
 

 

Abstract— Workforce scheduling studies have mainly 

focused on staff rostering, i.e. assigning employees to shifts and 

determining working days and rest days. In the recent years, 

the generation of shifts has gained increasing interest in 

academic community. Shift generation is the process of 

determining the shift structure, along with the tasks to be 

carried out in particular shifts and the competences required 

for different shifts. Application areas of staff rostering and 

shift generation include hospitals, retail stores, call centers, 

cleaning, home care, guarding, manufacturing and delivery of 

goods. This paper presents the General Task-based Shift 

Generation Problem (GTSGP). To the best of our knowledge, 

the problem has not been studied in the literature. The GTSGP 

is to create anonymous shifts and assign tasks to these shifts so 

that employees can be assigned to the shifts. The targeted tasks 

must be completed within a given time window. Tasks may 

have precedence constraints and transition times between tasks 

are considered. The goal is to maximize the number of shifts 

employees are able to execute. We present the first 

computational results of solving GTSGP instances. We briefly 

describe the PEAST algorithm, which is used to solve the test 

instances. 

 
Index Terms— PEAST algorithm, shift generation, 

workforce optimization, workforce scheduling. 

 

I. WORKFORCE SCHEDULING AND WORKFORCE 

OPTIMIZATION 

orkforce scheduling, also called staff scheduling and 

labor scheduling, is a difficult and time consuming 

problem that every company or institution that has 

employees working on shifts or on irregular working days 

must solve. Workforce scheduling studies have mainly 

focused on staff rostering, i.e. assigning employees to shifts 

and determining working days and rest days. In the recent 

years, the generation of shifts has gained increasing interest 

in academic community. Shift generation is the process of 

determining the shift structure, along with the tasks to be 

carried out in particular shifts and the competences required 

for different shifts. Application areas of staff rostering and 

shift generation include hospitals, retail stores, call centers, 

cleaning, home care, guarding, manufacturing and delivery 

of goods. 

Shift generation is essential in cases where the workload 

is not static. On the contrary, in airlines, railways and bus 

companies and mostly in hospitals the demand for 

employees is quite straightforward because the timetables 
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are known beforehand and the shifts are already fixed. The 

most important optimization target is to match the shifts to 

the workload as accurately as possible. The generation of 

shifts is based on either the number of employees working 

at the certain timeslots or the number of tasks that the shifts 

have to cover. 

The generated shifts form an input for the staff rostering, 

where employees are assigned to the shifts. The length of 

the planning horizon is usually between two and six weeks. 

The most important constraints are employees’ competences 

and preferences as well as the working and resting times, 

since these are laid down by the collective labor agreements 

and government regulations. Note that staff rostering also 

includes the scheduling of days-off and vacations. 

The demand-oriented workforce scheduling process starts 

from four entry points (see Figure 1). First, workload 

prediction is the phase of determining the workload. This is 

done based on both known and predicted events. For 

example, the arrivals of customers can be predicted using 

models based on queueing theory, simulation and statistics, 

while known events may be gathered from current sales 

contracts. The events are transformed into either tasks or 

staff demand, depending mostly on the duration and spatial 

diversity of the events. Note that sick leaves and other no-

shows should be considered when calculating the staff 

demand.  

 

 
Fig. 1. The demand-oriented workforce scheduling process. 

 

  Second, the HR master system provides necessary 

employee data, such as labor contract, work unit and 

working hours. Third and fourth, the labor regulations and 

the common practices as well as the competences and 

preferences of the employees are maintained by the 

workforce management system itself. These four entry 

points gather the required information first for the shift 

generation phase and then for the staff rostering phase.  

The process continues with shift generation, which is 
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essential in cases where the workload is not static. On the 

contrary, in airlines, railways and bus companies and mostly 

in hospitals the demand for employees is quite 

straightforward because the timetables are known 

beforehand and the shifts are already fixed. The most 

important optimization target is to match the shifts to the 

workload as accurately as possible. The generation of shifts 

is based on either the number of employees required to work 

at given timeslots or the tasks that the shifts have to cover. 

