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Abstract—Ranking creation is the main purpose of the
multiple-criteria decision analysis (MCDA). In practice, it is
typically achieved by estimation of the priority weights that
reflect the importance of each of the available alternatives -
this process is called prioritization. One of the most popular
MCDA methodologies is the Analytic Hierarchy Process (AHP).
All priority-weights-estimation technics that are used under the
AHP scheme are based on the so-called pairwise comparison
matrix (PCM). The PCM elements represent the decision
maker’s judgments about the priority-weights-ratios. They are
typically expressed in values from a predefined set of numbers
that is called a scale. Because of human brain limitations, it
is natural that these judgments are usually erroneous, and
consequently, the estimates of the priority weights are erroneous
as well. It is well understood, however, that serious errors
in judgments make the information contained in the PCM
worthless. Thus the decision makers need a procedure that
enables them to accept a given PCM or reject it as a useless
one. This paper is devoted to the simulation analysis of the
prioritization errors and their relationship with the correctness
of the final ranking of decision-alternatives. Our simulation
experiments reveal some interesting facts about the impact
of the adopted scale on the priority-weights-estimation errors
and allow us to formulate important remarks about the PCM
acceptance procedure.

Index Terms—AHP, prioritization, estimation errors, final
ranking, simulation.

I. INTRODUCTION

MULtiple-criteria decision analysis (MCDA) is a
branch of multiple criteria decision making that deals

with problems that have only a small number of alternatives
that have to be ranked. The applications of MCDA cover
very wide range of real-world problems including such
different tasks as supplier selection [5], energy selection [15],
comparison of bridge designs [9], evaluation of e-commerce
websites qualities [3] or cloud service provider selection
[27] - to name just a few of many interesting problems
described in literature. In order to solve these problems
the decision maker needs to create ranking of the available
decision alternatives. In the MCDA practice, the alternatives’
ranking creation is typically achieved by estimation of so-
called priority weights, i.e. numbers telling to what degree
a given alternative satisfies a given criterion. Apart from the
alternatives and a number of criteria, more complex MCDA
problems may also involve several experts and/or decision
makers (DM). To obtain the final ranking of the available
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alternatives all these factors need to be ranked as well. It
is confirmed in recent literature, [29], that one of the most
frequently used prioritization methodologies is the Analytic
Hierarchy Process (AHP), [22]. In the AHP all problem’s fac-
tors are arranged in a hierarchical structure descending from
- say - decision makers to criteria and decision-alternatives in
successive levels. After all sub-problems of prioritization are
solved (i.e. the rankings of DMs, experts, criteria and alterna-
tives are obtained), the final ranking of decision-alternatives’
is created. All priority-weights-estimation technics that are
used under the AHP scheme are based on the so-called
pairwise comparison matrix (PCM). The PCM contains the
decision maker’s judgments about the priority-weights-ratios.
These judgments are typically expressed in values from an
adopted predefined set of numbers that is called a scale, [21],
[22], [4], [8], [10], [19], [26]. However, because of human
brain natural limitations, in praxis, the DM’s judgments are
usually erroneous and as a consequence, the estimates of
the priority weights derived on their basis are erroneous
as well. Thus, in a sense, it is natural and unavoidable to
accept some level of judgments’ incorrectness. However,
on the other hand, it is well-understood that serious errors
in the DM’s judgments make the information contained in
the PCM worthless. Thus an important problem within the
AHP methodology is the ability to distinguish between useful
PCMs and the useless ones.

This paper is devoted to the simulation analysis of the
estimation errors and their relationship with the correctness
of the final ranking of alternatives. Its gist follows the concept
described in [14] and extends results presented therein.
Section 2 introduces all necessary notions and definitions.
In Section 3 the considered problem is described in details.
Section 4 presents adopted simulation frameworks and dis-
cusses the results of our simulation experiments. This article
is concluded with final remarks about the impact of the
adopted scale as well as about the foundations of a new
rational PCM acceptance procedure.

