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Abstract—This paper is concerned with the almost sure
exponential stability of nonlinear stochastic delayed systems
with Markovian switching and Lévy noises. By the technique
of Burkholder-Davis-Gundy inequality, Chebyshev inequality,
Borel-Cantelli lemma and generalized Itô formula for Lévy
stochastic integral, we propose the sufficient conditions to
guarantee the almost sure exponential stability of the system.
A numerical example is provided to show the usefulness of the
proposed almost sure exponential stability criterion.

Index Terms—Nonlinear stochastic delayed system, Marko-
vian switching, Lévy noises, almost sure exponential stability.

I. INTRODUCTION

When the system has time lag, the performance of the
system may change, sometimes the existence of time lag
could damage the stability of the system. According to the
time lag studied based on the relationship between the time
lag and the mode, it can be divided into constant time delay,
time-varying delay and time-varying delay associated with
model, which makes it difficult to discuss the stability of
time-delay systems. As far as we know, the sufficient condi-
tions for stability of time-delay stochastic system given by
scholars are mainly focused on it is whether related to time
lag. The Lyapunov functional is always used to solve this
problem and the results obtained are asymptotic stability in
probability and second order mean square stability( [1], [2]).
However, Mao( [8]) studied the almost sure stability of time-
delay nonlinear stochastic system based on LaSalle theory.
Then, Huang and Mao( [5]), Yuang and Mao( [24]) discussed
the almost sure stability of time-delay nonlinear stochastic
system with Markovian switching. When considering the
almost sure convergence speed, due to the complexity of the
mathematical tools to be used, there is little research in this
area.

The problem of stability regarding jump diffusion systems(
[11], [12], [16]–[18], [21]) or systems with Lévy noise(
[4], [23]) has attracted scholars’ attention in the past few
decades. Exponential or asymptotic stability conditions have
been presented for these stochastic systems. Applebaum(
[3]) proposed that Lévy noise can be decomposed into a
continuous part and a jump part which respectively cor-
respond to the diffusion and jump term in systems by
Lévy-Itô decomposition. In the meantime, stability issues of
stochastic systems with Markovian switching have become
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an increasing interest( [6], [9], [10], [13], [20], [26]). A
Markovian switching system is a hybrid system with state
vector that has two components. The first one is regarded
as the state while the second one as the mode. Governed
by a Markov chain with a finite state space, the system
switches from one mode to another in a random way( [25]).
This switching manner is more suitable for the description
of random failures, abrupt changes or sudden disturbances
arising in many real systems. Nowadays, stability analysis
for jump diffusion systems with Markovian switching( [7],
[14], [15], [19], [22], [27]) or hybrid systems with jump(
[25]) tends to be a new research focus. On the other hand,
time delays, which commonly appear in practical systems,
are often the cause of instability. Hence, the stability of
stochastic delay systems with Markovian switching and Lévy
noises is always the hot area in many researches and there
is little research in this area. In this paper, the almost sure
exponential stability of nonlinear stochastic delayed systems
with Markovian switching and Lévy noises is analyzed and
the sufficient conditions are proposed by using the technique
of Burkholder-Davis-Gundy inequality, Chebyshev inequal-
ity, Borel-Cantelli lemma and generalized Itô formula for
Lévy stochastic integral. Moreover, the results obtained are
extended to the generalization to semi-martingale noises and
the proof is provided.

This paper is organized as follows. In Section 2, the
n-dimensional nonlinear stochastic delayed systems with
Markovian switching and Lévy noises is introduced and some
important lemmas are given. In Section 3, some sufficient
conditions are proposed to guarantee the almost sure ex-
ponential stability of the system. In Section 4, a numerical
example is provided to show the usefulness of our results.
The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Ω,F ,P) be a basic probability space equipped
with a right continuous and increasing family of σ-algebras
({Ft}t≥0). Denote by C2,1(Rn×[−τ,∞)×S;R+ the family
of positive real-valued functions defined on Rn × R+ × S
which are continuously twice differentiable in x ∈ Rn and
once differentiable in t ∈ R+.

