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Folded Hypercubes with Cycles Embedding in
Hybrid Conditionally Faulty

Che-Nan Kuo, and Yu-Huei Chenlylember, IAENG

Abstract—A network is defined as g-conditionally faulty if complementary addresses. It has been proved helpful for
there are g fault-free neighbors is found in every vertex at least, improving the performance of the system on conventional
where g > 2. An folded hypercube F'Q, with n-dimension, pyhercybe in numerous measurements, for examples, con-

a famous variation of an n-dimensional hypercube @,,, can . . .
be established from@Q, through putting in an edge to every nectivity, diameter, faulty diameter, and many more. (Please

pair of vertices which has complementary addresses. LeFF, refer to EI-Amawy and Latifi [6], and Wang [10])
represents the faulty vertex set andF'F. represents the faulty The ability of efficiently simulate algorithms for the design
edge set inFQn, respectively, and letFrq, () represents the of other architectures is a major characteristic of an inter-
faulty vertex andfor faulty edge set which is incident to the onnection network. We can formulate such simulation as
end-vertices of any edge: € F(FQ.,,). Suppose thatFQ,, is 4- twork beddi tG t t networland &
conditionally faulty and |F'F,|+ |FFe| < 2n— 7. We prove the network embeddinge representguest networkanc
properties of embedding fault-tolerant cycles inFQ,, — FF, — representdiost network To embed & into a H is defined
FF, as follows: as a one-to-one mapping from the vertex setG to the
1) For n > 4 and |Frq, (e)| < n—2, FQ, — FF, — FF. vertex setd. Under f, an edge inG is corresponded to a
consists of the fault-free cycle for every even length from path in H [5]. According to the embedding strategy, we can
410 2" = 2|FF[; simulate the influence for a guest network on a host network.

2) For n =4 and n > 8 where n is even, and|Frq,, (¢)| < .
n—3 FQ.— FF, — FF. consists of the fault-iree cycle Therefore, we can develop the algorithms for a guest network

for every odd length from n + 1 to 2" — 2|FF,| — 1. and applied them to the host network. _
This study has been submitted to HAL an open archive for the ~ CYcles (rings) are considered as the most basic networks
sustainability (https://hal.archives-ouvertes.fr/hal-01579266v2). available for parallel and distributed computation. When we
Index Terms—conditionally faulty, fault-free, folded hyper- want to design SImp!e algorithms with low communlpatlon
cubes, hypercubes, interconnection networks. costs, cycles are suitable one. There are many valid algo-
rithms designed on cycles to solve all kinds of algebra and
graph problems [5], [11], [12], [13]. In arbitrary networks,
[. INTRODUCTION cycles are able to be employed for distributed computing
O choose an appropriaiaterconnection networkre- in control/data flow structures. These usages encourage the