II. PRELIMINARIES: NOTATION AND BASIC FACTS

A priority vector (PV) is a vector of priority weights
v = (v1, . . . , vn)

′, i.e. numbers that reflect the absolute de-
gree/intensity of importance of each alternative with respect
to a given criterion. A basic assumption of the AHP is that
for each criterion considered in a given MCDA problem,
the PV does exist and that it is unique up to a multiplying
constant. Typically, the priority weights vi, i = 1, . . . , n, are
positive and the PV is normalized to unity, [24].

Another basic assumption of the AHP is that the decision-
maker is able to evaluate the ratios of priorities aij = vi/vj .
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As a result of such comparisons, the pairwise comparison
matrix A = [aij ]nxn is obtained. In the conventional AHP,
the input data of the PCM is collected only for the upper
triangle of the matrix A, while the remaining elements are
computed as the inverses of the corresponding symmetric
elements in the upper triangle i.e. aij = 1/aji for i > j. A
PCM that satisfies the latter condition is said to be reciprocal.
A PCM is said to be a consistent one, if it is reciprocal and
its elements satisfy the condition:

aijajk = aik ∀ i, j, k = 1, ..., n

As we have mentioned above, it is obvious that in practice
one cannot expect that the elements of PCM give the priority
ratios precisely. First of all, according to the usual procedure,
the DM’s answers are given in lexical phrases and then
they are transformed into numbers belonging to a given
scale. Usually these scales are sets of up to a few dozens
of numbers. In such a case one cannot neglect rounding
errors. The most popular scale is the Saaty’s one (SS). The
SS contains integers 1,2,...,9 and their reciprocals. Other
scales suggested in literature are the Extended Saaty’s scale
(ESS(N)) that contains integers from 1 to N, along with
their reciprocals, and the geometric scale GS(c) that contains
numbers s of the form s = ci/2, i ∈ I with I being a
predefined set of integers. A deeper description of various
AHP scales can be found e.g. in [8], [26].

Apart from the rounding errors, there are also other kinds
of errors in the ratios-evaluations that are results of human
brain limitations. Consequently, even if the comparisons are
done very carefully, PCM in reality is inconsistent. Because
serious errors in DM’s judgments can result in a misleading
PCM, an important problem connected with this methodol-
ogy is how to measure the degree of inconsistence of the
PCM. But before we briefly introduce some inconsistency
indices, first we need to recall two most popular prioritization
methods. One of them is the so-called logarithmic least
squares method, also known as geometric mean method -
GM, [7]. The estimated priority vector (EPV) in the GM
can be obtained by the following formula:

wi =

(
n∏

i=1

aij

)1/n/ n∑
i=1

(
n∏

i=1

aij

)1/n

Another, perhaps the most commonly used prioritization
method is based on specific results from the matrix spectral
theory. This one is called right eigenvector method (REV). Its
description and formal backgrounds have vast literature, see
e.g. [22], [23] and many contemporary books devoted to the
AHP. Thus the details of the underlying reasoning are omitted
here to save the article space. In short, the REV method
suggests to take as the EPV, the eigenvector associated with
the principal eigenvalue of the PCM at hand. To achieve this
goal, one needs to solve the characteristic equation

det(A− λI) = 0

and then the linear equation (with respect to w)

Aw = λmaxw

where λmax is the principal eigenvalue of A (i.e. the largest
solution of the previous characteristic equation). The ex-
istence and uniqueness of the principal eigenvector w is

guaranteed by the Perron’s theorem, that also assures the
positivity of all its coordinates.

There are many papers that present results of studies of
the performance of these and other prioritization methods. In
these studies it is found, e.g. [11], [6], [20], that the EPVs
obtained with the help of the GM and REV differ very little.
There is also no agreement which one is better - both of
the methods have their pros and cons. However, the EPV is
certainly much more easy to compute via the GM, thus this
method will be primarily used in our studies.

As we indicated, apart from deriving priority vectors,
another problem within the AHP methodology is how to
measure the degree of inconsistency of the PCM. We are
presented with a number of inconsistency indices and again,
the two most frequently used ones are related to the two
above introduced prioritization methods.

