

Abstract— Workforce scheduling studies have mainly

focused on staff rostering, i.e. assigning employees to shifts and

determining working days and rest days. In the recent years,

the generation of shifts has gained increasing interest in

academic community. Shift generation is the process of

determining the shift structure, along with the tasks to be

carried out in particular shifts and the competences required

for different shifts. Application areas of staff rostering and

shift generation include hospitals, retail stores, call centers,

cleaning, home care, guarding, manufacturing and delivery of

goods. This paper presents the General Task-based Shift

Generation Problem (GTSGP). To the best of our knowledge,

the problem has not been studied in the literature. The GTSGP

is to create anonymous shifts and assign tasks to these shifts so

that employees can be assigned to the shifts. The targeted tasks

must be completed within a given time window. Tasks may

have precedence constraints and transition times between tasks

are considered. The goal is to maximize the number of shifts

employees are able to execute. We present the first

computational results of solving GTSGP instances. We briefly

describe the PEAST algorithm, which is used to solve the test

instances.

Index Terms— PEAST algorithm, shift generation,

workforce optimization, workforce scheduling.

I. WORKFORCE SCHEDULING AND WORKFORCE

OPTIMIZATION

orkforce scheduling, also called staff scheduling and

labor scheduling, is a difficult and time consuming

problem that every company or institution that has

employees working on shifts or on irregular working days

must solve. Workforce scheduling studies have mainly

focused on staff rostering, i.e. assigning employees to shifts

and determining working days and rest days. In the recent

years, the generation of shifts has gained increasing interest

in academic community. Shift generation is the process of

determining the shift structure, along with the tasks to be

carried out in particular shifts and the competences required

for different shifts. Application areas of staff rostering and

shift generation include hospitals, retail stores, call centers,

cleaning, home care, guarding, manufacturing and delivery

of goods.

Shift generation is essential in cases where the workload

is not static. On the contrary, in airlines, railways and bus

companies and mostly in hospitals the demand for

employees is quite straightforward because the timetables

Manuscript received December 20, 2018.

Kimmo Nurmi, Nico Kyngäs and Jari Kyngäs are with the Satakunta

University of Applied Sciences, Pori, Finland (phone: +358 44 710 3371, e-

mail: cimmo.nurmi@samk.fi).

are known beforehand and the shifts are already fixed. The

most important optimization target is to match the shifts to

the workload as accurately as possible. The generation of

shifts is based on either the number of employees working

at the certain timeslots or the number of tasks that the shifts

have to cover.

The generated shifts form an input for the staff rostering,

where employees are assigned to the shifts. The length of

the planning horizon is usually between two and six weeks.

The most important constraints are employees’ competences

and preferences as well as the working and resting times,

since these are laid down by the collective labor agreements

and government regulations. Note that staff rostering also

includes the scheduling of days-off and vacations.

The demand-oriented workforce scheduling process starts

from four entry points (see Figure 1). First, workload

prediction is the phase of determining the workload. This is

done based on both known and predicted events. For

example, the arrivals of customers can be predicted using

models based on queueing theory, simulation and statistics,

while known events may be gathered from current sales

contracts. The events are transformed into either tasks or

staff demand, depending mostly on the duration and spatial

diversity of the events. Note that sick leaves and other no-

shows should be considered when calculating the staff

demand.

Fig. 1. The demand-oriented workforce scheduling process.

 Second, the HR master system provides necessary

employee data, such as labor contract, work unit and

working hours. Third and fourth, the labor regulations and

the common practices as well as the competences and

preferences of the employees are maintained by the

workforce management system itself. These four entry

points gather the required information first for the shift

generation phase and then for the staff rostering phase.

The process continues with shift generation, which is

Workforce Optimization: the General

Task-based Shift Generation Problem

Kimmo Nurmi, Nico Kyngäs and Jari Kyngäs

W

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

essential in cases where the workload is not static. On the

contrary, in airlines, railways and bus companies and mostly

in hospitals the demand for employees is quite

straightforward because the timetables are known

beforehand and the shifts are already fixed. The most

important optimization target is to match the shifts to the

workload as accurately as possible. The generation of shifts

is based on either the number of employees required to work

at given timeslots or the tasks that the shifts have to cover.

The generated shifts form an input for the staff rostering

phase, where employees are assigned to the shifts. The

length of the planning horizon is usually between two and

six weeks. The most important constraints are employees’

competences and preferences as well as the working and

resting times, since these are laid down by the collective

labor agreements and government regulations. Note that

staff rostering also includes the scheduling of days-off and

vacations.

Future staffing requirements must be carefully considered

in resource and holiday planning phase. Holidays, training

sessions and other short-term absences as well as long-term

sick-leaves and forthcoming retirements have major impact

to actual staff rostering. A resource analysis should be run

on the data to see if there will be any chance of succeeding

at matching the workforce with the shifts while adhering to

the given constraints. The analysis checks the balance

between the shifts and the available employees.