ferred to asnetwork) is one of significant works for @mbedding of cycles for networks. _
the design in parallel computing and distributed systems.Because the vertices and/or edges in the network may
At present, many network topologies are presented in the occaglonally broke.n, the network’s fault tolerance mu_st
literature [1], [2], [3]. Thehypercubeproposed by Bhuyan be conslldered. The literature has shown a.lot pf studies
and Agrawal [4] is a famous network model with severdPr the issue of fault-tolerant cycle embedding in an
outstanding characteristics including regularity, symmetrimensional folded hypercub€q,, in [3], [10], [14], [15],
low degree, short mean internode distance, small diametd®]: [17], [18], [19], [20], [21], [22]. LetF'F), represents the
smaller edge complexity, and recursive structure. These chigulty vertex set and”F, represents the faulty edge set in
acteristics are highly useful for the development and desidrf?», respectively. In 2001, Wang proposed thap,, — F'F.
of large-scale parallel or distributed systems [5]. Thereforgonsists of a Hamiltonian cycle of lengeh if [FFe| < n—1
many variants of hypercube are presented including ERO]- In 2006, Xu and Ma presented that every edgé’df,,
Amawy and Latifi [6], Esfahanian et al. [7], Chen efies on the cycle for every even length from 4 26; if n
al. [8], and Preparata and Vuillemin [9]. Thielded IS even; every edge af'Q, also lies on the cycle for every
hypercubeis one of the variants that has become a foc@ld length fromn +1 to 2" —1 [23]. In addition, Xu et al.
of research. Folded hypercube can be established fronin22006 stretched his result as aforgmentloned to show that
hypercube through putting in an edge to every pair of verticB¥ery fault-free edge of'Q, — F'F. lies on the cycle for
which has the longest distance, i.e., a pair of vertices h@4ery even length from 4 ", if » is even, every fault-free
edge of FQ, — FF, also lies on the cycle for every odd
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FQ, —{f} lies on a cycle for every even length from 4 to An n-dimensional hypercub&), (n-cube for short) is
2" —2if n > 3, and ifn > 2 is even, every fault-free edge ofdenoted as an undirected graph(Q,,) contains2™ ver-
FQ., —{f} also lies on the cycle for every odd length frontices labelled as binary strings of length Each edge
n+1to2" —1 [3]. However, the independent reliability ise = (u,v) € E(Q,) connects two vertices and v if and
owned by each component in a network. If a componeanly if v andv differ in exactly one bit of their labels, i.e.,
of a network is independently broken, the probability is = b,b,—1...b;...b1 andv = b,b,_1...bk...b1, Where
low for all breakdowns. Due to this reason, Harary in 1988, is the one’s complementf by, i.e.,b, = 1 —i if and only
first presented the opinion @onditional connectivity[24]. if b, =i fori € {0,1}. eis called as an edge dimensiork.
Subsequently, Latifi et al. in 1994 determined doaditional Obviously, each vertex connects to exacilyther vertices.
vertex-faultswhich requires that each vertex of a networleurthermore, it exist2"~! edges in each dimension and
contains at leass fault-free neighborsy > 2 [25]. For this |E(Q,,)| =n-2""1.
thesis, we focus o = 4 and define that a network i& Letz =z,2,_1...21 andy = y,Yn_1...y1 be twon-
conditionally faulty if its every vertex contains at least foubit binary strings; and ley = z(*), wherel < k < n, if
fault-free neighbors. Lef'r(,, (e) represents the faulty vertexy,, = 1 — z;, andy; = z; forall i # k, 1 < i < n. In
and/or faulty edge set which is incident to the end-vertices afidition, lety = z if y; =1 — z; for all 1 < i < n. The
any edgee € E(F'Q,). Suppose thak'Q, is 4-conditionally Hamming distancel; (z,y) between vertex: and vertexy
faulty and|F'F, |+ |F'F.| < 2n— 7. We prove the properties is the number of different bits in the corresponding strings of
of embedding fault-tolerant cycles RQ,, — F'F, — FF., as the vertices. Thélamming weightuw(z) of z is the number
follows: of 7’s such thatz; = 1. Note that@,, is a bipartite graph
1) Forn >4 and|Frq, (¢)| < n—2, FQ,— FF,—FF, With two partite sets{z| hw(z) is odd} and {z| hw(x) is
consists of the fault-free cycle for every even lengtRvert. Let dg, (z,y) be thedistancebetween vertex: and

from 4 to 2" — 2|FF,|; vertexy in Q. Clearly,dq, (z,y) = du(z,y).

2) Forn =4 andn > 8 is even, andFrq, (¢)] <n—3, An n-dimensional folded hypercubEQ,, can be estab-
FQ, — FF, — FF, consists for a fault-free cycle of lished from ann-cube by putting in artomplementary edge
every odd length fromn + 1 to 2 — 2|FF,| — 1. to every pair of vertices which has the longest distance, i.e.,

Please note, the terms of network, node, and edge/® & vertex whose address is = bnb,—1...b1, it now
interchangeable for graph, vertex, and link, respectively usBgS oné more edge to vertéx= b;b,—i ... b1, except its
throughout this paper. The following gives the organizatioffi9inal n edges. ThusF'Q,, has2"~! more edges tha@,,.
of remainder for this paper. Some necessary definitions ahgeSe augmented edgskipsare represented as;. So the
notations are presented in Section II. The major result §9Mplete edge set of a folded hypercuber'@,) can be

shown in Section IIl. In the last, concluding remarks aréePresented ag(Q,) U E;. Therefore, the edges df@),,
concluded in Section IV. can be formally defined as th#(FQ,) = E(Q,) U E; =
{e = (u,v)|dg(u,v) =1 € E(Qn) or dg(u,v) =n € Eg}.
It has been indicated tha@Q,, is (n + 1)-regular,(n + 1)-
ll. PRELIMINARIES connected, vertex-transitive, and edge-transitive in Xu et al.