The index connected with the REV, denoted as SI, was
proposed by Saaty and is defined as follows:

SI(n) =
λmax − n
n− 1

Related to the geometric mean method index (GI) was
proposed by Crawford and Williams[7], and was popularized
by Aguaron and Moreno-Jimenez [1] in 2003. It is given by

GI(n) =
2

(n− 1)(n− 2)

∑
i<j

log2(aijwi/wj)

Apart from these two indices there is third popular index
that is based on the notion of the triad inconsistency. It was
proposed by Koczkodaj [18]. Following him, for any different
i, j, k ≤ n, a tuple (aik, aij , akj) will be called a triad.
Koczkodaj proposed to characterize the triad’s inconsistency
by the number:

TI(aik, akj , aij) = min
[∣∣1−aikakj/aij∣∣, ∣∣1−aij/((aikakj)∣∣]

Then, the Koczkodaj’s inconsistency index KI of any
reciprocal PCM is defined as a maximum of triad’s in-
consistencies i.e. KI = max[TI(aik, akj , aij)], where the
maximum is taken over all triads in the upper triangle of the
PCM.

Yet another inconsistency index that manifests very good
correlation with PV estimation quality was defined as the
average value of all triad’s inconsistencies. It was introduced
and studied in [12] and is denoted here as ATI.

All inconsistency indices are developed in order to enable
the DM to distinguish between useful and useless PCMs.
Thus, usually all these indices are given along with related
consistency thresholds. However, as it was criticized by many
researchers, typically the values of acceptance thresholds
are based on some heuristics and are not supported by any
profound formal reasoning or statistical research. In recent
literature there are many confusing examples that prove that
the thresholds work poorly, see [11] and literature in there. To
deal with this problem a new approach to PCM acceptance
was proposed quite recently in [12], where the relationship
between the inconsistency indices and the magnitude of
priority-vector-estimation-error (PVEE) was examined with
the help of Monte Carlo simulations. In [12] it was proposed
to measure the PVEE as the average absolute (AE) and/or
relative (RE) errors. The errors are given by the following
formulae:

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_17

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



AE(v,w) =
1

n

n∑
i=1

|vi − wi| (1)

RE(v,w) =
1

n

n∑
i=1

|vi − wi|
vi

(2)

where v = (v1, ..., vn) is the true PV while w = (w1, ..., wn)
is its EPV. Obviously the EPV and consequently the errors
depend on the prioritization method as well. So, in our
studies both the GM and REV were used for PV estimation
and then calculation of AE and RE. However the numeric
results presented here are related to the GM.

III. PROBLEM STATEMENT

As we have already indicated, it is argued that the knowl-
edge about the relationship between inconsistency indices
and PVEEs would help the DM in making decisions about
the PCM acceptance because such decisions are based on the
observed value of the inconsistency index. The principal goal
of this paper is to help the DM in such a task. To achieve
this goal one should be able to distinguish between ”small”,
”average” and ”big” PVEEs. However, as yet there are no
criteria for making such a ”classification” of the estimation
errors. To cope with this problem we proposed in [14], for the
first time in literature, to investigate the relationship between
the PVEEs and the chances of ”significantly wrong” final
EPV. The latter term as well as the idea of the proposed
criterion needs additional clarification. Below we present
more formal and more detailed description of our proposal.

During the analysis of the multi-criteria- decision-making
problem under the AHP scheme, both the prioritization meth-
ods and the inconsistency analysis are curried out several
times (as described in Introduction, at least for the criteria
and then for the alternatives with respect to each criterion
separately). By PCM(Cr) we denote the PCM that was
provided by the decision-maker for the criteria, and by the
symbol PCM(i) we denote the PCMs achieved for the deci-
sion alternatives with respect to the i-th criterion. Obviously,
the PCM(Cr) has order k, where k is the number of different
criteria in the considered decision-making problem, (k > 1).
Similarly, the PCM(i) has the order n, with n being, as
previously, the number of available decision alternatives. Let
v0 and w0 be, respectively, the true PV for criteria and the
EPV computed for the criteria on the basis of PCM(Cr).
Let also vi and wi be the true PV and its EPV for the
alternatives with respect to the i-th criterion. The true final
ranking of the alternatives is given by the final true PV - say
v - that is equal, by the definition, to the weighted average
of the vectors vi, i = 1, . . . , k, with the weights given in
v0 = (v01 , v