In the practical point of view, the workforce scheduling

process relies on both optimization resources and human

resources. It links the organization together, optimizing

processes and streamlining decision-making. The usefulness

and utilization of the optimized shifts and rosters depend

more on the good-quality outcome of the preceding phases

than the actual optimization result. However, when the input

data for the shift generation and for the staff rostering are

well validated, significant benefit in financial efficiency and

employee satisfaction can be achieved.

Nevertheless, the optimized staff rosters need to be

changed. Daily rescheduling deals with ad hoc changes that

are necessary due to sick leaves and other no-shows. The

workforce management system should recommend suitable

substitutes considering the qualifications, employment

contract, legal limitations and salaries. The goal is to find

the most economical candidates. Finally, the completed

working times will be booked and made available for

payroll accounting system.

In theory, the best results can be achieved when shift

generation and staff rostering are processed and solved at

the same time. However, different variations of both

problems and even their sub-problems are known to be NP-

hard and NP-complete [1]-[5]. Nonetheless, some

interesting implementations exist. Jackson et al. [6]

presented a very simple randomized greedy algorithm that

uses very little computational resources. Lapegue et al. [7]

introduced the Shift Design and Personnel Task Scheduling

Problem with Equity objective (SDPTSP-E) and built

employee timetables by fixing days-off, designing shifts and

assigning fixed tasks within these shifts. They minimized

the number of tasks left unassigned.

Dowling et al. [8] first created a master roster, a

collection of working shifts and off shifts, and then

allocated the tasks in their Task Optimiser module. Prot et

al. [9] proposed a two-phase approach consisting in first

computing a set of interesting shifts, then, each shift is used

to build a schedule by assigning tasks to workers, and then

iterating between these two phases to improve solutions.

They relaxed the constraint that each task has to be

assigned. Smet et al. [10] presented the Integrated Task

Scheduling and Personnel Rostering Problem, in which the

task demands and the shifts are fixed in time. Due to the

complexity issues in large-scale practical applications, shift

generation and staff rostering are mainly solved separately.

Our approach is to first generate the shifts and then roster

the staff as described in Section III.

Good overviews of workforce scheduling are published

by Ernst et al. [11], Musliu et al. [12], Di Gaspero et al. [13]

and Vanden Berghe et al [14]. Kletzander and Musliu [15]

propose a very interesting framework for the general

employee scheduling problem.

The article is organized as follows. In the next section we

introduce different shift generation scenarios and the

problems triggered from these scenarios. Section III

describes the general task-based shift generation problem.

Section IV briefly describes the PEAST algorithm, which is

used to solve wide variety of scheduling problems. In

Section V we present our first computational results.

II. INTRODUCTION TO SHIFT GENERATION PROBLEMS

Shift generation is the process of transforming the

determined workload into shifts. The result includes the

optimized shift structure, the tasks to be carried out in

particular shifts, the competences required for different

shifts and the break times required. For labor intensive

organizations, it is crucial to find a good match between the

predicted and scheduled workload. The generation of shifts

is based on either the number of employees working at the

certain timeslots or the number of tasks that the shifts have

to cover. We call these problems employee-based and task-

based shift generation problems.

Numerous models and algorithms for shift generation

problems have been developed. The first major contribution

was published by Musliu et al. [12]. They introduced an

employee-based problem, in which the workforce

requirements for a certain period of time were given, along

with constraints about the possible start times and the length

of shifts, and an upper limit for the average number of

duties per week per employee. They generated solutions that

contained shifts (and the number of employees per shift)

that minimize the number of shifts, overstaffing,

understaffing, and differences in the average number of

duties per week.

Di Gaspero et al. [16] proposed an employee-based

problem in which the most important issue was to minimize

the number of shifts. They dealed with cyclic schedules, i.e.

the last planning day of the planning horizon (e.g. one

week) coincides with the first planning day of the next

cycle, and the requirements are repeated in each cycle. The

problem statement also includes a collection of acceptable

shift types each of them characterized by the earliest and the

latest start times, and a minimum and maximum length of its

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

shifts.

Bhulai et al. [17] presented a generalized model for multi-

skill shift design in call centers. Their method generated a

rough match between the predicted workload and labor

capacity, taking the stochastic nature of the call arrival

process into account. Kyngäs et al. [18] introduced the

unlimited shift generation problem in which the most

important goal is to minimize understaffing and

overstaffing. They define the strict version of the problem

such as each timeslot should be exactly covered by the

correct number of employees. In [15]-[17], the shifts are

limited to a number of types, for which the length and the

start time of the shifts have to be within certain ranges. In

[18], the lengths and the start times of the shifts are not

strictly limited.

