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Abstract—In this paper, a new parameter estimation method, 

named E-Bayesian estimation, is introduced to estimate the 

unknown parameter of the Poisson distribution. Based on the 

entropy loss function, formulas of E-Bayesian estimation and 

hierarchical Bayesian estimation for the unknown parameter 

are given, and the properties of E-Bayesian estimation and 

hierarchical Bayesian estimation are also discussed. Compare 

with hierarchical Bayesian estimation, the expression of 

E-Bayesian estimation is simpler; therefore, the E-Bayesian 

estimation method is worth being recommended. Finally, a real 

data of air crash happened in China is used to demonstrate the 

usefulness and validity of the proposed model and method. 

Index Terms—Entropy loss function, E-Bayesian estimation, 

hierarchical Bayesian estimation, Poisson distribution 

 

I. INTRODUCTION 

N practical applications, the Poisson distribution model is 

often used to describe successfully number, such as the 

number of birth defects, the number of machine failures, the 

number of natural disasters, the number of waiting for guests 

on the bus platform, and so on. For Poisson distribution, many 

different parameter estimation methods have been presented, 

such as the maximum likelihood estimation
[1]

, and the 

Bayesian estimation
[2]

. 

The idea of hierarchical Bayesian estimation was first 

introduced by Lindley and Smith
[3]

, and many researchers
[4-6]

 

have used a hierarchical Bayesian method to obtain the 

estimation of the unknown parameter. However, this method 

encountered complicated integration, and the complicated 

integration was very hard to be implemented in practice. 

In this situation, a new estimation method, named E-Bayesian 

estimation, was introduced by Han
[5]

. Compare with the 

hierarchical Bayesian method, the E-Bayesian estimation 

method is simpler. 

In recent years, there has been a growing interest in the 

study of E-Bayesian and hierarchical Bayesian estimation 

 
Manuscript received August 2, 2018. This work was supported by the 

Humanity and Social Science Foundation for the Ministry of Education of 

China (No. 19YJAZH039), the Key Project of Hubei Provincial Education 

Department (No.D20172701), the National Bureau of Statistics of China 

(No.2017LY73), the Technology Creative Project of Excellent Middle & 

Young Team of Hubei Province (2019). 

C. P. Li is with the Department of Mathematics, Hubei Engineering 

University, Hubei, 432000, China. e-mail: lichunping315@163.com.  
a 

H. B. Hao is the corresponding author with the Department of 

Mathematics, Hubei Engineering University, Hubei, 432000, China. e-mail: 

haohuibing1979@163.com.  
b
H. B. Hao is with the Hubei Key Laboratory of Applied Mathematics, 

Faculty of Mathematics and Statistics, Hubei University, Wuhan, 430062, 

China. e-mail: haohuibing1979@163.com. 

 

under the different distributions, such as exponential 

distribution
[5]

, binomial distribution
[6]

, Pascal distribution
[7-8]

, 

and Pareto distribution
[9]

. 

Although a lot of work has been done on the statistical 

inferences of the unknown parameters of the Poisson 

distribution, however, E-Bayesian and hierarchical Bayesian 

estimations of Poisson distribution under entropy loss 

function have not been addressed so for. 

In this paper, E-Bayesian and Hierarchical Bayesian 

estimations of unknown parameters of the Poisson 

distribution are presented under entropy loss function. The 

rest of paper is organized as follow: in section II, the Poisson 

distribution and the definition of entropy loss function are 

introduced. In section III, the definition of E-Bayesian 

estimation is described. In section VI to VI, the formulas of 

the Bayesian estimation, E-Bayesian estimation and 

hierarchical Bayesian estimation are obtained. In section VII, 

the properties of E-Bayesian estimation and hierarchical 

Bayesian estimation are discussed. In section VIII, a real-data 

set example is given. Section IX is the conclusion. 

II. POISSON DISTRIBUTION AND ENTROPY LOSS FUNCTION 

Suppose that Poisson distribution ( )P  has the following 

distribution law 
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where  ( 0  ) is unknown parameter. And suppose x =

（x1, ... ,  xn）is a random observation sample from ( )P  , then, 

the likelihood function of the observed sample can be 

obtained as 
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In order to obtain the Bayesian estimation, most of 

Bayesian inference procedures have been developed under 

the square error loss function or Linex loss function. In many 

practical situations, it appears to be more realistic to express 

the loss in terms of the ratio, and the entropy loss function has 

this property. The entropy loss function is first introduced by 

Calabria and Pulcini 
[10]

. 