Let r(t), t ≥ 0 be a right-continuous Markov chain on
the probability space taking values in a finite state space
S = {1, 2, ..., N} with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) i 6= j

1 + γii∆ + o(∆) i = j

where ∆ > 0, γij ≥ 0 is the transition rate from i to j if
i 6= j while γii = −Σi6=jγij .
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Consider the n-dimensional nonlinear stochastic delayed
systems with Markovian switching and Lévy noises

dx(t) (1)
= f(x(t), x(t− τ(t, r(t))), t, r(t))dt

+ g(x(t), x(t− τ(t, r(t))), t, r(t))dW (t)

+

∫
Y

H(x(t−), x((t− τ(t, r(t)))−), t, r(t), y)

N(dt, dy),

where x(0) = x0 ∈ CbF0
([−τ, 0);Rn), r(0) = r0 ∈ S,

x(t− = lims↓t x(s), τ(t, r(t)) : R+ × S→ R+ is is a Borel
measurable function which stands for the time lag, W (t)
is an m-dimensional Ft-adapted Brownian motion, N(t, y)
is an l-dimensional Ft-adapted Poisson random measure
on [0,+∞) × Rl with compensator Ñ(t, y) which satisfies
Ñ(t, y) = N(dt, dy) − ν(dy)dt, ν(dy) is a Lévy measure,
f : Rn×Rn×R+×S→ Rn, g : Rn×Rn×R+×S→ Rn×m,
H : Rn × Rn × R+ × S→ Rn×l.

Remark 1: τ(t, r(t)) is non-negative differential function
and for all t ≥ 0 and i ∈ S, there exist non-negative constants
li, τi, δi, δi, δ, l, τ satisfying

li ≤ τ(t, i) ≤ τi, l ≤ τ(t, i) ≤ τ,

τt(t, i) =
∂τ(t, i)

∂t
≤ δi.

δi = δi + γiili + Σi6=jγijτj ≤ δ < 1.

We further assume that W (t), N(t, y), r(t) in system 1
are independent.

For the purpose of stability study in this paper we impose
the following assumptions.

Assumption 1: The functions f , g and H satisfy
f(0, 0, t, i) = g(0, 0, t, i) = H(0, 0, t, i, y) ≡ 0.

Assumption 2: |f(x, ξ, t, i)−f(x, ξ, t, i)|2+|g(x, ξ, t, i)−
g(x, ξ, t, i)|2 +

∫
Y
|H(x, ξ, t, i, y)−H(x, ξ, t, i, y)|2ν(dy) ≤

L(|x− x|2 + |ξ − ξ|2).
Remark 2: According to Assumption 2, it is easy to check

that when t ≥ −τ , for each x0 ∈ CbF0
([−τ, 0);Rn), system

1 has unique solution.
Definition 1: The solution of system 1 is said to be almost

sure exponential stability if there exists λ > 0 satisfying

lim
t→∞

sup
1

t
log(|x(t;x0, r0)|) ≤ −λ,

for any ξ ∈ CbF0
([−τ, 0);Rn) and r0 ∈ S.

Given V ∈ C2,1(Rn × [−τ,∞) × S;R+), we define the
operator LV by

LV (x, ξ, t, i)

= Vt(x, t, i) + Vx(x, t, i)f(x, ξ, t, i)

+
1

2
trace[gT (x, ξ, t, i)Vxx(x, t, i)g(x, ξ, t, i)]

+

∫
Y

l∑
k=1

[V (x+Hk(x, ξ, t, i, yk), t, i)

−V (x, t, i)]νk(dyk) +
N∑
j=1

γijV (x, t, j).

Then the generalized Itô formula can be given as follows:

V (x, t, r(t)) (2)
= V (x0, 0, r0)

+

∫ t

0

LV (x(s), x(s− τ(s, r(s))), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s, r(s))), s,

r(s))dW (s)

+
l∑

k=1

∫ t

0

∫
Y

[V (x(s−) +Hk(x(s−),

x((s− τ(s, r(s)))−), s, r(s), yk), s, r(s))

−V (x(s−), s, r(s))]Ñ(ds, dyk)

+

∫ t

0

∫
Y

[V (x(s−), s, r0 + c(r(s), u))

−V (x(s−), s, r(s))]µ(ds, du).

