relation cP given by

ucP(x, y) = 1− uP(x, y) ∀x, y ∈ X. (5)

Let Q̃ be a fuzzy extension of valued relation cP. Then a
fuzzy relation Q̃d on X defined by

uQ̃d(B̃, D̃) = 1− uQ̃(D̃, B̃) ∀B̃, D̃ ∈ F (X) (6)

is called the dual fuzzy extension of the valued relation P.
For a valued relation P there might be many fuzzy

extensions, Inuiguchi et al [11] have used the well known
concept of triangular norm (t-norm) T and its dual triangular
conorm (t-conorm) S to extend a given valued relation to its
fuzzy extension and dual fuzzy extension, respectively.

Definition 8: [11] Let P be a valued relation on X , T be
a t-norm and S be its dual t-conorm. The T -fuzzy extension
and T -dual fuzzy extension of P , denoted by fuzzy relations
PT and PS , respectively, are defined by

uP̃T (B̃, D̃) = sup
x,y∈X

{T (uP(x, y), T (uB̃(x), uD̃(y)))}, (7)

uP̃S
(B̃, D̃) = inf

x,y∈X
{S(S(1−uB̃(x), 1−uD̃(y)), uP(x, y))}.

(8)
∀B̃, D̃ ∈ F (X).

Definition 9: [3] (semistrictly quasiconcave function). Let
X ⊂ R and f : R → [0, 1]. Then f is called semistrictly
quasiconcave function if it satisfies the following conditions:
(1) f(λx + (1 − λ)y) ≥ min{f(x), f(y)}, ∀x, y ∈ X,
λ ∈ [0, 1] with λx+ (1− λ)y ∈ X;
(2) f(λx + (1 − λ)y) > min{f(x), f(y)}, ∀x, y ∈ X,
λ ∈ [0, 1] with f(x) 6= f(y), λx + (1 − λ)y ∈ X, f(λx +
(1− λ)y) > 0.

Definition 10: [3] (fuzzy quantity). Let S̃ be a fuzzy
subset of R. Then S̃ is called fuzzy quantity if S̃ is normal,
compact, and has a semistrictly quasiconcave membership
function.

Let F0(R) be the set of all fuzzy quantities on R. It is
important to note that all crisp numbers as well as all com-
monly used fuzzy numbers, like ,triangular fuzzy numbers,
trapezoidal fuzzy numbers, bell shaped fuzzy numbers are in
F0(R). An important property of fuzzy quantity is that if B̃
is fuzzy quantity then

BL(α) = inf{x|x ∈ [B̃]α} = inf[B̃]α = inf(B̃)α, (9)

BR(α) = sup{x|x ∈ [B̃]α} = sup[B̃]α = sup(B̃)α, (10)

where BL(α) and BR(α) are called the left part and the
right part of fuzzy quantity B̃, respectively [15].
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Lemma 1: [3] Let ãj be fuzzy quantity and xj ≥ 0 (j =

1, 2, · · · , n). Then,
n∑
j=1

ãjxj is also a fuzzy quantity. Here

n∑
j=1

ãjxj is understood to be a fuzzy set on R whose mem-

bership function is defined as per Zadeh extension principle.

III. A GENERALIZED MODEL FOR A MULTI-OBJECTIVE
FUZZY MATRIX GAME

Let Sm, Sn be as introduced in section 2 and Ãk (k =
1, 2, · · · , r) be the payoff matrixes with entries as fuzzy
numbers. Let Ṽ k0 ( respectively, W̃ k

0 ) be the aspiration levels
as fuzzy numbers of Player I ( respectively, Player II ) cor-
responding to kth payoffs. The multi-objective matrix game
with fuzzy goals and fuzzy payoffs, denoted by MOFGR,
is defined as

MOFGR = (Sm, Sn, Ãk, Ṽ k0 , P̃T , W̃ k
0 , P̃S , (k = 1, 2, · · · , r)),

where the fuzzy relation P̃T and P̃S are the fuzzified
versions of symbols ≥ and ≤ respectively. And P̃T and
P̃S are dual fuzzy relations to each other. Now, we have
the following definition to define the solution of MOFGR
using these fuzzy relations.

Definition 11: (solution of MOFGR). (x̄, ȳ) ∈ Sm×Sn
is called a solution of the multi-objective fuzzy matrix games
(MOFGR) if

Ṽ k0 P̃T ((x̄)T Ãky), ∀y ∈ Sn,

(xT Ãkȳ) P̃S W̃ k
0 , ∀x ∈ Sm,

where x̄ is called an optimal strategy for Player I and ȳ is
called an optimal strategy for Player II .