Let a graph is defined a8 = (V, E). G = (V, E) is an [22]. Furthermore F'Q),, has been indicated that for any odd
ordered pair whichl/ is the vertex setand is a finite set, n > 3 is bipartite in Lewinter and Widulski [27].
and E is the edge setand is a subset of (u,v)|(u,v) is For conveniencel'Q,, can be denoted asx* ... * x = x™,
an unordered pair of/}. The vertex setand theedge set T
can be also represents(G) and E(G), respectively. When wherex € {0,1} means the don't care” symbol. A regular
(u,v) € E, the verticesu andv are adjacent. For the edge hypercubeq,, can be partitioned into two subcubés,—;
e = (u,v), u andv are called theend-verticesof e. We call along dimension;, wherel < i < n. The subcubes are
u adjacent tov, and vice versa. A grapty = (V, UV;, E) defined asQ)_; = +"'0«'~" andQ;_; = +"'1x""1, in
is bipartite if Vo NV = 0 and E C {(x,y)|z € V, and Which the values of theth bits of the vertices ar@ and1,
y € Vi}. A path Plvg, vi] = (v, v1,...,v5) iS a sequence respectively. FormallyQ? , (respectively,@;, ) is a sub-
of different vertices with any two follow-up vertices aregraph of @, induced by{z,,...z;...x1 € V(FQy,)| z; =
adjacent.v, and v;, are called as thend-verticesof the O} (respectively{z, ...z;...xy € V(FQy,)| z; = 1}).
path. Furthermore, subpathmay be involved by a path, rep- Definition 1: [28] An i-partition on F'Q),, = ™, where
resented agvg, v1, . . ., vi, Plvi, vj], v, vjt1,. .., vg), where 1 < i < n, partitions FQ,, along dimension: into two
Plvi,vj] = (v, vit1, - - -,v5-1,v;). The number of edges on(n — 1)-cubesx" %0« ~1 (QY_;) and «"~"1x~1 (QL _,).
the path represents the length of the path. Whges v, and Furthermore, all edges if; are betweer)? _, and Q! ;.
vg, U1, ..., Uk—1 are different, a patHuvg,v1,...,v;) forms Let F, (respectively,F'F,) and F.(respectively,F'F,) rep-
acycle. A vertex is thoughfault-freeif it is not faulty. An resent the faulty vertex set and the faulty edge set in
edge is thoughfault-free if the two end-vertices and their @Q,,(respectively,F'Q,,). By Definition 1, if we perform an
edge are not faulty. Vertex is a fault-free neighbor ofv  i-partition on FQ,, to form two (n — 1)-cubes@® _; and
if w and(u,v) are not faulty. A path (cycle) ifault-freeif QL_,, we derived thatF) = FF, N V(Q\_,), F! =
it has no faulty edges and faulty vertices. The faulty verteXF, N V(QL_,), F® = FF.n EBE(Q%_,) and F} =
and/or faulty edge set incident to the end-vertices of any edgé,. N E(QL _,). Finally, some previously results of path
e € E(G) can be denoted aB;(e). Other graph-theoretic (cycle) embedding in hypercubes and folded hypercubes are
terminologies and notations are not described here can rafensidered in the remainder of this section. These results are
to West et al. in 2001 [26]. beneficial for our method.

(Advance online publication: 12 August 2019)



TAENG International Journal of Applied Mathematics, 49:3, [JAM 49 3 16

Lemmal: Saadand Schultz in 1988 [29] Let andv be 2) Forn =4 andn > 8 is even,FQ,, — FF, — FF,

any two vertices inQ,, anddg,, (u,v) = d. Then, there exist contains a fault-free cycle of every odd lendthvith
n internally disjoint paths joining: andv in @Q,,, whered n+1<1<2"-2|FF,|—1, where|FF,|+ |FF,| <
paths of them are of lengtii and lie in ad-dimensional 2n — 7 and|Frq, (e)] <n — 3.