The generated shifts form an input for the staff rostering 

phase, where employees are assigned to the shifts. The 

length of the planning horizon is usually between two and 

six weeks. The most important constraints are employees’ 

competences and preferences as well as the working and 

resting times, since these are laid down by the collective 

labor agreements and government regulations. Note that 

staff rostering also includes the scheduling of days-off and 

vacations. 

Future staffing requirements must be carefully considered 

in resource and holiday planning phase. Holidays, training 

sessions and other short-term absences as well as long-term 

sick-leaves and forthcoming retirements have major impact 

to actual staff rostering. A resource analysis should be run 

on the data to see if there will be any chance of succeeding 

at matching the workforce with the shifts while adhering to 

the given constraints. The analysis checks the balance 

between the shifts and the available employees.  

In the practical point of view, the workforce scheduling 

process relies on both optimization resources and human 

resources. It links the organization together, optimizing 

processes and streamlining decision-making. The usefulness 

and utilization of the optimized shifts and rosters depend 

more on the good-quality outcome of the preceding phases 

than the actual optimization result. However, when the input 

data for the shift generation and for the staff rostering are 

well validated, significant benefit in financial efficiency and 

employee satisfaction can be achieved. 

Nevertheless, the optimized staff rosters need to be 

changed. Daily rescheduling deals with ad hoc changes that 

are necessary due to sick leaves and other no-shows. The 

workforce management system should recommend suitable 

substitutes considering the qualifications, employment 

contract, legal limitations and salaries. The goal is to find 

the most economical candidates. Finally, the completed 

working times will be booked and made available for 

payroll accounting system. 

In theory, the best results can be achieved when shift 

generation and staff rostering are processed and solved at 

the same time. However, different variations of both 

problems and even their sub-problems are known to be NP-

hard and NP-complete [1]-[5]. Nonetheless, some 

interesting implementations exist. Jackson et al. [6] 

presented a very simple randomized greedy algorithm that 

uses very little computational resources. Lapegue et al. [7] 

introduced the Shift Design and Personnel Task Scheduling 

Problem with Equity objective (SDPTSP-E) and built 

employee timetables by fixing days-off, designing shifts and 

assigning fixed tasks within these shifts. They minimized 

the number of tasks left unassigned.  

Dowling et al. [8] first created a master roster, a 

collection of working shifts and off shifts, and then 

allocated the tasks in their Task Optimiser module. Prot et 

al. [9] proposed a two-phase approach consisting in first 

computing a set of interesting shifts, then, each shift is used 

to build a schedule by assigning tasks to workers, and then 

iterating between these two phases to improve solutions. 

They relaxed the constraint that each task has to be 

assigned. Smet et al. [10] presented the Integrated Task 

Scheduling and Personnel Rostering Problem, in which the 

task demands and the shifts are fixed in time. Due to the 

complexity issues in large-scale practical applications, shift 

generation and staff rostering are mainly solved separately. 

Our approach is to first generate the shifts and then roster 

the staff as described in Section III. 

Good overviews of workforce scheduling are published 

by Ernst et al. [11], Musliu et al. [12], Di Gaspero et al. [13] 

and Vanden Berghe et al [14]. Kletzander and Musliu [15] 

propose a very interesting framework for the general 

employee scheduling problem. 

The article is organized as follows. In the next section we 

introduce different shift generation scenarios and the 

problems triggered from these scenarios. Section III 

describes the general task-based shift generation problem. 

Section IV briefly describes the PEAST algorithm, which is 

used to solve wide variety of scheduling problems. In 

Section V we present our first computational results. 

II. INTRODUCTION TO SHIFT GENERATION PROBLEMS 

Shift generation is the process of transforming the 

determined workload into shifts. The result includes the 

optimized shift structure, the tasks to be carried out in 

particular shifts, the competences required for different 

shifts and the break times required. For labor intensive 

organizations, it is crucial to find a good match between the 

predicted and scheduled workload. The generation of shifts 

is based on either the number of employees working at the 

certain timeslots or the number of tasks that the shifts have 

to cover. We call these problems employee-based and task-

based shift generation problems. 