0
2 , . . . , v

0
k), i.e.

v =

k∑
i=1

v0i v
i (3)

Analogously, the estimated final PV - say w - is equal to
the weighted average of the vectors wi, i = 1, , k, with the
weights given in w0 = (w0

1, w
0
2, . . . , w

0
k)

Now we introduce a crucial notion for our research. We
will say, that w provides us with significantly incorrect final
ranking if the truly best alternative (i.e. the one associated

with the greatest coordinate in v) is not the best one in the
estimated final ranking (i.e. its corresponding component in
w is not the greatest one) Hereafter we will abbreviate the
phrase ”significantly incorrect final ranking” to SIFR.

We propose such a definition to focus only on serious mis-
takes in rankings, so our criterion does not take into account
such situations where the final classification is wrong, but
the erroneous ranks are related to less significant alternatives.
That is why we call it ”significantly wrong”.

From the multiple-criteria decision analysis point of view,
not the PVEEs themselves but the chances for significantly
incorrect final ranking is perhaps the most important criterion
for the PCM acceptance or rejection. After all, if the final
ranking is correct, the magnitude of errors in estimates of
weights are not that meaningful. So, the first aim of our
studies is to find out what is the relationship between the
magnitude of the PVEEs and the probabilities of obtaining
SIFR.

Another interesting question is what type of an error is
more meaningful, the AE or RE? In [12] it was suggested that
in the context of the AHP applications, the more important
one is the RE. However, this statement was supported only
by intuition and some heuristics. Now we want to study
which of the two types of errors are closer connected with
the probability of obtaining the SIFR.

Yet another problem considered in our studies is the
classification of the PVEEs, as mentioned at the beginning
of this section. We focus here on the class of ”small” errors.
In our opinion, as such can be obviously treated these errors
that result from the methodology itself, that is the rounding
errors. We study whether the magnitude of such ”small”
errors depends on the adopted scale and - if so - which scale
is the best one with respect to the criterion of the possibility
of obtaining the SIFR.

All these questions can be answered only with the help of
Monte Carlo simulation. Next section provides us with the
description of the adopted simulation frameworks that are
used in our studies.

IV. SIMULATION FRAMEWORKS AND RESULTS

To analyze the relationship between the PVEEs and the
probabilities of obtaining the SIFR we use a simulation
framework, that is a modification of the one adopted in
[14].The main difference between these two frameworks is
that now, instead of disturbing directly the ”true” PVs, first,
we obtain the ”true” PCMs, and then we randomly disturb
their elements. Next we round the disturbed elements to the
nearest value from the adopted scale. Such a modification
makes the simulations better imitate real phenomena that
occur during such decision-making problems. Our framework
for simulation experiments comprises the following steps.
•Step 0 (Initialization) Set: n - the number of alterna-

tives, k- the number of criteria, N -the number
of simulated AHP problems, PR - the probability
distribution of random PCM-estimation errors

Step 1 Randomly generate the ”true” priority vectors
vi, i = 0, , k,

Step 2 On the basis of the vectors vi, i = 0, . . . , k,
compute related ”true” comparison matrix Mi with
elements mi

j,l =
vi
j

vi
l
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Step 3 Simulate ”judgment errors” by disturbing the ele-
ments of PCM(vi), i = 0, . . . , k according to the
probability distribution PR.

Step 4 Compute rounded matrices RMi, i = 0, ..., k, by
replacing the disturbed elements from the upper-
triangle of Mi, i = 0, ..., k, with the closest values
from the adopted scale. Next replace all elements in
the lower triangle of the RMi with the reciprocities
of the appropriate elements from the upper triangle.