In the person-based multitask shift generation problem

with breaks presented in [19], employees can have their

personal shift length constraints and competences. Even if

the goal is to construct a set of shifts and not to assign them

to employees, they ensure that the employees’ have the

ability to execute the shifts. They do this by choosing a

suitable subset of the employees as a preprocessing phase

for the shift generation process and creating each shift

according to a single employee’s personal (shift length and

competence) constraints. The exact procedure can be done

separately, but in a real-world case with a realistic planning

horizon (usually at least a week) it is often best to schedule

days-off first and then use the result as a basis for the staff

rostering.

Compared to the employee-based shift generation

problem, far fewer models and algorithms have been

developed for the task-based shift generation problem in

which a number of different tasks must to be carried out.

The problem is to create shifts and assign tasks to these

shifts so that employees can be assigned to the shifts.

The first major contribution of task-based problem was

published by Dowling et al. [8]. They created a master

roster, a collection of working shifts and off shifts, and then

allocated the tasks in their Task Optimiser module, which is

invoked one day before the day-of-operation. They allocated

a set of tasks (with required attributes and with known start

and end times) to personnel with the requisite skills who are

available for work on that day (with known shift start and

end times).

Krishnamoorthy and Ernst introduced a group of

problems called Personnel Task Scheduling Problems

(PTSP) in [20]. Given the staff that are rostered on a

particular day, the PTSP is to allocate each individual task,

with specified start and end times, to available staff who

have skills to perform the task. Later, Krishnamoorthy et al.

[21] introduced a special case referred as Shift Minimisation

Personnel Task Scheduling Problem (SMPTSP) in which

the only cost incurred is due to the number of personnel

(shifts) that are used. This variant was motivated by

situations where a large pool of casual staff is available and

management would like to minimize pool usage. A similar

model was earlier presented in [22] where they minimized

the number of workers required to perform a machine load

plan. The SMPTSP is also similar to the basic interval

scheduling problem presented in [23] where the goal is to

decide which jobs to process on which machines. Unlike in

the interval scheduling problem, in the SMPTSP all tasks

need to be assigned and not all employees can process each

task.

Lin and Ying [24] developed a three-phase heuristic for

the SMPTSP. They obtain an initial solution using a simple

but very effective construction heuristic, which is then

improved using an iterated greedy heuristic, which in turn is

used as an initial upper bound while solving the MIP model

of the problem. Lapegue et al. introduced an equity

objective to the SMPTSP [25]. The idea is to find a solution

where employees have approximately the same amount of

work, thus generating more fair schedules. However, they

relax the constraint that all tasks need to be assigned. The

SMPTSP problem with Equity objective minimizes the

number of unassigned tasks and the inequity among

workers.

The next section describes more general shift generation

problem in which the tasks are not fixed in time.

Furthermore, the tasks are not explicitly assigned to

employees.

III. THE GENERAL TASK-BASED SHIFT GENERATION

PROBLEM

In this section, we present the General Task-based Shift

Generation Problem (GTSGP). To the best of our

knowledge, the problem was first introduced in [26].

However, numerous models, algorithms and

implementations for specific shift generation problems have

been developed as presented in Section II. The motivation

for the GTSGP derives from the demand-oriented workforce

scheduling process presented in Section 1. Due to the

complexity issues in large-scale practical applications, shift

generation and staff rostering are mainly solved separately.

In most cases, the first problem consists of choosing a small

subset of shifts from a pre-defined set of shift types that is

common to all days of the planning horizon and then for

each day of the planning horizon, deciding which

employees execute which tasks in which shifts. For

example, Dowling et al. [8] and Prot et al. [9] first create a

set of shifts and then assign the tasks to the shifts. Our

approach is the opposite. We first generate the shifts and

then roster the staff. This approach is due to customer needs

in retail stores, cleaning, home care and guarding.

Given the tasks that should be rostered on a particular

day, the GTSGP is to create anonymous shifts and assign

tasks to these shifts so that employees can be assigned to the

shifts. The targeted tasks must be completed within a given

time window. For example, shelving in retail stores is often

carried out in the forenoon. It is obvious that we will need

far more employees if we fix the starting times of the tasks

compared to the dynamic starting times. Some tasks are so-

called back-office tasks. In a contact center, for example,

answering emails might require a given number of working

hours per day dedicated to the activity even though the

distribution of those hours within the day does not matter.

The back-office work could be preempted as stated in [9].

However, in real-world applications, we should have a

freedom in determining the starting times of back-office

tasks.

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

The GTSGP differs from the SMPTSP in several ways:

1) tasks are not explicitly assigned to employees

2) tasks are not fixed in time

3) tasks may have shift-local precedence constraints

4) transition times between tasks are considered

5) the number of feasible (shift, employee) pairs are

maximized.