The details of the function c and the martingale measure
µ(ds, du) can be seen in [15]. Obviously (2) holds if we
replace 0 and t with bounded stopping time τ1 and τ2
respectively. Thus the following lemma is derived.

Lemma 1: Let τ1, τ2 be bounded stopping times such that
0 ≤ τ1 ≤ τ2 a.s. If V (x(t), t, r(t)) and LV (x(t), x(t −
τ(t, r(t)), t, r(t)) are bounded on t ∈ [τ1, τ2] with probability
1, then

EV (x(τ2), τ2, r(τ2))

= EV (x(τ1), τ1, r(τ1)

+ E
∫ τ2

τ1

LV (x(s), x(s− τ(s, r(s))), s, r(s))ds.

Proof: Replace 0 and t in (2) with τ1 and τ2, by taking
expectation on both side of (2), it is easy to check the results.

We also need some lemmas such as Burkholder-Davis-
Gundy inequality, Chebyshev inequality and Borel-Cantelli
lemma as follows.

Lemma 2: (Burkholder-Davis-Gundy inequality) For t ≥
0, let x(t) =

∫ t
0
g(s)dB(s) A(t) =

∫ t
0
|g(s)|2ds. Then, for

any p > 0, there exist positive constants cp and Cp satisfying

cpE|A(t)|
p
2 ≤ E( sup

0≤s≤t
|x(s)|p) ≤ CpE|A(t)|

p
2 ,

where
cp =(

p

2
)p, Cp = (

32

p
)
p
2 , 0 < p < 2;

cp =1, Cp = 4, p = 2;

cp =(2p)−
p
2 , Cp = (

pp+1

2(p− 1)p−1
))
p
2 , p > 2.

Lemma 3: (Borel-Cantelli lemma) For the complete prob-
ability space (Ω,F , {Ft}t≥0,P),

(1) if {Ak} ⊂ F and
∑∞
k=1 P(Ak) <∞, then

P(lim sup
k→∞

Ak) = 0.

Namely, there exist a positive constant k0 and set Ω0,
where Ω0 ∈ F and satisfying P(Ω0) = 1, for any ω ∈ Ω0,
it follows that

ω /∈ Ak k ≥ k0.
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(2) If {Ak} ⊂ F are independent and
∑∞
k=1 P(Ak) =∞,

then
P(lim sup

k→∞
Ak) = 1.

Namely, there exist a set Ω1 satisfying P(Ω1) = 1, and
Aki , for any ω ∈ Ω1, it follows that

ω ∈ Aki ∀i ∈ I+.

Lemma 4: (Chebyshev inequality) If c > 0,p > 0,X ∈
Lp, then

P{ω|X(ω) ≥ c|} ≤ c−pE|X|p.

III. MAIN RESULT AND PROOFS

In the following theorem, some sufficient conditions are
proposed to guarantee the almost sure exponential stability
of the system (17).

Theorem 1: Under Assumptions 1 and 2, if there exist a
function V (x, t, i) ∈ C2,1(Rn×[−τ,∞)×S;R+ and positive
constants c1, c2, λ1, λ2 such that

c1|x|2 ≤ V (x, t, i) ≤ c2|x|2,

LV (x, ξ, t, i) ≤ −λ1|x|2 + λ2|ξ|2, t > 0

for any (x, t, i) ∈ (Rn × [−τ,∞)× S), then the system 1 is
almost sure exponential stability.

Proof: For any i ∈ S, when t > 0, according to Lemma
1, it follows that

E[eλtV (x(t), t, i)]

= E[V (x0, 0, i)] + E
∫ t

0

eλs[λV (x(s), s, i)

+ LV (x(s), x(s− τ(s, i)), s, i)]ds.

Since

dτ(s, i)

= [τs(s, i) +
N∑
j=1

γijτ(s, j)]ds

≤ [δi +

N∑
j=1

γijτj ]ds ≤ δds.