Step 5 On the basis of the disturbed PCM(vi), compute
the ”estimated” priority vectors wi, i = 0, ..., k,
with the help of adopted prioritization method.

Step 6 With the help of formulae 3 compute the final
”true” and ”estimated” PVs: v and w, respectively

Step 7 With the help of formulae 1 and 2 compute the
PVEEs: Ai = AE(vi,wi) and Ri = RE(vi,wi),
i = 0, . . . , k.

Step 8 Compute the aggregated estimation errors as:
AAE = 1/(k + 1)

∑k
i=0Ai and ARE = 1/(k +

1)
∑k

i=0Ri

Step 9 Set sifr = 1 if the true final best alternative is
different from the estimated final best alternative,
otherwise set sifr = 0

Step 10 Write down all values computed and/or set in Steps
7 to 9 as one record.

Step 11 N times repeat Steps 1 to 10
Step 12 Return all records organized as one database.

As a result of simulation experiments conducted within
the above simulation framework we receive a database that
enables us to study the relationship between the PVEEs and
the probabilities of obtaining the SIFR. For this purpose the
whole database is arranged in ascending order with respect
to the values of a considered type of errors (Ai, Ri, AAE or
ARE) and then split into a number (NC) of separate classes
ECi, (i = 1, ..., NC). For each such a class the mean value
of the considered error is computed as well as the number
of cases of the SIFR (i.e. computed within the given class
ECi sum of the values of sifr as recorded in Step 9). Fig
1 presents exemplary results obtained for problems where
n = 4, k = 4, number of classes is NC = 35.

The plot (a) in Fig. 1 illustrates the relationship between
the averages of aggregated absolute error AAE and the
probabilities of SIFR, while the one labeled (b) shows the
relationship between aggregated relative error ARE and the
probabilities od SIFR. The most important fact is that both
the relationships are monotonic - the greater the magnitude
of an error (AE or RE) the greater the chances for the SIFR.
Although it looks intuitive, it is not an obvious fact - our
studies show that similarly strong relationship cannot be
observed when instead of the whole AHP setup as here, one
focuses on a single prioritization problem (i.e. separately for
one fixed criterion)

What is also quite surprising, in difference to the sug-
gestions in literature (see [[12]), it seems that the absolute
errors AE manifest stronger monotonic relationship with the
probabilities of SIFR, than the relative ones. This shows that
the heuristic reasoning underlying some conclusions may be
sometimes misleading. The relationship illustrated in Fig 1
was obtained for the case where the number of alternatives is
5 and the number of criteria is 3. However, the same, in spirit,
relationship is observed for all other examined numbers of

TABLE I: Values of Spearman correlation coefficients be-
tween the probabilities (frequencies) of SIFR and the mean
values of AAE (first number) and ARE (second number).
Only fractional digits are presented.

n \ k 3 4 5 6 7
3 978/964 978/941 980/954 942/901 919/948
4 988/961 962/920 955/924 960/952 970/941
5 955/918 970/886 982/940 986/938 969/958
6 990/925 976/904 983/880 993/901 983/879
7 987/941 982/893 985/910 983/902 992/950
8 976/878 974/896 995/861 986/876 995/967

TABLE II: Values of Pearson correlation coefficients between
the probabilities (frequencies) of SIFR and the mean values
of AAE (first number) and ARE (second number). Only
fractional digits are presented.

n \ k 3 4 5 6 7
3 973/965 980/906 972/941 946/894 927/937
4 974/949 957/903 951/901 934/912 959/858
5 956/900 952/865 942/907 958/926 952/958
6 973/915 976/863 953/880 975/954 975/868
7 970/938 974/908 976/910 975/870 985/942
8 932/865 959/892 983/835 978/867 973/947

alternatives and criteria. In our studies we have considered
n = 3, ..., 8 and k = 3, ..., 7. The degree of monotonicity of
the considered relationships can be measured with the help of
Spearman correlation coefficients. Table I shows their values
obtained in all considered cases. Column heads indicate the
number of criteria k, heads of rows indicate the number of
alternatives. To save the table space, in appropriate cells only
fractional digits are presented.