Transition times between tasks are considered in the crew

scheduling problem [27], where a set of crews, a set of

locations and a set of tasks is given. For each task, a

location is given and for each pair of locations a distance is

given. The problem is to assign tasks to crews using a

minimum number of crews.

We consider the shift structure separately for each day, so

there is no connection between the shifts of different days.

Recall, that we roster the staff after the shifts have been

generated for each day. This is why we must create as

versatile shifts as possible to insure that the rostering of the

staff can be completed. We have to ensure that the resulting

set of shifts can be carried out by the employees, i.e. each

shift can be assigned to an employee s.t. all shifts are

assigned to someone and no employee is assigned to

multiple shifts.

For each day, the goal is to maximize the number of

feasible (shift, employee) pairs. A pair (s, e) is considered

feasible if employee e can carry out shift s. Note, that in the

practical applications of the GTSGP we have faced so far,

the full-time permanent and temporary employees cover

100% of the total workload in the shift generation and

rostering phases. This is opposite to the idea behind the

SMPTSP, where a large pool of casual staff is available and

management would like to minimize pool usage.

The GTSGP covers a one-day planning period of t

timeslots. The set of shifts S is to be generated. The number

of shifts is usually the same as the number of available

employees. In case of understaffing, additional pseudo

employees can be used. A set of tasks T is to be assigned to

the shifts. Each task t has a duration dt (in timeslots), a time

window [lbt, ubt], a task type Dt and a location lt. A task t

must not start before lbt and must not end after ubt. A task

type Dt is related to the collection of skills required by the

tasks, which is a subset of the skill set C. It is easier to

manage the required skills for the tasks by first classifying

them to task types. Respectively, each employee e from the

set of employees E has a collection Ke of skills. In addition,

each employee e has a time constraint [elbe, eube] for the

total working time and a contiguous availability set Ae of

timeslots. An employee e must not work less than elbe or

more than eube timeslots in the targeted day. An employee e

cannot execute tasks that are assigned to the timeslots not in

Ae. Furthermore, each employee e has a unique mode of

transport re. The global transition matrix M consists of

transitions mijk where mijk indicates the number of timeslots

needed using transport mode i to transit from location j to

location k. For example, one employee can use a car or a

bus while the other can use a bicycle. The time from the

employee’s home depot to the first task, the transition times

between the tasks and the time from the last task back to the

employee’s home depot are not counted as working time.

Only the transitions between tasks count against employee

availability.

In summary, an employee e can be assigned to the shift s

only if the following criteria hold:

(C1) He/she possesses all the skills indicated by the task

types of the tasks assigned to the shift (skill).

(C2) The total working time of the tasks in the shift is

within [elbe, eube] (working time).

(C3) All the timeslots of the tasks in the shift are

included in Ae (availability).

(C4) He/she has enough transition time to move between

the tasks in the shifts (transition time).

The GTSGP has four basic assumptions:

(B1) Each task will be assigned to a shift.

(B2) Preemption of tasks is not allowed.

(B3) Each task is processed only once without

interruption.

(B4) Each employee can execute only one task at a time.

A solution to the GTSGP is feasible, if the following five

hard constraints have no violations:

(H1) The tasks in the shift do not overlap in time

(overlap).

(H2) Some tasks may have shift-local precedence

constraints, that is, a task may not be executed after

some other tasks in the same shift (precedence).

(H3) Each shift can be executed (C1-C4 hold) by one or

more employees (shift).

(H4) Each shift can be assigned to an employee s.t. all

shifts are assigned to someone and no employee is

assigned to multiple shifts (combination).

Lunch and other breaks can also be created using the idea

given in [19]. To evaluate the hard constraint H4, we have

to solve the corresponding assignment problem. Note, that

the criterion H4 actually implies H3. Figure 2 shows a

solution to an assignment problem with six shifts and six

employees. The corresponding assignment problem would

have no solution, if employee F could not execute shift 3,

even though criterion H3 would still hold.

Fig. 2. An assignment problem with six shifts and six employees. The cells

indicate the values for criteria C1-C4 (1 = criterion holds). An employee

can execute the shift if all the cell values are one. A solution to the

assignment problem is denoted with x.

The GTSGP can now be stated as follows:

1) Maximize the sum of number of feasible (shift,

employee) pairs over all pairs.

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

2) Satisfy the hard constraints H1-H4.

The number of shifts employees are able to execute in the

example given in Figure 2 is 13. Note, that in the GTSGP,

the shift structure is implicitly generated from the skills,

working times, availabilities and transition times of the

employees (criteria C1-C4). Lin and Ying [28] state that it

would be interesting and useful to take into account

employee preferences, such as assignments to a preferred

task. In our model the staff preferences are considered in the

staff rostering phase (see Figure 1).