subcube. Lemma 9:Suppose thatF'@,, is 4-conditionally faulty,

Lemma 2:Ma et_al. in 2007 [30] Let: andv be any two |Fp |+ |FF.| < 2n—17 and|Frq, (e)| <n—2 forn > 4.
fault-free vertices inQ,. Then, @, — I, — F. contains & Then, (), — FF, — F'F, contains a fault-free cycle of every
fault-free path of every lengthwith dg, (u,v) +2 <1 < ayen lengthl with 4 < [ < 2" — 2|FF,|.
2"—2|F,[-1and2|(I—dq, (u,v)), where| F,|+|F,| < n—2 Proof: The cases fon = 4 andn > 5 are considered.

andn > 3.
e 3 i CAse 1n = 4. Inthis case|FF,|+|FF.| < 1.If |FF,| =
Lemma 3:Xu and Ma in 2006 [23] Fon > 3, every edge Y el == v
[23] - y ecd |FF.| =0, by Lemma 3,FQ, contains a cycle of

of F@Q, lies on a cycle of every even length frointo 2"; . B
and forn > 2 is even, every edge af'Q,, lies on a cycle every even length with 4 < I < 16. If |F'F7| " !
of every odd length frorm + 1 to 2™ — 1. and|F'Fe| =0, by Lemma 4,FQy — FF, gontalns
Lemma 4: Hsieh et al. in 2009 [18] Fon > 3, FQ, — a fault-free cycle of every even lengthwith 4 <
F'F, contains a fault-free cycle of every even length fram L<14.0f |FF,| = O and|FF,| = 1, by Lemma 5,
to 2" — 2 and forn > 2 is even,FQ, — FF, contains a FQ, — FF, contains a fault-free cycle of every

fault-free cycle of every odd length from + 1 to 2™ — 1, even lengtlt with 4 =l<16. o
where|FF)|/— 1 y g + CAse2. n > 5. According to the definition ofF'Q,,
»| = 1.

Lemma 5:Xu et al. in 2006 [22] Fom > 3, every edge E(F?") — E(ﬁ?”éUES _anth(FQn) - V(CZJ”)' I
of FQ,, — F'F, lies on a fault-free cycle of every even length we eliminate a edges 'E?’.t enFQn—E, = Q.
from 4 to 2™; and forn > 2 is even, every edge af'Q,, — Note that FQ., is 4-con(_1|t|onally fa_lulty, FQn —
FF, lies on a fault-free cycle of every odd length from- 1 Es = Qn, would be certainly-conditionally faulty.
to 2" — 1, where|FF,| <n — 1, Since|F,| + |F.| < |FF,|+ |FF.] <2n -7 and

Lemma 6:Cheng and Guo in 2013 [31] Lefyg, (e) Fo.(e)] < |Fra,(e)] < fn |_f2’ by LFmr?a 6,
denote the faulty vertex and/or faulty edge set which is Qn — Fy — Fe cpntams a fau t-nree cycie ot every
incident to the end-vertices of any edge E(Q.,). Suppose even lengthi with 4 < { < 2% — 2|F“|' which
thatQ,, is 3-conditionally faulty andF , (e)| < n—2. Then, implies thatF'Qy, — FF, — FFe contains a fault-
every fault-free edge af),, — F, — F, lies on a cycle of every free cycle of every even lengthwith 4 < I <

even length fromd to 2" — 2|F,| if |F,| + |Fe| < 2n — 1T, 2" = 2|FFy|.
wheren > 5. By integrating the above two cases, the proof is completed.
Lemma 7:Suppose thaf),, is 3-conditionally faulty and u

|F,| < 2n — 7, wheren > 7. Then,Q,, can be partitioned Lemmal0: Supposethat F'Q,, is 4-conditionally faulty,

along some dimensiopc {1,2,...,n} toformtwo(n—1)- |FE,|+|FF.| <2n—7and|Fpq,(e)| < n—3forn =4 and

cubes@® , and Q! _, such that bothQ® , andQ) _, are n > 8is even. ThenF'Q, —FF,—FF, contains a fault-free

2-conditionally faulty with| F?| < 2n—9 and|F}| < 2n—9. cycle of every odd lengthwith n+1 <1 < 2" —2|FF,|-1.