We can see that apparently both types of errors are strongly
correlated with the probability of SIFR, and in that sense
both are meaningful. However in all cases the Spearman
correlation coefficient computed for the AAE is greater than
the one computed in case of the ARE. So the results confirm
our previous conclusion. Moreover, one can also notice
that the correlation of ARE decreases when the number of
alternatives increases, while the correlation of AAE is much
more robust against such changes.

Apart from the monotonicity, it is also interesting to
learn whether or not the relationships are similar to the
linear one (as sugested by the 1. It appears to be true for
all investigated cases, the values of corresponding Pearson
correlation coefficients are presented in Table II ). Again,
the linearity of the relationships is a bit stronger in the case
of the absolute errors AE.

Next issue that is important for the PCM acceptance
procedure is the notion of small errors. As it was indicated
in the previous section our proposal is to consider as ”small”
PVEEs such ones that are of similar magnitude as those
resulting solely from the rounding procedure. So, our an-
other task is to determine how small are the ”small” errors
and what is their relationship with the adopted judgment
scales. For this study we assume the following simulation
framework:
•Step 0 (Initialization) Set: n - the number of alternatives,

k- the number of criteria, N -the number of simu-
lated AHP problems, the prioritization method (GM
or REV)

Step 1 Randomly generate the true priority vectors vi, i =

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_17

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



AAE

Pr

0.01 0.03 0.05 0.07

0.1

0.2

0.3

(a)

ARE

Pr

0.1 0.2 0.3

0.1

0.2

0.3

(b)

Fig. 1: The relationship between the probabilities (frequencies) of SIFR (labeled as Pr) and the AAE, plot (a), and ARE,
plot (b). This exemplary graph was obtained in the case where n = 5, k = 3. The whole range of observed errors was split
into NC = 35 classes.

1, ..., k, and compute related perfect comparison
matrix Mi with elements mi

j,l =
vi
j

vi
l

Step 2 For every considered judgment scale separately,
compute rounded matrices RMi, i = 0, ..., k,
by rounding all values in the upper triangle of
Mi, i = 0, ..., k, to the closest value from the scale
and replace all elements in the lower triangle of
the RMi with the reciprocities of the appropriate
elements from the upper triangle.

Step 3 With the help of adopted prioritization method
compute the values of the estimates of the vectors
vi, i = 1, ..., k along with the errors Ai, Ri, AAE
or ARE. Write down values computed in this step
as one record.

Step 4 N times repeat Steps 1 and 3
Step 5 Return all records organized as one database.

In our studies we compare the Saaty’s scale (SS), Extended
Saaty’s scale ESS[17], and geometric scale GS[2], (their def-
initions are provided in Section 2). Results of our simulation
studies are summarized in Table III

The usage of a judgment scale and thus the rounding
procedure is an immanent step of all pairwise comparison
judgments. Consequently, the rounding errors cannot be

TABLE III: Selected statistics for AA errors that are results
of the rounding procedure - dependence on the adopted
judgment scale. The considered scales are SS, ESS[17] and
GS[2] as defined in Section 2.

Statistics Min Max Mean St. Deviat.
Scale: n

SS 3 0.0053 0.0357 0.0154 0.0041
SS 4 0.0050 0.0325 0.0136 0.0036
SS 5 0.0048 0.0300 0.0123 0.0033
SS 6 0.0043 0.0276 0.0111 0.0030
SS 7 0.0041 0.0254 0.0101 0.0027
SS 8 0.0041 0.0233 0.0092 0.0025