By using Definition 11, we construct the following pair of
the multi-objective fuzzy optimization problems for Player
I (MOGFP1) and Player II (MOGFD1), respectively.

(MOGFP1) Find x ∈ Sm such that

Ṽ k0 P̃T (xT Ãky), ∀y ∈ Sn,

and

(MOGFD1) Find y ∈ Sn such that

(xT Ãky) P̃S W̃ k
0 , ∀x ∈ Sm, (k = 1, 2, · · · , r).

According to Definition 8, we define membership func-
tions for the fuzzy constraints Ṽ k0 P̃T (xT Ãky) and
(xT Ãky) P̃S W̃ k

0 respectively as follows

uP̃T (Ṽ k0 , xT Ãky)

= sup
s,s′∈R

{T (uP(s, s′), T (uxT Ãky(s), uṼ k
0

(s′)))},

uP̃S
(xT Ãky , W̃ k

0 )

= inf
s,s′′∈R

{S(S(1− uxT Ãky(s), 1− uW̃k
0

(s′′)), uP(s′′, s))}.

Inspired by [4], problems (MOGFP1) and (MOGFD1)
become the following pair of multi-objective optimization
problems for Player I and Player II

max
x∈Sm

min
y∈Sn

min
k
{uP̃T (Ṽ k0 , xT Ãky)},

max
y∈Sn

min
x∈Sm

min
k
{uP̃S

(xT Ãky , W̃ k
0 )}.

The above pair of multi-objective optimization problems
can be obtained through the following crisp pair of multi-
objective optimization problems for Player I (MOGCP1)
and Player II (MOGCD1)

(MOGCP1) max λ such that

λ ≤ uP̃T (Ṽ k0 , xT Ãky), (k = 1, 2, · · · , r) ,
0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn.

(MOGCD1) max η such that

η ≤ uP̃S
(xT Ãky , W̃ k

0 ), (k = 1, 2, · · · , r) ,
0 ≤ η ≤ 1,
∀x ∈ Sm,∀y ∈ Sn.

(MOGCP1) and (MOGCD1) are the crisp formulations
of the multi-objective fuzzy optimization problems for Player
I (MOGFP1) and Player II (MOGFD1). Therefore, these
problems belong to the class of multi-objective non-linear
optimization problems. ł In the following, we present cer-
tain special cases of the multi-objective fuzzy optimization
problem (MOGFP1) and (MOGFD1).

IV. A MODEL FOR MULTI-OBJECTIVE FUZZY MATRIX
GAMES

Let X = R, B̃, D̃ ∈ F (X), and the t-norm T and t-
conorm S be min and max operators, respectively. The fuzzy
relation P̃ be . . Consequently, the fuzzy relation P̃T and
P̃S are respectively denoted by .min and.max. Here we
note that .min and .max are dual to each other.

Consider a game in which the aspiration levels of
Player I and Player II are crisp real numbers V k0
and W k

0 (k = 1, 2, · · · r), and the payoff matrixes
Ak(k = 1, 2, · · · r) are crisp matrixes having entries
as real numbers. Hence, the multi-objective matrix game
with fuzzy goals and fuzzy payoffs (MOFGR) reduces to
a matrix game model (MOFG) [1]

(Sm, Sn, Ak, V k0 ,.
min,W k

0 ,.max, (k = 1, 2, · · · r)).

Here, it is assumed that Player I and Player II is optimizing
with regard to the ordering .min and.max, respectively.

The problems of the multi-objective matrix game with
fuzzy goals (MOFG) have been discussed [1], and its
results become a special case of the multi-objective matrix
game with fuzzy goals and fuzzy payoffs model (MOFGR).

In the discussion to follow, we assume that the aspiration
levels of the two players, Ṽ k0 and W̃ k

0 (k = 1, 2, · · · , r), and
the entries of the payoff matrixes Ãk (k = 1, 2, · · · , r) are
fuzzy quantities. Therefore, the multi-objective matrix game
with fuzzy goals and fuzzy payoffs (MOFGR) becomes a
matrix game model (MOFGFP )

(Sm, Sn, Ãk, Ṽ k0 ,.
min, W̃ k

0 ,.max, (k = 1, 2, · · · , r)).