The GTSGP can also include the same soft constraints as

for the employee-based shift generation problem (see [19]),

for example the following:

(S1) Shifts of less than k1 and over k2 timeslots in length

must be minimized.

(S2) The average shift length should be as close to k3

timeslots as possible.

(S3) Shifts that start between timeslots k4 and k5 must be

minimized.

(S4) Shifts that end between timeslots k6 and k7 must be

minimized.

(S5) Each shift should contain at most k8 switches from

one task to another.

IV. SOLUTION METHOD

The search space of the GTSGP is enormously larger than

that of the SMPTSP. For example, consider an instance with

ten shifts and with one hundred tasks each having a duration

of ten timeslots and a time window of nineteen timeslots. In

the SMPTSP, we have ten possible assignments for each

task totaling 10100 solution candidates. In the GTSGP,

however, we have 10 x 20 possible assignments for each

task totaling 200100 solution candidates, i.e. 20100 times more

candidates.

The computational requirements even for the large-scale

SMPTSPs are so high that exact methods may not produce a

feasible solution within a limited computing time. The

metaheuristic and matheuristic algorithms developed for the

SMPTSP (see the references in Section II) use the idea of

maximal cliques to reduce the search space. A clique is a set

of overlapping tasks for a worker at a given time. The same

idea is not applicable in the GTSGP since the tasks are not

fixed in time.

We solve the GTSGP using the PEAST algorithm

described in [29]. The algorithm is a population-based

metaheuristic. The acronym PEAST stems from the methods

used: Population, Ejection, Annealing, Shuffling and Tabu.

It has been used in staff rostering [30], employee-based shift

generation [19], professional sports league scheduling [31]

and school timetabling problems [32]. Furthermore, the

algorithm has been used to solve somewhat more academic

problems, such as balanced incomplete block design [33],

single round robin tournaments with balanced home-away

assignments and pre-assignments [33] and constraint

minimum break problems [34].

The PEAST algorithm seeks to overcome the three

biggest challenges for metaheuristics: a good quality of the

generated solutions, the acceptable running time of the

algorithm and that it can be used to solve wide variety of

problems. These are often contradicting requirements that a

metaheuristic attempts to balance. Simple and small

neighborhoods decrease the running time, but the quality

improvement of an individual iteration of the algorithm is

expected to be low, thus requiring larger total number of

iterations. On the other hand, in large complex

neighborhoods, as in the PEAST, single iterations require

significantly more time, but the quality improvement is

expected to be much higher requiring less iterations.

A metaheuristic is specified by four core issues: initial

solution, search space, neighborhood and cost function. The

heart of the PEAST is the local search called GHCM, which

is used to explore promising areas in the search space.

Another important feature of the algorithm is the use of

shuffling operators, which assist in escaping from local

optima. Furthermore, simulated annealing and tabu search

are used to avoid staying stuck in promising search areas too

long. The algorithm uses ADAGEN, the adaptive genetic

penalty method, which assigns dynamic weights to the hard

constraints based on the constant weights assigned to the

soft constraints. For the detailed discussion of the algorithm,

we refer to [29] and [35]. The pseudo-code of the algorithm

is given in Figure 3.

Fig. 3. The pseudo-code of the PEAST algorithm.

In the GHCM search the basic hill-climbing step is

extended to generate a sequence of moves in one step,

leading from one solution candidate to another. In the

GTSGP, the GHCM search moves a task t1, from its

currents shift s1, to a new shift s2, and then moves another

task t2, from shift s2 to a new shift s3, and so on, ending up

with a sequence of moves. The first task is selected by

tournament selection. The shift and the starting timeslot that

receives the task is selected by considering all the possible

shifts and in those shifts all the starting timeslots that are not

booked, and selecting the one that causes the least increase

in the cost function. Then, a task from that shift is selected

by considering all the tasks in that shift and picking the one

for which the removal causes the most decrease in the cost

function. Next, a new shift for that task is selected, and so

on. The sequence of moves stops if the last move causes an

increase in the cost function value and if the value is larger

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

than that of the previous non-improving move, or if the

maximum number of moves is reached. Then, a new

sequence of moves is started.

Due to the complexity issues and the very large search

space of the GTSGP, we have to consider five calculation

key points when solving real-world instances. First,

whenever possible, we should reduce the number of tasks

by grouping or sequencing smaller tasks into bigger single

tasks. Second, we should similarly group skills to larger

skill groups. This is not as vital as with the number of tasks.

Third, without losing too much important information, the

slot size should be as long as possible, i.e. the number of

timeslots should be as small as possible.

Fourth, when generating a sequence of moves, we have to

calculate the cost function many times during one GHCM

operation. Furthermore, we have to calculate the cost

function while rollbacking the moves, often down to the

starting point. The computational resources are too high to

calculate the solution value. Therefore, we should

recalculate only those parts of the solution, which are

changed due to the single moves of the move sequence. This

is very tough to implement, but it is vital for real-world use

of the PEAST algorithm.