The proof of Lemma 7 is given in the Appendix section. Proof: The cases fom = 4 andn > 8 is even are
Lemma 8: Suppose that'Q,, is 4-conditionally faulty and considered.

|[FF,| <2n—T7, wheren > 8. Then,F'Q, can be partitoned  case1. n = 4. In this case|FF,| + |FF,| < 1. If

along some dimensione {1,2,...,n} to form two(n—1)- |FF,| = |FF.| = 0, by Lemma 3,FQ, contains
cubes@),_; and@,,_, such that bottQ; _, and@;,_, are a cycle of every odd lengthwith 5 < 1 < 15. If
3-conditionally faulty,| ;)| < 2n — 9 and |F)| < 2n — 9. IFF,| = 1 and |[FF,| = 0, by Lemma 4,FQ4 —
Proof: According to the definition of"Q,,, E(F@») = FF, contains a fault-free cycle of every odd length
E(Qn) U Es and V(FQ,) = V(Qn). If we eliminate I with 5 <1< 13.If |[FF,| = 0and|FF,| = 1, by
all edges inE;, then FQ, — E; = Qn. Since FQ, is Lemma 5,FQ, — FF, contains a fault-free cycle
4-conditionally faulty, F'Q,, — E, would be certainly3- of every odd lengtt with 5 < < 15.
conditionally faulty. By Lemma 7FQ, — E; = @, can  Ccasg 25 > 8 is even. If we assume that every faulty edge
be partitioned along some dimensigne {1,2,...,n} to e in FF, is regarded as one of the end-vertices
form two (n — 1)-cubes@,_; and Q;,_; such that both of e is faulty, then|FF,.| = |FF,| + |FF,| <
Qh—1 andQ,,_, are 3-conditionally faulty, |[F}}| < 2n —9 2n — 7 in the worst case. SinCEF F,+| < 2n — 7
and |Fj| < 2n — 9. Then, the lemma holds. u and FQ,, is 4-conditionally faulty, by Lemma 8,
FQ, can be partitioned along some dimension
I1l. CYCLES EMBEDDING IN A FAULTY FOLDED j e {1,2,...,n} to form two (n — 1)-cubes
HYPERCUBE 0 and Q! _, such that bothQ® | and QL ,
Let Firg, () represent the faulty vertex and/or faulty edge are 3-conditionally faulty, [F",| < 2n — 9 and
set which is incident to the end-vertices of any edge |[FL | < 2n — 9 which implies that| FO| + |F?| <
E(FQ,). Suppose that#'Q,, is 4-conditionally faulty, we 2n — 9 and |F}| + |F}| < 2n — 9, respectively.
show that Without loss of generality, we may assume that
1) Forn > 4, FQ, — FF, — FF, contains a fault-free j =nand|F°| + |F?| > |F}| + |F}|. Therefore,
cycle of every even lengthwith 4 < [ < 2" —2|FF,|, |FO| + |FO| < 2n—9 and |F}| + |F} < n —4.
where|FF,|+|FF,| < 2n—7and|Frq, (e)| < n—2; Since |Fg, (e)| < |Frq,(e)] < n — 3, we know
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QO Q1 QO Q‘ faulty edge set which is incident to the end-vertices of any
edgee € E(FQ,). Suppose thaf'Q,, is 4-conditionally
faulty and|FF,| + |FF,| < 2n — 7. Then, forn > 4 and
|Frq,(e)] < n—2, FQ, — FF, — FF, contains a fault-

) Q) @) ) free cycle of every even length fromto 2" — 2|F'F,|; and

» furthermore, forn = 4 andn > 8 is even, andFrq, (e)| <

@ n—3, FQ, — FF, — F'F, also contains a fault-free cycle
9 0 of every odd length fromn + 1 to 2" — 2|FF,| — 1.
@ ® V. CONCLUSION