Then we obtain that

E
∫ t

0

eλs|x(s− τ(s, i))|2ds

≤ eγτ

1− δ
E[

∫ 0

−τ
|x(s)|2ds+

∫ t

0

eλs|x(s)|2ds]

≤ τ |x0|2eγτ

1− δ
+

eγτ

1− δ
E
∫ t

0

eλs|x(s)|2ds.

Therefore, we have

E[eλtV (x(t), t, i)]

≤ c2|x0|2 + E
∫ t

0

eλs[λc2|xs|2 − λ1|xs|2

+λ2|x(s− τ(s, i))|2]ds

≤ c2|x0|2 +
λ2τe

γτ

1− δ
|x0|2

+ E
∫ t

0

eλs[λc2|xs|2 − λ1|xs|2 +
λ2e

γτ

1− δ
|xs|2]ds

≤ c2 + λ2τe
γτ

1− δ
|x0|2.

Let M = c2+λ2τe
γτ

c1(1−δ)
, it can be check that

E|x(t)|2 ≤Me−λt, t ≥ 0. (3)

Then, for any ε ∈ (0, λ2 ),

E|x(t)|2 ≤Me−(λ−ε)t, t ≥ 0. (4)

For any δ > 0, there exists k0(δ) satisfying (k0−1)δ ≥ τ .
Let k = k0, k0 + 1, ..., we get

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2]

≤ 4E|x((k − 1)δ)|2

+ 4E[

∫ kδ

(k−1)δ
|f(x(s), x(s− τ(s)), s, r(s))|ds]2

+ 4E[ sup
(k−1)δ≤s≤kδ

∫ t

(k−1)δ
|g(x(s), x(s− τ(s)),

s, r(s))dW (s)|2]

+ 4E[ sup
(k−1)δ≤s≤kδ

|
∫ t

(k−1)δ∫
Y

H(x(s−), x((s− τ(s)−), s, r(s), y)N(ds, dy)|2].

By using Burkholder-Davis-Gundy inequality and Lévy
stochastic integral, it follows that

E[ sup
(k−1)δ≤s≤kδ

|
∫ t

(k−1)δ∫
Y

H(x(s−), x((s− τ(s)−), s, r(s), y)N(ds, dy)|2]

≤ E[ sup
(k−1)δ≤s≤kδ

∫ t

(k−1)δ∫
Y

|H(x(s−), x((s− τ(s)−), s, r(s), y)|2ν(dy)ds]

≤ LδE[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)],

E[

∫ kδ

(k−1)δ
|f(x(s), x(s− τ(s)), s, r(s))|ds]2

≤ E[δ sup
(k−1)δ≤s≤kδ

|f(x(s), x(s− τ(s)), s, r(s))|]2

≤ δ2LE[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)],

and

E[ sup
(k−1)δ≤s≤kδ

|
∫ t

(k−1)δ
g(x(s), x(s− τ(s)), s,

r(s))dW (s)|2]

≤ CpE[

∫ kδ

(k−1)δ
g2(x(s), x(s− τ(s)), s, r(s))ds]

≤ CpδLE[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)],

where Cp is a constant.
Assume that Lδ(1 + δ + Cp) <

1
8 .
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Hence, it can be checked that

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2]

≤ 4Me−(λ−ε)(k−1)δ

+ 4Lδ(1 + δ + Cp)

E[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)]

≤ 4Me−(λ−ε)(k−1)δ

+
1

2
E[ sup

(k−1)δ≤s≤kδ
(|x(s)|2 + |x((s− τ(s))|2)].

Since

E[ sup
(k−1)δ≤s≤kδ

|x(s− τ(s))|2] ≤Me−(λ−ε)(k−1)δ−τ , (5)

we obtain that

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2] ≤ 5Me−(λ−ε)(k−1)δ−τ . (6)

From Chebyshev inequality, it is easy to check that

P{ω : sup
(k−1)δ≤t≤kδ

|x(t)| > e−(λ−2ε)((k−1)δ−τ)/2}

≤
E[sup(k−1)δ≤t≤kδ |x(t)|2]

e−(λ−2ε)(k−1)δ−τ

≤ 5Me−ε((k−1)δ−τ).