Finally, to check out the hard constraint H5, we have to

solve the assignment problem as described in Section III.

The problem was originally solved in O(n4) time, but it can

be solved in O(n3) time using appropriate data structures

[36]. Unfortunately, this is still far too slow since we have

to solve the assignment problem in each single move in the

move sequence. One possibility would be to use a greedy

heuristic, but it does not guarantee that we can generate

such shifts that the staff rostering can be completed.

Fortunately, implementing the move sequence in such a way

that we can apply the ideas presented in [37], we are able to

calculate only the changes incurred to the initial assignment

problem. In our implementation the calculation of changes

requires O(n2) time.

V. FIRST COMPUTATIONAL RESULTS

In this section we present our first computational results.

We first try to solve some of the SMPTSP benchmark

instances and then we present one GTSGP benchmark

instance. Real-world benchmark instances for SMPTSP do

not exist at the moment, but three artificial benchmark

instances have been published.

Krishnamoorthy et al. [21] presented a data set of 137

instances for the SMPTSP. The data set is referred to as

KEB instances. Smet et al. [38] generated ten more difficult

instances than KEB instances, referred to as SWMB

instances. Furthermore, Fages and Lapegue [39] generated a

new data set of 100 instances, because the KEB and SWMB

instances are trivial with regard to finding good quality

lower bounds. This data set is referred to as FL instances. A

good summary of the instances and an excellent greedy

algorithm for the SMPTSP can be found in [40].

It is obvious, that the PEAST algorithm designed for the

GTSGP cannot compete with the specifically tailored

SMPTSP algorithms described in [9], [21], [24], [25], [38]

and [40]. However, as a first test, we decided to select seven

instances from the KEB data set. The instances were

selected to cover different task sizes and employee sizes and

their ratio. In addition, four of the instances are such that the

heuristic presented in [21] were not able to solve them to

optimality. Table 1 shows the test instances and our first test

runs. We were able to solve six of the seven instances.

TABLE I

TEST RESULTS FOR THE SEVEN KEB INSTANCES

KEB #Tasks #Emps Optimum Heuristic PEAST

1 40 23 20 20 20

9 104 49 40 41 40

26 203 116 100 100 100

27 204 49 40 40 40

39 351 45 40 41 40

63 577 97 80 82 80

75 665 72 60 71 65

KEB = KEB instance id, #Tasks = number of tasks, #Emps = number of

employees, Optimum = optimum value, Heuristic = the value obtained

using the heuristic in [21], PEAST =the value obtained using the PEAST

Next, we present one GTSGP benchmark instance, which

introduces all the features and hard constraints of the

problem described in Section III. We have implemented a

GTSGP test generator, which we used to generate the test

instance. Test instances are generated in a way that at least

one solution with no hard constraint violations exists. The

instance was created using the following settings:

- Number of task type precedence constraints: 13

- Minimum (max) number of skills in task types: 5 (10)

- Average number of employees fit for a shift: 3

- Average gap of employees’ minimum and maximum

working time: 20%

- Average difference of shift durations: 20%

- Percentage of backup-office tasks: 0%

- Percentage of fixed tasks: 50%

- Average task window deviation: 50%

- Probability of a location change between the tasks in the

same shift: 50%

- Number of transition timeslots required between the

tasks in the same shift: 0, 1 or 2.

Table 2 shows the characteristics of the test instance. The

data for the instance is available online [41] (instance #8).

We were able to find a solution with no hard constraint

violations and with 39 feasible pairs (see Figures 4a and

4b).

TABLE II

CHARACTERISTICS OF THE TEST INSTANCE

Timeslots 20 Min (Max) number skills of employees

(see C1)

20 (29)

Tasks 100 Min (Max) working

time limits of employees (see C2)

11-13 (18-20)

Shifts 20 Min (Max) employee available

timeslots (see C3)

13 (20)

Employees 20 Min (Max) number of employee

transition times of length 2 (see C4)

18 (44)

Task types 10 Min (Max) number of skills related to

task types

5 (10)

Precedences 13 Min (Max) time window length of

tasks

1 (17)

Skills 30 Min (Max) duration of tasks

1 (16)

Locations 11

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

Fig. 4a. A solution with no hard constraint violations and with 39 feasible

pairs. Numbers in parentheses denote the starting timeslot of task.

Fig. 4b. The 39 feasible pairs of the solution and one possible solution

(denoted by *) to the corresponding assignment problem.