Definition 1 If random variable
iX has density function 

( ; )if x  , the entropy loss function can be defined as 

               1 2
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where is an estimator of parameter . 
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Using ( )P  distribution in Equation (1) and its likelihood 

function in Equation (2), the entropy loss function can be 

given as 
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Obviously, ( , )L   is strictly convex function of . 

 

III.  DEFINITION OF E-BAYESIAN ESTIMATION 

In this section, we consider Bayesian estimation of the 

parameter  under the entropy loss function, and we assume 

that ~ ( , )Gamma a b has gamma prior distribution as follow 

              
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where 1

0
( ) exp( )aa x x dx


   is a gamma function, and 

hyper parameters 0a   and 0.b   

According to Han [5], the selection of the hyper parameters 

a and b should guarantee that ( , )a b  is a decreasing 

function of  . The derivative of ( , )a b  with respect to   

is 
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In Equation (5), when 0 1a  , [ ( | , )] 0d a b d    , 

then, π(λ| a, b) is a decreasing function of λ. Given 0<a<1, if 

the b is larger, then the tail of the Gamma density function will 

be thinner. Considering the robustness of Bayesian estimation, 

the thinner tailed prior distribution can reduce the robustness 

of Bayesian estimation. For this reason, b should not be larger 

than c, where c ( 0c  ) is an upper bound. Therefore, the 

hyper-parameters a and b should be selected with the 

restriction of 0<a<1 and 0<b<c. How to determine the 

constant c would be based on expert’s opinion. 

The definition for E-Bayesian estimation was originally 

addressed by Han 
[5]

 as follow. 

Definition 2 Suppose ˆ
B is the Bayesian estimation of , 

and π(a, b) is the prior density function of the hyper 

parameters a and b, then the E-Bayesian estimation of 

 (expectation of the Bayesian estimate of  ) can be given 

by ˆ
EB  as follow 

           ˆ ˆ ˆ, , [ , ]EB B B
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where D is the domain of a and b. 

Definition 2 indicates that the E-Bayesian estimation of 

 is just the expectation of the Bayesian estimation of  for 

all the hyper-parameters a and b. 

 

IV. BAYESIAN ESTIMATION UNDER ENTROPY LOSS FUNCTION 

Suppose x =（x1, ... , xn）is a random sample from ( )P  , then, 

the posterior density function of  can be written as 
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where 
1

n

i

i

T x


 . 

Theorem 1 Suppose the entropy loss function is given by 

Equation (4), for any prior distribution ( )  of  , if there is a 

estimator δB, and the corresponding Bayes risk
B( )R    , 

then we can obtain a unique Bayesian estimation of λ as 

                              B E x                                              (9) 

Proof Let δB be any Bayesian estimation of  , under the 

entropy loss function in Equation (4), the corresponding 

Bayes risk R(δB) can be obtained as 
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In order to minimize R (δB), let 
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Taking the derivative of g(δB) with respect to δB, and 

solving the equation
B B[ ( )] 0d g d   , we can obtain 

the equation’s solution as 

                                B E x                                           (10) 

Next, we will proof the uniqueness of δB. Considering that 

g(δB) is strictly convex function of δB, then we know that 

B E x     is a unique  Bayesian estimation of . 

Theorem 2 If x =（x1,..., xn）is a random observation sample 

from ( )P  , the likelihood function is given by Equation (2), 

the prior density distribution π(α| a, b) of  is given by 

Equation (5), under the entropy loss function, then Bayesian 

estimation of  can be obtained as 

                                   ˆ
B

a T

b n
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
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                                        (11) 

And the estimate ˆ
B is admissible. 

Proof From | ~ ( , )x Gamma a T n b   , we can get 

                               |
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E x
n b







 

Based on Theorem 1, we can get the unique Bayesian 

estimation of as 

                           ˆ |B

a T
E x

n b
 


 


               

Obviously, the estimate ˆ
B is admissible. 

V. E-BAYESIAN ESTIMATION UNDER ENTROPY LOSS 

FUNCTION 

In this section, we will introduce the E-Bayesian 

estimations of λ under the entropy loss function, and using 
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three different prior distributions of the hyper parameters a 

and b. 