According to Borel-Cantelli lemma, for all ω ∈ Ω and
except some k, it follows that

sup
(k−1)δ≤t≤kδ

|x(t)| ≤ e−(λ−2ε)((k−1)δ−τ)/2. (7)

Therefore, for almost every ω ∈ Ω, if (k − 1)δ ≤ t ≤ kδ
and k ≥ max{k0, k1}, we obtain

lim
t→∞

sup
1

t
log(|x(t)|) ≤ −λ− 2ε

2
. (8)

Let ε → 0, the system 1 is almost sure exponential
stability.

The proof is complete.
Remark 3: When system 1 is changed to another expres-

sion as follows:

dx(t) (9)
= f(x(t), x(t− τ(t, r(t))), t, r(t))dt

+ g(x(t), x(t− τ(t, r(t))), t, r(t))dL(t),

where

Lt = Bt +

∫ t

0

∫
|z|>1

zN(ds, dz) +

∫ t

0

∫
|z|≤1

zÑ(ds, dz),

(Bt, t ≥ 0) is a standard Brownian motion, N(ds, dz)
is a Poisson random measure independent of (Bt, t ≥
0) with characteristic measure dtν(dz), and Ñ(ds, dz) =
N(ds, dz)− ν(dz) is a martingale measure.

Therefore, the Assumptions 1-2 are changed to
Assumption 3: The functions f , g satisfy f(0, 0, t, i) =

g(0, 0, t, i) ≡ 0.
Assumption 4: |f(x, ξ, t, i)−f(x, ξ, t, i)|2+|g(x, ξ, t, i)−

g(x, ξ, t, i)|2 ≤ L(|x− x|2 + |ξ − ξ|2).

Then, under the Assumptions 3-4, by using the same
methods in Theorem 1, it is easy to check that

lim
t→∞

sup
1

t
log(|x(t;x0, r0)|) ≤ 0.

Therefore, the system 9 is almost sure exponential stability.
Remark 4: When system 1 is changed to another expres-

sion as follows:

dx(t) (10)
= f(x(t), x(t− τ(t, r(t))), t, r(t))dt

+ g(x(t), x(t− τ(t, r(t))), t, r(t))dQ(t),

where
Qt = Q0 +Mt +At

be a semi-martingale, Mt is a local martingale and At is a
finite variation process.

Therefore, the Assumptions 1-2 are changed to
Assumption 5: The functions f , g satisfy f(0, 0, t, i) =

g(0, 0, t, i) ≡ 0.
Assumption 6: |f(x, ξ, t, i)−f(x, ξ, t, i)|2+|g(x, ξ, t, i)−

g(x, ξ, t, i)|2 ≤ L(|x− x|2 + |ξ − ξ|2).
For any i ∈ S, when t > 0, according to Lemma 1, it

follows that

E[eλtV (x(t), t, i)]

= E[V (x0, 0, i)] + E
∫ t

0

eλs[λV (x(s), s, i)

+ LV (x(s), x(s− τ(s, i)), s, i)]ds.

Since

dτ(s, i)

= [τs(s, i) +

N∑
j=1

γijτ(s, j)]ds

≤ [δi +

N∑
j=1

γijτj ]ds ≤ δds.

Then we obtain that

E
∫ t

0

eλs|x(s− τ(s, i))|2ds

≤ eγτ

1− δ
E[

∫ 0

−τ
|x(s)|2ds+

∫ t

0

eλs|x(s)|2ds]

≤ τ |x0|2eγτ

1− δ
+

eγτ

1− δ
E
∫ t

0

eλs|x(s)|2ds.

Therefore, we have

E[eλtV (x(t), t, i)]

≤ c2|x0|2 + E
∫ t

0

eλs[λc2|xs|2 − λ1|xs|2

+λ2|x(s− τ(s, i))|2]ds

≤ c2|x0|2 +
λ2τe

γτ

1− δ
|x0|2

+ E
∫ t

0

eλs[λc2|xs|2 − λ1|xs|2 +
λ2e

γτ

1− δ
|xs|2]ds

≤ c2 + λ2τe
γτ

1− δ
|x0|2.
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Let M = c2+λ2τe
γτ

c1(1−δ)
, it can be check that

E|x(t)|2 ≤Me−λt, t ≥ 0. (11)