VI. CONCLUSION

We presented the General Task-based Shift Generation

Problem (GTSGP). To the best of our knowledge, the

problem has not been studied in the literature. We briefly

described the PEAST algorithm, which was used to solve

the presented test instances. We first solved seven SMPTSP

instances, which are very special cases of GTSGP. Then we

solved one GTSGP instance, which introduced all the

features and hard constraints of the GTSGP. The

computational results were encouraging.

The PEAST algorithm for staff rostering has been

integrated into Visma Numeron WFM, a market-leading

workforce management software in Finland. This research

has contributed to better systems for our industry partners.

We are currently working on integrating the shift generation

and the GTSGP to the WFM software.

Our current direction is to provide the mathematical

formulation of the GTSGP, apply the PEAST algorithm to

all the KEB, SWMP and FL instances, and to use the

GTSGP test generator to create a large set of benchmark

instances for the GTSGP.

REFERENCES

[1] M.R. Garey and D.S. Johnson, “Computers and Intractability: A

Guide to the Theory of NP-Completeness,” Freeman, 1979.

[2] J. Tien and A. Kamiyama, “On Manpower Scheduling Algorithms,” in

SIAM Rev. 24 (3), pp. 275–287, 1982.

[3] H.C. Lau, “On the Complexity of Manpower Shift Scheduling,”

Computers and Operations Research 23(1), pp. 93-102, 1996.

[4] D. Marx, “Graph coloring problems and their applications in

scheduling,” Periodica Polytechnica Ser. El. Eng. 48, pp. 5–10, 2004.

[5] P. Bruecker, R. Qu and E. Burke, “Personnel scheduling: Models and

complexity”, European Journal of Operational Research 210 (3), pp.

467-473, 2011.

[6] W.K. Jackson, W.S. Havens and H. Dollard, “Staff scheduling: A

simple approach that worked”, Technical Report CMPT97-23, School

of Computing Science, Simon Fraser University, Canada, 1997.

[7] T. Lapegue, O. Bellenguez-Morineau and D. Prot, “A constraint-

based approach for the Shift Design Personnel Task Scheduling

Problem with Equity”, Computers and Operations Research 40 (10),

pp. 2450-2465, 2013.

[8] D. Dowling, M. Krishnamoorthy, H. Mackenzie and H. Sier, “Staff

rostering at a large international airport”, Annals of Operations

Research 72, pp. 125-147, 1997.

[9] D. Prot, T. Lapgue and O. Bellenguez-Morineau, “A two-base method

for the shift design and personnel task scheduling problem with equity

objective”, International Journal of Production Research 53 (24), pp.

7286-7298, 2015.

[10] P. Smet, A.T. Ernst and G. Vanden Berghe, “Heuristic decomposition

approaches for an integrated task scheduling and personnel rostering

problem”, Computers & Operations Research 76, pp. 60-72, 2016.

[11] A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff

scheduling and rostering: A review of applications, methods and

models,” European Journal of Operational Research 153 (1), pp. 3-27,

2004.

[12] N. Musliu, A. Schaerf and W. Slany, “Local search for shift design,”

European Journal of Operational Research, 153(1), pp. 51–64, 2004.

[13] L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser and

W. Slany, “Automated Shift Design and Break Scheduling”, In: Uyar

A., Ozcan E., Urquhart N. (eds) Automated Scheduling and Planning.

Studies in Computational Intelligence, vol. 505, Springer, Berlin,

Heidelberg, 2013.

[14] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester and L.

De Boeck, “Personnel scheduling: A literature review”, European

Journal of Operational Research 226 (3), pp 367-385, 2013.

[15] L. Kletzander and N. Musliu, “Solving the General Employee

Scheduling Problem”, Preprint submitted to Computers and

Operations Research, Vienna, Austria, 2018.

[16] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf and W.

Slany, “The minimum shift design problem,” Annals of Operations

Research, 155(1), pp. 79–105, 2007.

[17] S. Bhulai, G. Koole and A. Pot, "Simple Methods for Shift Scheduling

in Multiskill Call Centers", Manu-facturing and Service Operations

Management 10 (3), pp. 411-420, 2008.

[18] N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, “Optimizing the

unlimited shift generation problem”, Applications of Evolutionary

Computation: EvoApplications, Springer, pp. 508-518, 2012.

[19] N. Kyngäs, K. Nurmi and J. Kyngäs, “Solving the person-based

multitask shift generation problem with breaks”, In Proc. of the 5th

International Conference On Modeling, Simulation And Applied

Optimization, Hammamet, Tunis, pp. 1-8, 2013.

[20] M. Krishnamoorthy, A.T. Ernst and D. Baatar, “The personnel task

scheduling problem”, Optimization Methods and Applications, pp.

343–367, 2001.

[21] M. Krishnamoorthy and A.T. Ernst, “Algorithms for large scale Shift

Minimisation Personnel Task Scheduling Problems”, European

Journal of Operational Research, 219 (1), pp. 34-48, 2012.