Numerous models and algorithms for shift generation 

problems have been developed. The first major contribution 

was published by Musliu et al. [12]. They introduced an 

employee-based problem, in which the workforce 

requirements for a certain period of time were given, along 

with constraints about the possible start times and the length 

of shifts, and an upper limit for the average number of 

duties per week per employee. They generated solutions that 

contained shifts (and the number of employees per shift) 

that minimize the number of shifts, overstaffing, 

understaffing, and differences in the average number of 

duties per week. 

Di Gaspero et al. [16] proposed an employee-based 

problem in which the most important issue was to minimize 

the number of shifts. They dealed with cyclic schedules, i.e. 

the last planning day of the planning horizon (e.g. one 

week) coincides with the first planning day of the next 

cycle, and the requirements are repeated in each cycle. The 

problem statement also includes a collection of acceptable 

shift types each of them characterized by the earliest and the 

latest start times, and a minimum and maximum length of its 
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shifts. 

Bhulai et al. [17] presented a generalized model for multi-

skill shift design in call centers. Their method generated a 

rough match between the predicted workload and labor 

capacity, taking the stochastic nature of the call arrival 

process into account. Kyngäs et al. [18] introduced the 

unlimited shift generation problem in which the most 

important goal is to minimize understaffing and 

overstaffing. They define the strict version of the problem 

such as each timeslot should be exactly covered by the 

correct number of employees. In [15]-[17], the shifts are 

limited to a number of types, for which the length and the 

start time of the shifts have to be within certain ranges. In 

[18], the lengths and the start times of the shifts are not 

strictly limited. 

In the person-based multitask shift generation problem 

with breaks presented in [19], employees can have their 

personal shift length constraints and competences. Even if 

the goal is to construct a set of shifts and not to assign them 

to employees, they ensure that the employees’ have the 

ability to execute the shifts. They do this by choosing a 

suitable subset of the employees as a preprocessing phase 

for the shift generation process and creating each shift 

according to a single employee’s personal (shift length and 

competence) constraints. The exact procedure can be done 

separately, but in a real-world case with a realistic planning 

horizon (usually at least a week) it is often best to schedule 

days-off first and then use the result as a basis for the staff 

rostering. 

Compared to the employee-based shift generation 

problem, far fewer models and algorithms have been 

developed for the task-based shift generation problem in 

which a number of different tasks must to be carried out. 

The problem is to create shifts and assign tasks to these 

shifts so that employees can be assigned to the shifts. 

The first major contribution of task-based problem was 

published by Dowling et al. [8]. They created a master 

roster, a collection of working shifts and off shifts, and then 

allocated the tasks in their Task Optimiser module, which is 

invoked one day before the day-of-operation. They allocated 

a set of tasks (with required attributes and with known start 

and end times) to personnel with the requisite skills who are 

available for work on that day (with known shift start and 

end times). 

Krishnamoorthy and Ernst introduced a group of 

problems called Personnel Task Scheduling Problems 

(PTSP) in [20]. Given the staff that are rostered on a 

particular day, the PTSP is to allocate each individual task, 

with specified start and end times, to available staff who 

have skills to perform the task.  Later, Krishnamoorthy et al. 

[21] introduced a special case referred as Shift Minimisation 

Personnel Task Scheduling Problem (SMPTSP) in which 

the only cost incurred is due to the number of personnel 

(shifts) that are used. This variant was motivated by 

situations where a large pool of casual staff is available and 

management would like to minimize pool usage. A similar 

model was earlier presented in [22] where they minimized 

the number of workers required to perform a machine load 

plan. The SMPTSP is also similar to the basic interval 

scheduling problem presented in [23] where the goal is to 

decide which jobs to process on which machines. Unlike in 

the interval scheduling problem, in the SMPTSP all tasks 

need to be assigned and not all employees can process each 

task. 

Lin and Ying [24] developed a three-phase heuristic for 

the SMPTSP. They obtain an initial solution using a simple 

but very effective construction heuristic, which is then 

improved using an iterated greedy heuristic, which in turn is 

used as an initial upper bound while solving the MIP model 

of the problem. Lapegue et al. introduced an equity 

objective to the SMPTSP [25]. The idea is to find a solution 

where employees have approximately the same amount of 

work, thus generating more fair schedules. However, they 

relax the constraint that all tasks need to be assigned. The 

SMPTSP problem with Equity objective minimizes the 

number of unassigned tasks and the inequity among 

workers.  