ESS[17] 3 0.0042 0.0304 0.0140 0.0037
ESS[17] 4 0.0038 0.0237 0.0114 0.0027
ESS[17] 5 0.0039 0.0218 0.0098 0.0023
ESS[17] 6 0.0035 0.0196 0.0086 0.0020
ESS[17] 7 0.0033 0.0170 0.0077 0.0018
ESS[17] 8 0.0031 0.0162 0.0070 0.0017
GS[2] 3 0.0033 0.0208 0.0106 0.0025
GS[2] 4 0.0034 0.0211 0.0084 0.0021
GS[2] 5 0.0025 0.0206 0.0073 0.0020
GS[2] 6 0.0025 0.0173 0.0065 0.0019
GS[2] 7 0.0022 0.0174 0.0059 0.0017
GS[2] 8 0.0019 0.0145 0.0053 0.0016

avoided and have to be accepted. So it is natural to treat each
error in judgment that has similar magnitude to the rounding
error as a small one or maybe even as one that is negligible.
In our opinion the limit for this kind of errors should be set
by the mean of the observed rounding errors. If we accept
this point, then we can notice that in the light of the results
presented in Table III the magnitude of this limit for small
errors depends on the assumed judgment scale. And from
this point of view both the GS[2] and EES[17] looks much
better than the usual SS. Such a poor performance of the SS
were also pointed out in other research conclusions, see e.g.
[26].

Another important observation is that even such small
errors may lead to SIFR! It is another interesting and not
obvious fact revealed by presented here studies. If we, for
example, take into account the relationship illustrated in Fig
1, we can see that AA errors of magnitude less that the
limits for small errors are related to AHP problems where
the probability of SIFR is above 0.05 (see the results for
the SS in Table III) . The coefficients presented in Table II
were computed in simulations where the GM prioritization
method was used to obtain the EPV. However, when we use
the REV method the results are basically the same and they
lead to the same conclusions, so we omit their presentation..

V. FINAL REMARKS

The simulation experiments described in this paper re-
vealed several interesting facts. First fact is that not the
relative errors but the absolute errors are better correlated
with the chances of significantly incorrect final ranking.
Second, that the small estimation errors - i.e. the ones of
magnitude similar to the rounding errors - are not negligible
because they also may cause the change of order of the
two most important alternatives, and the probability of such
situation is between 5% and 8%. Next interesting observation
is that adoption of the geometric scale (here the GS[2]) leads
to smaller rounding errors than the extended Satty’s scale
(here ESS[17]). The worst one with respect to this criterion
is the most commonly used Saaty’s scale.

All the issues considered here where investigated with the
help of simulation frameworks that take into account the
whole hierarchical structure that occurs in the AHP. The
conventional simulation approach is to investigate separately
a single prioritization problem (i.e. problem of estimating
weights on the basis of a fixed and only one PCM), see e.g.
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as in [11], [13], [6], [20], [4], [28]. The approach adopted
here to simulation analysis of AHP problems was introduced
for the first time in [17]. However in the context of error
analysis, this approach was proposed for the first time in
our paper [14]. What is very important in this context, the
relationship between the estimation errors and the chances of
SIFR are much more unclear and weak when we consider the
single prioritization problems separately. It is an important
observation. During our simulation experiments we have
observed that it is possible that there are no wrong rankings
obtained for every separate prioritization problem within
given hierarchy, and the only incorrect ranking is the final
one!

So, the presented here results are important because they
enrich our knowledge about the prioritization problems in
general, revealing the nature of crucial relationships. But they
also should have impact on the PCM acceptance methodol-
ogy. The impact should be at least twofold. First, we know
when the PCM should be (or even has to be) accepted; when
the AE errors (or RE errors) are small (as defined here).
Secondly, the very close relationship between AE errors and
the probability of significantly wrong final PV (as illustrated
e.g. by Fig. 1 or Table I) can form a sound fundament
for development of a new PCM-acceptance procedure that
would really on the analysis of the chances of good/ bad
consequences of the decisions, and be well justified by the
mathematical-statistics methodology.

Finally, let us note that the PVEEs (of both types) cannot
be observed directly, but the values of inconsistency indices
can be observed instead. The relationship between the values
of inconsistency indices and the AAE and ARE errors where
analyzed in [12]. It appears that the best correlation was
found between the ATI index and the PVEEs of both types.
More detailed discussion on this issue can be found in [12].
In view of presented here results further thorough studies
within this area should be conducted in future. But in the
light of presented results it is very promising direction.
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