Fig. 1. An illustration of Case 2 in the proof of Lemma 10. (a) Case 2.2; Fault tolerance is one of the important research topics in
(b) Case 2.3 the field of multi-process computer systems. Many studies
focus on vertex-fault-tolerant or edge-fault-tolerant prop-
erties for certain specific networks. In this thesis, the
that [Fgo  (e)] <n -3 and|Fg:  (e)] < " =3 conditionally faulty folded hypercube with" £, | + | FF,| <
Then, let(z,y) be any fault-free edge i), 9, _ 7 is considered. ThenF'Q,, — FF, — FF, contains a
such that either{z™, 7} or {z,y™} is fault- faylt-free cycle of every even length fromto 2" — 2|FF,|
free in Q,_,. (If no such an edge exists, thenor ,, > 4 and|Frq, (¢)] <n—2; and FQ, — FF, — FF,
[FFy| + [FFe[ > [2771/2] = 2"72 > 2n = 7 for  contains a fault-free cycle of every odd length from 1
n > 8 is even, which contradicts to the assumptiog, on _ 2|FF,| —1for n = 4 andn > 8 is even, and
that [FF,| + [FF.| < 2n —7.) Without loss of |, (e)| < n— 3 are shown. Finally, this study has been
generality, we may assume that"), 5} in Q;, 1 submitted to HAL an open archive for the sustainability

is fault-free. Then, we consider the cycle of everyhttps://hal.archives-ouvertes.fr/hal-01579266v2).
odd lengthl with n +1 <1 < 2™ —2|FF,|—1in

the following subcases. APPENDIX

Case 2.1.1 = n+ 1. In Q},_4, since |F)| + proof of Lemma 7
F} <n—4anddg(z™,5) =n — 2, _ . .
Lye |Lgmnma 1anth er{é(xexiétys) a ?ault-free Proof: Since Q,, is 3-conditionally faulty, bothQ®
, 1 i " . X
path Pz, g] of length n — 2. Then, and Q,,_; are 2-conditionally faulty. First, we consider the

, n) -1 - case thatF,| < 2n — 8. Let z andy be two faulty vertices
(x,z™, Plz(") g],5,y,z) forms a cycle vl = :
of odd length = n + 1 in FQ, — FF, — and letj € {1,2,...,n} such that[z]; # [y];,. Then we
FE " v can partition@,, along dimensiory into two (n — 1)-cubes

Case 2.2 = n +3. In Q\_,, since |F}| + @n and@)” such thatly| = |F,(Q}%)] < 2n — 9 and
F < n—4anddg(e™,g) = n -2, Tl =1F(@7) <=9
by Lemma 2, there exists a fault-free pat Next we consider the remaining case that| = 2n — 7.
P[;r(”) ] of [en thn —2+92 — n. Then orn > 7, we will show that we can partitiod),, along
(z ) yp[gj(n) % 7y, 2) for;s a cyclé some dimensiory into two (n — 1)-cube§.cl.24,7;0 and Qi1
of odd iengthl = ;LJ;?;in FQ, —FF, — such that|F,(Q},°)] < 2n — 9 and |F,(Q47)] < 2n — 9.
FF,. (see Fig. 1(a) " Y For1 < k < n, we defineq, = 1if [u];, = [w] for any
Case 2 3e'n 15 <' I < 2" — 2[FF,| -1 two faulty verticesu, w € F,(Q,,), andg; = 0 if otherwise.
s.in.ce\F0| . |;“0| on g Fo v(e)l < Let g = S h Gk Qlearly, all faulty ver'Fices are located in
o a;dQO e < 3-cond,iti0|?§ﬂ§/ faulg/ eitherQ}% or QF1 if g, = 1. For convenience, lefl < k <
by Lémma 8_(18 y) can lies on a fauli- TL| q(k :'1(;|} N {Z.fb e ’iﬁiq}.{Then bOthI};v(QZ;O)\ =hand
T\ F,(Q%H)| > 1 for eachj € {i1,...,in—q}.
Zeti C;LC_I?CO ;T;grei:‘y S‘éen I?rnhgetg gom Suppose, by contradiction, that eithdF, (Q5)| = 1
can be denotedva&c y f’l[;/l.x] 2) ;:u?— or |F,(Q#)| = 1 for every j € {ih...,;’%,q}. For
thermore, since|F1| + [F)| < n—4 o Fy(Qn). tet Au) = {1 < k < n| (@) = {u}
4d (Y eb L K 5 or F,(QF1) = {u}}. SinceQ,, is vertex-transitive, we may
?hnere}é E(Tsts’g)faaltﬁr;ez at%[ ?nr?"_]]aof’ assume thae = (0" is a faulty vertex such thatA(e)|
everv oven lenath frormp 25” 2’3/_ achieves the maximum of the s¢d(u)| v € F,(Qn)}.
) 27}’_1 ol 1 9 o i T 'IJ'rh _f " For convenience, lepp = |A(e)|. Obviously, we have
<0 () ;[ |(ng|__] _|n gffl'] f:%ﬁ;i’ 1 < p < n—q. Moreover, letA(e) = {i1,...,i,}. For
LT T YL Y, Yy Y, T X u € Fo(Q,) — {e}, we see thafu], = 1 for eachk ¢