[22] V. Valls, A. Perez and S. Quintanilla, ”A graph colouring model for

assigning a heterogenous workforce to a given schedule”, European

Journal of Operations Research 90, pp. 285-302, 1996.

[23] A.W.J. Kolen, J.K. Lenstra, C.H. Papadimitriou and F.C.R. Spieksma,

“Interval Scheduling: A Survey”, Naval Research Logistics 54 (5), pp.

530-543, 2007.

[24] S.-W. Lin and K.-C. Ying, “Minimizing Shifts for Personnel task

Scheduling Problems: A three-Phase Algorithm”, European Journal of

Operational Research, 237, pp. 323-334, 2014.

[25] Lapègue, T., Prot, D., Bellenguez-Morineau, O.: A constraint-based

approach for the Shift Design Personnel Task Scheduling Problem

with Equity. Computers and Operations Research 10(40), 2450–2465

(2013).

[26] K. Nurmi, N. Kyngäs and J. Kyngäs, "General Task-based Shift

Generation Problem", Lecture Notes in Engineering and Computer

Science: Proceedings of The International MultiConference of

Engineers and Computer Scientists 2019, 13-15 March, 2019, Hong

Kong, pp. 510-515, 2019.

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

[27] J.E. Beasley and B. Cao, “A dynamic programming based algorithm

for the crew scheduling problem”, Computers and Operations

Research 25, pp. 567-582, 1998.

[28] S.-W. Lin and K.-C. Ying, “Minimizing Shifts for Personnel task

Scheduling Problems: A three-Phase Algorithm”, European Journal of

Operational Research, 237, pp 323-334, 2014.

[29] N. Kyngäs, K. Nurmi and J. Kyngäs, “Crucial Components of the

PEAST Algorithm in Solving Real-World Scheduling Problems”,

Journal of Lecture Notes on Software Engineering 1(3), pp. 230-236,

2013.

[30] N. Kyngäs, K. Nurmi and J. Kyngäs, “Workforce Scheduling Using

the PEAST algorithm”, in Ao, Sio-Iong (ed.): IAENG Transactions on

Engineering Technologies, Lecture Notes in Electrical Engineering

Volume 275, Springer, USA, 2014, pp 359-372,

[31] K. Nurmi, J. Kyngäs and A.I. Järvelä, “Ten-year Evolution and the

Experiments in Scheduling a Major Ice Hockey League”, in Daniel

Hak (ed.): An in Depth Guide to Sports, pp 169-207, Nova Science

Publishers, USA, 2018.

[32] K. Nurmi and J. Kyngäs, ”A Conversion Scheme for Turning a

Curriculum-based Timetabling Problem into a School Timetabling

Problem” in Proc of the 7th Conference on the Practice and Theory of

Automated Timetabling (PATAT), Montreal, Canada, 2008.

[33] K. Nurmi, D. Goossens and J. Kyngäs, “Scheduling a Triple Round

Robin Tournament with Minitournaments for the Finnish National

Youth Ice Hockey League”, Journal of the Operational Research

Society, Vol. 65(11), 2014, pp. 1770-1779,

[34] K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G.

Duran, J. Kyngäs, J. Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia

and R. Wolf-Yadlin, “A Framework for Scheduling Professional

Sports Leagues”, in Ao, Sio-Iong (Eds.). IAENG Transactions on

Engineering Technologies 5, Springer, USA, 2010, pp. 14-28.

[35] K. Nurmi, “Genetic Algorithms for Timetabling and Traveling

Salesman Problems”, Ph.D. dissertation, Dept. of Applied Math.,

University of Turku, Finland, 1998.

[36] C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization:

Algorithms and Complexity”, Dover Publications, 1998.

[37] I.H. Toroslu and G. Ucoluk, “Incremental assignment problem”,

Information Sciences 177(6), pp. 1523-1529, 2007.

[38] P. Smet, T. Wauters, M. Mihaylov and G. Vanden Berghe, “The shift

minimization personnel task scheduling problem: A new hybrid

approach and computational insights”, Omega 46, pp. 64-73, 2014.

[39] J.G. Fages and T. Lapegue, “Filtering Atmostnvalue with Difference

Constraints: Application to the Shift Minimisation Personnel Task

Scheduling Problem”, Lecture Notes in Computer Science, 8124, pp.

63-79, 2013.

[40] M. Hojati, “A greedy heuristic for shift minimization personnel task

scheduling problem”, Computers and Operations Research 100, pp.

66-76, 2018.

[41] K. Nurmi: “The General Task-based Shift Generation Problem –

Benchmark Instances” [Online]. Available:

http://web.samk.fi/public/tkiy/GTSGP/, (Last access July 2019).

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_01

(Advance online publication: 20 November 2019)

__