Here, it is assumed that Player I and Player II is optimizing
with regard to the ordering .min and .max, respectively.
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Definition 12: (solution of MOFGFP ). (x̄, ȳ) ∈ Sm ×
Sn is called a solution of the multi-objective fuzzy matrix
games (MOFGFP ) if

Ṽ k0 .min ((x̄)T Ãky), ∀y ∈ Sn,

(xT Ãkȳ) .max W̃ k
0 , ∀x ∈ Sm,

where x̄ is called an optimal strategy for Player I and ȳ is
called an optimal strategy for Player II .

In this case, the multi-objective fuzzy optimization
problems for Player I (MOGFP1) and Player II
(MOGFD1), respectively, become

(MOGFP2) Find x ∈ Sm such that

Ṽ k0 .min (xT Ãky), ∀y ∈ Sn,

(MOGFD2) Find y ∈ Sn such that

(xT Ãky) .max W̃ k
0 , ∀x ∈ Sm, (k = 1, 2, · · · , r).

Here, the membership functions for the fuzzy constraints are
taken as

u.min(Ṽ k0 , xT Ãky)

= sup
s,s′∈R

{min(u≤(s, s′), uxT Ãky(s), uṼ k
0

(s′))},

u.max
(xT Ãky , W̃ k

0 )

= inf
s,s′′∈R

{max(1− uxT Ãky(s), 1− uW̃k
0

(s′′), u≤(s′′, s))}.

Theorem 1: [3] Let B̃, D̃ ∈ F (X) be normal and
compact, T = min, S = max and α ∈ (0, 1). Then

u.T (B̃, D̃) ≥ α⇔ inf[B̃]α ≤ sup[D̃]α,

u.S
(B̃, D̃) ≥ α⇔ sup(B̃)1−α ≤ inf(D̃)1−α.

Theorem 2: Let Ãk, Ṽ k0 and W̃ k
0 (k = 1, 2, · · · , r) be

fuzzy quantities. Let T = min, S = max, α ∈ (0, 1) and
≤ be the usual binary relation ”less than or equal to”. Then,
we obtain

u.T (Ṽ k0 , xT Ãky) ≥ α⇔ (V L0 (α))k ≤ xT (AR(α))ky,
x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r).

u.S
(xT Ãky , W̃ k

0 ) ≥ α⇔ xT (AR(1− α))ky
≤ (WL

0 (1− α))k,
x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r).

Proof. Since Ãk (k = 1, 2, · · · , r) are fuzzy quantities,
according to Definition 10 and Lemma 1, we obtain that
xT Ãky (k = 1, 2, · · · , r) are fuzzy quantities. By Theorem
1, we have

u.T (Ṽ k0 , xT Ãky) ≥ α⇔ inf[Ṽ k0 ]α ≤ sup[xT Ãky]α,
(11)

x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r). (12)

u.S
(xT Ãky , W̃ k

0 ) ≥ α⇔ sup(xT Ãky)1−α ≤ inf(W̃ k
0 )1−α,

(13)
x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r). (14)

Now combining (9) and (10), it follows that

(V L0 (α))k = inf[Ṽ k0 ]α, (15)

xT (AR(α))ky = ((xT Ãky)R(α))k = sup[xT Ãky]α, (16)

xT (AR(1− α))ky = ((xT Ãky)R(1− α))k

= sup[xT Ãky]1−α = sup(xT Ãky)1−α,
(17)

(WL
0 (1− α))k = inf[W̃ k

0 ]1−α = inf(W̃ k
0 )1−α. (18)

From (11)-(18), we conclude

u.T (Ṽ k0 , xT Ãky) ≥ α⇔ (V L0 (α))k ≤ xT (AR(α))ky,

x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r),

u.S
(xT Ãky , W̃ k

0 ) ≥ α⇔ xT (AR(1−α))ky ≤ (WL
0 (1−α))k,

x ∈ Sm, y ∈ Sn(k = 1, 2, · · · , r).

Furthermore, by Theorem 2, the multi-objective fuzzy
optimization problems of (MOGFP2) and Player II
(MOGFD2) are equivalent to the following crisp linear
programming problems (MOGCLP1) and (MOGCLD1),
respectively,

max ((V L0 (λ))1, (V L0 (λ))2, · · · , (V L0 (λ))r)

such that (V L0 (λ))k ≤ xT (AR(λ))ky,
0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r).

min ((WL
0 (1− η))1, (WL

0 (1− η))2, · · · , (WL
0 (1− η))r)

such that xT (AR(1− η))ky ≤ (WL
0 (1− η))k,

0 ≤ η ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r).

That is equivalent to

(MOGCLP2) max ((V L0 (λ))1, (V L0 (λ))2, · · · , (V L0 (λ))r)

such that (V L0 (λ))k ≤ xT (AR(λ))ky,
0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r).