a cycle of every odd length with 4 — : i\ Further. letB(k) = {u € F _ .
Lh2bn<l< (2 gFO) 1424 0ok OB = tu e o(@n) = el Ll #

APl lelx} for k € {ipt1,...,in—q}. Since we assumed, by
—1 1 L .
(2" n_2|Fv | —2) which impliesn+5 < oniradiction, that eithefF, (Q7:0) = 1 or |F,(Q1)| = 1
<2 __2|FF”‘_1 N FQn—FF,—FFe.  fo eachj € {i1,...,in—q}, We have|B(j)] = 1 for
(see Fig. 1(b)) eachj € {ipi1,...,in_q}. Since Q, is edge-transitive,

By integrating the above cases, the proof is comple®d. yithout loss of generality we can assume that . . ., i,} =

By Lemmas9 and 10, the following theorem is obtainedi >+ P} and{ipia,. .o ing} = {p+1,...,n—q}. Then
Theorem 1:Let Frq, (¢) denote the faulty vertex and/orwe have |(F,(Qn) —{e}) = Usegs, ., 3 B(k)} <

1n—

.
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{0"~P1P}. Accordingly we obtain thatl = [{0"P1P}| > [3]
(Fuo@n) — {e}) = Urcgiproi oy BR)| = [Fu(Qn)] —
(e} =Y hctimrnin oy IBE) = @n=T)=1-(n—q—p) W
which impliesp + ¢ < 9 — n. Recall thatn > 7, p > 1 and
q > 0. We thus haver = 7 or 8. Now we can identify all [g
faulty vertices according to the values @fg, andn.
Case 1{n,p,q) = (7,1,0). el
We have|F,(Qs)] = 2-7—7 =17, [u) =1
for eachu € F,(Q7) — {e} and |B(j)| = 1 for [7]
eachj € {2,3,4,5,6,7}. Thus we haveF(Q7) =
{0000000, 0000011, 0000101, 0001001, 0010001,  [8]
0100001, 1000001}. Clearly, vertex0000001 has
seven faulty neighbors. [9]
Case 2(n,p,q) = (7,1,1).
We have[u]; = 1 for eachu € F,(Q7) — {e} 0]
and |B(j)| = 1 for eachj € {2,3,4,5,6}. Thus
we haveF'(Q-;) = {0000000, 0000011, 0000101,
0001001, 0010001, 0100001, 0000001}. Then ver- [11]
tex 0000001 has six faulty neighbors. [12]
Case 3{n,p,q) = (7,2,0).
We havelu]; = [u]s = 1 for eachu € F,(Q7) —
{e} and |B(j)| = 1 for eachj € {3,4,5,6,7}. [13]
Thus we haveF,(Q7) = {0000000, 0000111,
0001011, 0010011, 0100011, 1000011, 0000011}. [14]
Then vertex0000011 has five faulty neighbors.
Case 4{n,p,q) = (8,1,0).
We have|F,(Qs)| = 2-8 -7 =9, [ul; =1 [9
for eachu € F,(Qs) — {e} and [B(j)| = 1 g
for eachj € {2,3,4,5,6,7,8}. Thus we have
F,(Qs) = {00000000, 00000011, 00000101, [17]
00001001, 00010001, 00100001, 01000001,
10000001, 00000001}. Then vertexd0000001 has
eight faulty neighbors. (18]

In short, vertex)" P17 has at least — 2 faulty neighbors.
This contradicts the requirement that every vertex has [&f]
least three faulty neighbors. Hence we can partiti@n
along some dimensiofi into two (n — 1)-cubes@’® and [20]
Q’1 such that bothQ’® and Q7! are conditional faulty,
|F(QI%)] <2n—9 and |F(Q}1)| < 2n —9. L
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