Theorem 3 Under the entropy loss function is given by 

Equation (4), suppose x =（x1, ... , xn）is a random observation 

sample from ( )P  ,let
1

n

i

i

T x


 and  has gamma prior 

distribution as shown in Equation (5), we have 

(1) If the prior density function of hyper parameters (a, b) is 

                      1

1
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c
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then, the corresponding E-Bayesian estimation of  is 
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(2) If the prior density function of hyper parameters (a, b) is 
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then, the corresponding E-Bayesian estimation of  is 
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(3) If the prior density function of hyper parameters (a, b) is 
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then, the corresponding E-Bayesian estimation of is 
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Proof (1) From the definition of E-Bayesian estimation in 

Equation (7) and the Bayesian estimation in Equation (9), we 

can get 
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(2) Similarly, the E-Bayesian estimation of  based 

on π2(a, b) can be obtained as 
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(3) Similarly, the E-Bayesian estimation of  based 

on π3(a, b) can be obtained as 
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VI. HIERARCHICAL BAYESIAN ESTIMATION UNDER ENTROPY 

LOSS FUNCTION 

In this section, we will derive the hierarchical Bayesian 

estimation of the parameter   under entropy loss function. 

The definition for hierarchical Bayesian estimation was 

originally addressed by Lindley and Smith [3]. Suppose the 

function law of random variable is ( ; )P x  , π(  |a, b) is the 

prior density function of the parameter  ，π(a, b) is the prior 

density function of the hyper parameters a and b, then the 

corresponding hierarchical prior density functions of  can 

be expressed as 
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Theorem 4 Under the entropy loss function in Equation (4), 

suppose x =（x1, ... , xn）is a random observation sample 

from ( )P  , let
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 and  has gamma prior distribution 

in Equation (15), we can get 

(1) If the prior density function of hyper parameters (a, b) is 

given by Equation (12), the corresponding hierarchical 

Bayesian estimation of  is 

 

 

1

10 0

1
1

0 0

( 1)

( )
ˆ

( )

( )

a
c

a T

HB a
c

a T

T a b
dadb

a b n

T a b
dadb

a b n



 



  

 


 

 

 

 

                  (19) 

(2) If the prior density function of hyper parameters (a, b) is 

given by Equation (14), the corresponding hierarchical 

Bayesian estimation of  is 
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(3) If the prior density function of hyper parameters (a, b) is 

given by Equation (16), the corresponding hierarchical 

Bayesian estimation of  is 
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Proof (1) From the prior density function π(  |a, b)  of 

parameter  , and the prior density function  1 ,a b  of hyper 

parameters (a, b) , we can get the hierarchical prior density 

function of  as 
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Then, the hierarchical Bayesian estimation of  can be 

given as 
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(2) From the prior density function of parameter  , and the 

prior density function of hyper parameters (a, b) 
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Then, the hierarchical Bayesian estimation of  can be given 
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(3) From the prior density function of parameter  , and the 

prior density function of hyper parameters (a, b) 

 
2

2
, ,0 1,0

b
a b a b c

c
       

we can get the hierarchical prior density functions of  as 

 3 ( ) ( / , ) ,
D

a b a b dadb       

 
1 1

1

2 0 0

2
exp

( )

a a
c b

b dadb
ac




 

 
   

Then, the hierarchical posterior density functions of  can 

be given as 

   

   

3

3

3
0

|
( | )

|

L x
h x

L x d

  


   





 

  

  

1 1
1

0 0

1 1
1

0 0 0

exp

( )

exp

( )

a T a
c

a T a
c

b b n
dadb

a

b b n
dadbd

a

 

 


  

  


 




 



 

  

 

  

 

1 1
1

0 0

1
1

0 0

exp

( )

( )

( )

a T a
c

a
c

T a

b b n
dadb

a

T a b
dadb

a b n

   





 




 

 

 

 

 

Then, the hierarchical Bayesian estimation of  can be 

given as 
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VII. COMPARE E-BAYESIAN ESTIMATION AND 

HIERARCHICAL BAYESIAN ESTIMATION 

In this section, we will discuss the relationship of 

E-Bayesian and hierarchical Bayesian estimations under the 

entropy loss function. 

Theorem 5 In Theorems 3 and 4, for ˆ
EBi and ˆ

HBi , 

1,2,3i  , then we have 
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Proof  (1) From the Theorem 4 and the properties of 

Gamma function, we have 
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When 0 1,0a b c    ，we know that
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is continuous，
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，By using the mean value theorem of  
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we have 
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According to Equation (13), we can get 
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2) Similarly, there is at least one number  2 0,1a   and 
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According to Equation (17), we get 
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VIII. A REAL EXAMPLE 

To illustrate the proposed model and method in this paper, 

a real data of air crash happened in China in recent 30 years 

(1981-2010) as shown in Table I, and the data follows a 

Poisson distribution. In this data set, k represents the number 

of air crash happened in 30 years, nk represents the frequency 

of occurrence of air crash. 