(MOGCLD2) min ((WL
0 (λ))1, (WL

0 (λ))2, · · · , (WL
0 (λ))r)

such that xT (AR(λ))ky ≤ (WL
0 (λ))k,

0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r).

Since Sm and Sn are convex polytopes. And the problems
(MOGCLP2) and (MOGCLD2) are crisp multi-objective
linear programming problems, it is sufficient to consider
only the extreme points of Sm and Sn. Thus solving the
above problems (MOGCLP2) and (MOGCLD2) is
equivalent to solving the following problems (MOGCLP3)
and (MOGCLD3)

(MOGCLP3) max ((V L0 (λ))1, (V L0 (λ))2, · · · , (V L0 (λ))r)

such that
m∑
i=1

(aRij(λ))kxi ≥ (V L0 (λ))k,

0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r, j = 1, 2, · · · , n).
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(MOGCLD3) min ((WL
0 (λ))1, (WL

0 (λ))2, · · · , (WL
0 (λ))r)

such that
n∑
j=1

((aRij(λ))ky ≤ (WL
0 (λ))k,

0 ≤ λ ≤ 1,
∀x ∈ Sm,∀y ∈ Sn, (k = 1, 2, · · · , r, i = 1, 2, · · · ,m).

Equivalently, for solving the multi-objective matrix
game with fuzzy goals and fuzzy payoffs (MOFGR),
we have to solve (MOGCLP3) and (MOGCLD3)
for Player I and Player II, respectively. Moreover, if
(x̄(λ), ((V̄ L0 (λ))1, (V̄ L0 (λ))2, · · · , (V̄ L0 (λ))r)) is an optimal
solution of (MOGCLP3) then x̄(λ) is an optimal strategy
of Player I with ((V̄ L0 (λ))1, (V̄ L0 (λ))2, · · · , (V̄ L0 (λ))r) as
a lower bound of the greatest aspiration of at the level λ.
Similarly, (ȳ(λ), ((W̄L

0 (λ))1, (W̄L
0 (λ))2, · · · , (W̄L

0 (λ))r))
is an optimal solution of (MOGCLD3) then
ȳ(λ) is an optimal strategy of Player II with
((W̄L

0 (λ))1, (W̄L
0 (λ))2, · · · , (W̄L

0 (λ))r) as a upper
bound of the greatest aspiration of at the level λ.
we shall call ((V̄ L0 (λ))1, (V̄ L0 (λ))2, · · · , (V̄ L0 (λ))r)
as the λ-acceptable value for Player I and
((W̄L

0 (λ))1, W̄L
0 (λ))2, · · · , (W̄L

0 (λ))r) as the (1 − λ)-
acceptable value for Player II.

The above discussion then leads to the following theorem:
Theorem 3: Let λ ∈ (0, 1] be fixed. Suppose

(x̄(λ), ((V̄ L0 (λ))1, (V̄ L0 (λ))2, · · · , (V̄ L0 (λ))r)) and
(ȳ(λ), ((W̄L

0 (λ))1, (W̄L
0 (λ))2, · · · , (W̄L

0 (λ))r)) be
the optimal solutions of the pair multi-objective
linear programming problems (MOGCLP3) and
(MOGCLD3) for Player I and Player II, respectively.
Then x̄(λ) (respectively, ȳ(λ)) is an optimal
strategy for Player I (respectively, Player II), and
((V̄ L0 (λ))1, (V̄ L0 (λ))2, · · · , (V̄ L0 (λ))r) (respectively,
((W̄L

0 (λ))1, (W̄L
0 (λ))2, · · · , (W̄L

0 (λ))r)) is an λ-acceptable
value (respectively, (1 − λ)-acceptable value) for Player I
(respectively, Player II).

V. CONCLUSION

In this paper, a generalized model for a multi-objective
matrix game with fuzzy goals and fuzzy payoffs via fuzzy
relation approach is studied. The inspiration of the model
is from [1], and it is shown that solving such a game is
equivalent to solving a pair of multi-objective non-linear
optimization problems. And then the pair of multi-objective
non-linear optimization problems can be reduced to the two
mutually dual multi-objective linear programming problems.
we have also concluded that the model with entropy is
becoming more and more significant and it is related to
practical problems of our real life in such a competitive
system [6], [14], [16], [17], [20], [24], [26]. Furthermore, we
will put the certain results of the model into multi-objective
fuzzy matrix games under (fuzzy) entropy environment. It
would be interesting and challenging for us to explore this
approach for multi-objective fuzzy matrix games in our
future research.
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