Then, for any ε ∈ (0, λ2 ),

E|x(t)|2 ≤Me−(λ−ε)t, t ≥ 0. (12)

For any δ > 0, there exists k0(δ) satisfying (k0−1)δ ≥ τ .
Let k = k0, k0 + 1, ..., we get

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2]

≤ 4E|x((k − 1)δ)|2

+ 4E[

∫ kδ

(k−1)δ
|f(x(s), x(s− τ(s)), s, r(s))|ds]2

+ 4E[ sup
(k−1)δ≤s≤kδ

∫ t

(k−1)δ
|g(x(s), x(s− τ(s)), s, r(s))

dQ(s)|2].

By using Lévy stochastic integral, it follows that

E[ sup
(k−1)δ≤s≤kδ

∫ t

(k−1)δ
|g(x(s), x(s− τ(s)), s, r(s))

dQ(s)|2]

≤ E[ sup
(k−1)δ≤s≤kδ

∫ t

(k−1)δ

|g(x(s), x(s− τ(s)), s, r(s))|2ν(dy)ds]

≤ LδE[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)],

and

E[

∫ kδ

(k−1)δ
|f(x(s), x(s− τ(s)), s, r(s))|ds]2

≤ E[δ sup
(k−1)δ≤s≤kδ

|f(x(s), x(s− τ(s)), s, r(s))|]2

≤ δ2LE[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)].

Assume that Lδ(1 + δ) < 1
8 .

Hence, it can be checked that

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2]

≤ 4Me−(λ−ε)(k−1)δ

+ 4Lδ(1 + δ)

E[ sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x((s− τ(s))|2)]

≤ 4Me−(λ−ε)(k−1)δ

+
1

2
E[ sup

(k−1)δ≤s≤kδ
(|x(s)|2 + |x((s− τ(s))|2)].

Since

E[ sup
(k−1)δ≤s≤kδ

|x(s− τ(s))|2] ≤Me−(λ−ε)(k−1)δ−τ , (13)

we obtain that

E[ sup
(k−1)δ≤t≤kδ

|x(t)|2] ≤ 5Me−(λ−ε)(k−1)δ−τ . (14)

From Chebyshev inequality, it is easy to check that

P{ω : sup
(k−1)δ≤t≤kδ

|x(t)| > e−(λ−2ε)((k−1)δ−τ)/2}

≤
E[sup(k−1)δ≤t≤kδ |x(t)|2]

e−(λ−2ε)(k−1)δ−τ

≤ 5Me−ε((k−1)δ−τ).

According to Borel-Cantelli lemma, for all ω ∈ Ω and
except some k, it follows that

sup
(k−1)δ≤t≤kδ

|x(t)| ≤ e−(λ−2ε)((k−1)δ−τ)/2. (15)

Therefore, for almost every ω ∈ Ω, if (k − 1)δ ≤ t ≤ kδ
and k ≥ max{k0, k1}, we can obtain

lim
t→∞

sup
1

t
log(|x(t)|) ≤ −λ− 2ε

2
. (16)

Let ε → 0, the system 10 is almost sure exponential
stability.

IV. NUMERICAL SIMULATION

Let W (t) and N(t, y) are all one-dimensional, The char-
acter measure υ of Poisson jump satisfies υ(dy) = ζφ(dy),
where ζ = 1.5 is the intensity of Poisson distribution and φ
is the probability intensity of the standard normal distributed
variable y, r(t) ∈ S = {1, 2} and Γ = (γij)2×2 =(

−0.5 0.5
0.3 −0.3

)
Consider the following scalar nonlinear stochastic delayed

systems with Markovian switching and Lévy noises:

dx(t) (17)
= f(x(t), x(t− τ(t, r(t))), t, r(t))dt

+ g(x(t), x(t− τ(t, r(t))), t, r(t))dW (t)

+

∫
Y

H(x(t−), x((t− τ(t, r(t)))−), t, r(t), y)N(dt, dy),

where

f(x(t), x(t− τ(t, 1)), t, 1)

= −3x(t) +
1

2
sin(x(t)) +

1

2
x(t− τ(t, 1)),

g(x(t), x(t− τ(t, 1)), t, 1) =
1

3
x(t),

f(x(t), x(t− τ(t, 1)), t, 2)

= −5

2
x(t) +

1

5
sin(x(t)) +

1

3
x(t− τ(t, 2)),

g(x(t), x(t− τ(t, 1)), t, 2) =
1

2
x(t),

H(x(t), x(t− τ(t, r(t))), t, 1, y) =
x(t− τ(t, 1))y

2

H(x(t), x(t− τ(t, r(t))), t, 2, y) = −x(t) + x(t− τ(t, 1))y.