From Theorems 2-5 and Table I, we can get the estimation 

of λEBi and λHBi (i=1, 2, 3), and some numerical results are 

listed in Table II 

From Table II, we can find that for the same c, the 

estimation of λEBi and λHBi (i=1, 2, 3) are very close. Moreover, 

we can find that for the different c, λEBi and λHBi (i=1, 2, 3) are 

all robust. 

According to Table II, let λ = 1, we can get the absolute 

error of λEBi and λHBi are ΔEBi=|λEBi–λ| and ΔHBi=|λHBi–λ|, 

respectively. Some numerical results are listed in Table III. 

TABLE I 

THE DATA OF AIR CRASH HAPPENED 

k 0 1 2 3 4 5 total 

nk 13 10 3 3 0 1 30 

 

TABLE II 

THE ESTIMATE OF λEBi AND λHBi 

c λEB1 λEB2 λEB3 λHB1 λHB2 λHB3 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0150 

1.0133 

1.0116 

1.0099 

1.0083 

1.0066 

1.0050 

1.0033 

1.0017 

1.0001 

1.0155 

1.0144 

1.0133 

1.0122 

1.0111 

1.0100 

1.0089 

1.0077 

1.0066 

1.0056 

1.0144 

1.0122 

1.0099 

1.0077 

1.0055 

1.0033 

1.0011 

0.9989 

0.9968 

0.9946 

1.0140 

1.0134 

1.0123 

1.0110 

1.0099 

1.0081 

1.0066 

1.0052 

1.0037 

1.0023 

1.0137 

1.0137 

1.0132 

1.0124 

1.0115 

1.0106 

1.0096 

1.0086 

1.0077 

1.0067 

1.0141 

1.0132 

1.0117 

1.0099 

1.0081 

1.0062 

1.0043 

1.0024 

1.0005 

0.9986 

range 0.0149 0.0099 0.0198 0.0117 0.007 0.0155 
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From Table III, we can find that for the same c 

(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0), the results of ΔEBi 

and ΔHBi (i=1, 2, 3) are very close; moreover, for the different 

c (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9,1.0) , ΔEB1∈[0.0001, 

0.0150], ΔEB2∈[0.0056, 0.0155], ΔEB3∈[0.0011, 0.0144], 

ΔHB1∈[0.0023, 0.0140], ΔHB2∈[0.0067, 0.0137], ΔHB3∈
[0.0014, 0.0141]. 

From the example, we can find that: (1) Focus on the 

E-Bayesian estimations, under different prior distributions, 

we can find that the MSEEBi and BiasEBi (i=1, 2, 3) are very 

close to each other. (2) Focus on the hierarchical Bayesian 

estimations, under different priors distribution, we can find 

that the MSEHBi and BiasHBi are very close to each other. (3) 

Focus on the robust of different estimator, we can find that the 

E-Bayesian estimations and hierarchical Bayesian estimations 

are very robust. Therefore, the E-Bayesian estimations and 

hierarchical Bayesian estimations are very close to each other. 

Considering that the hierarchical Bayesian estimations 

include complicated integrals, these estimations are not 

obtained explicitly. For these reasons, the E-Bayesian method 

is a good choice instead of the hierarchical Bayesian method. 

From the application example, we find that the E-Bayesian 

estimation method is both efficient and easy to perform. 

 

IX. CONCLUSION 

In this paper, we study the E-Bayesian and hierarchical 

Bayesian estimations of the parameter under entropy loss 

function. The formulas of E-Bayesian estimation and 

hierarchical Bayesian estimation of the Poisson distribution 

are provided. Moreover, the relationship between hierarchical 

Bayesian estimation and E-Bayesian estimation is also 

discussed. Finally, a real numerical example is provided to 

show that E-Bayesian estimation is much simpler than 

hierarchical Bayesian estimation in practice.  
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TABLE III 

THE RESULTS OF ΔEBi AND ΔHBi 

c λEB1 λEB2 λEB3 λHB1 λHB2 λHB3 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0150 

0.0133 

0.0116 

0.0099 

0.0083 

0.0066 

0.0050 

0.0033 

0.0017 

0.0001 

0.0155 

0.0144 

0.0133 

0.0122 

0.0111 

0.0100 

0.0089 
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0.0066 

0.0056 

0.0144 

0.0122 

0.0099 

0.0077 

0.0055 

0.0033 

0.0011 

0.0011 
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0.0134 

0.0123 

0.0110 

0.0099 
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0.0066 

0.0052 

0.0037 

0.0023 
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0.0115 
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