Let V (x, i) = x2, i = 1, 2, then we obtain that

LV (x, ξ, t, 1) ≤ −2x2 +
1

4
ξ2,

LV (x, ξ, t, 2) ≤ 1.5x2 + ξ2,

namely, c1 = c2 = 1, λ1 = 1.5, λ2 = 1.
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Let τ(t, 1) = 1 + 0.3 sin(t), τ(t, 2) = 1 + 0.2 cos(t), then
τ = 1.3, δ = 0.45. Therefore, it follows from Theorem 1
that the system is almost sure exponential stability.

Let x(0) = 2, r(0) = 1, step size ∆ = 0.0001, Figure 1
shows the state trajectory and the usefulness of the proposed
almost sure exponential stability criterion. Figure 2 shows
the Poisson trajectory and Figure 3 shows the Markov chain.

Fig. 1. State trajectory

Fig. 2. Poisson trajectory

Next, let r(t) ∈ S = {1, 2, 3} and Γ = (γijk)3×3 = −3 1 1
1 −3 1
1 2 −5



dx(t)

= f(x(t), x(t− τ(t, r(t))), t, r(t))dt

+ g(x(t), x(t− τ(t, r(t))), t, r(t))dW (t)

+

∫
Y

H(x(t−), x((t− τ(t, r(t)))−), t, r(t), y)

N(dt, dy),

Fig. 3. Markov chain

where

f(x(t), x(t− τ(t, 1)), t, 1)

= −3x(t) +
1

2
sin(x(t)) +

1

2
x(t− τ(t, 1)),

g(x(t), x(t− τ(t, 1)), t, 1) =
1

3
x(t),

f(x(t), x(t− τ(t, 1)), t, 2)

= −5

2
x(t) +

1

5
sin(x(t)) +

1

3
x(t− τ(t, 2)),

g(x(t), x(t− τ(t, 1)), t, 2) =
1

2
x(t),

H(x(t), x(t− τ(t, r(t))), t, i, y) = ix(t− τ(t, i))y2

Let V (x, i) = x2, i = 1, 2, then we obtain that

LV (x, ξ, t, 1) ≤ −2x2 +
1

4
ξ2,

LV (x, ξ, t, 2) ≤ 2x2 + ξ2,

namely, c1 = c2 = 1, λ1 = 2, λ2 = 1.
Let τ(t, 1) = 2 + 0.5 cos(t), τ(t, 2) = 1 + 0.3 sin(t), then

τ = 1.5, δ = 0.6. Therefore, it follows from Theorem 1 that
the system is almost sure exponential stability.

Let x(0) = 1, r(0) = 0.5, step size ∆ = 0.0005, Figure 4
shows the state trajectory and the usefulness of the proposed
almost sure exponential stability criterion. Figure 5 shows
the Poisson trajectory and Figure 6 shows the Markov chain.

V. CONCLUSION

The aim of this paper is to study the almost sure ex-
ponential stability of nonlinear stochastic delayed system-
s with Markovian switching and Lévy noises. By using
Burkholder-Davis-Gundy inequality, Chebyshev inequality,
Borel-Cantelli lemma and generalized Itô formula for Lévy
stochastic integral, the sufficient conditions to guarantee the
almost sure exponential stability of the system has been
proposed. A numerical example has been provided to show
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Fig. 4. State trajectory

Fig. 5. Poisson trajectory

the usefulness of the proposed almost sure exponential sta-
bility criterion. Further research topics will include almost
sure stability for stochastic hybrid systems with Markovian
switching and Lévy noises.
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