The next section describes more general shift generation 

problem in which the tasks are not fixed in time. 

Furthermore, the tasks are not explicitly assigned to 

employees. 

III. THE GENERAL TASK-BASED SHIFT GENERATION 

PROBLEM 

In this section, we present the General Task-based Shift 

Generation Problem (GTSGP). To the best of our 

knowledge, the problem was first introduced in [26]. 

However, numerous models, algorithms and 

implementations for specific shift generation problems have 

been developed as presented in Section II. The motivation 

for the GTSGP derives from the demand-oriented workforce 

scheduling process presented in Section 1. Due to the 

complexity issues in large-scale practical applications, shift 

generation and staff rostering are mainly solved separately. 

In most cases, the first problem consists of choosing a small 

subset of shifts from a pre-defined set of shift types that is 

common to all days of the planning horizon and then for 

each day of the planning horizon, deciding which 

employees execute which tasks in which shifts. For 

example, Dowling et al. [8] and Prot et al. [9] first create a 

set of shifts and then assign the tasks to the shifts. Our 

approach is the opposite. We first generate the shifts and 

then roster the staff. This approach is due to customer needs 

in retail stores, cleaning, home care and guarding. 

Given the tasks that should be rostered on a particular 

day, the GTSGP is to create anonymous shifts and assign 

tasks to these shifts so that employees can be assigned to the 

shifts. The targeted tasks must be completed within a given 

time window. For example, shelving in retail stores is often 

carried out in the forenoon. It is obvious that we will need 

far more employees if we fix the starting times of the tasks 

compared to the dynamic starting times. Some tasks are so-

called back-office tasks. In a contact center, for example, 

answering emails might require a given number of working 

hours per day dedicated to the activity even though the 

distribution of those hours within the day does not matter. 

The back-office work could be preempted as stated in [9]. 

However, in real-world applications, we should have a 

freedom in determining the starting times of back-office 

tasks. 
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The GTSGP differs from the SMPTSP in several ways: 

 

1) tasks are not explicitly assigned to employees 

2) tasks are not fixed in time 

3) tasks may have shift-local precedence constraints 

4) transition times between tasks are considered 

5) the number of feasible (shift, employee) pairs are 

maximized.  

Transition times between tasks are considered in the crew 

scheduling problem [27], where a set of crews, a set of 

locations and a set of tasks is given. For each task, a 

location is given and for each pair of locations a distance is 

given. The problem is to assign tasks to crews using a 

minimum number of crews. 

We consider the shift structure separately for each day, so 

there is no connection between the shifts of different days. 

Recall, that we roster the staff after the shifts have been 

generated for each day. This is why we must create as 

versatile shifts as possible to insure that the rostering of the 

staff can be completed. We have to ensure that the resulting 

set of shifts can be carried out by the employees, i.e. each 

shift can be assigned to an employee s.t. all shifts are 

assigned to someone and no employee is assigned to 

multiple shifts. 

For each day, the goal is to maximize the number of 

feasible (shift, employee) pairs. A pair (s, e) is considered 

feasible if employee e can carry out shift s. Note, that in the 

practical applications of the GTSGP we have faced so far, 

the full-time permanent and temporary employees cover 

100% of the total workload in the shift generation and 

rostering phases. This is opposite to the idea behind the 

SMPTSP, where a large pool of casual staff is available and 

management would like to minimize pool usage.  

The GTSGP covers a one-day planning period of t 

timeslots. The set of shifts S is to be generated. The number 

of shifts is usually the same as the number of available 

employees. In case of understaffing, additional pseudo 

employees can be used. A set of tasks T is to be assigned to 

the shifts. Each task t has a duration dt (in timeslots), a time 

window [lbt, ubt], a task type Dt and a location lt. A task t 

must not start before lbt and must not end after ubt. A task 

type Dt is related to the collection of skills required by the 

tasks, which is a subset of the skill set C. It is easier to 

manage the required skills for the tasks by first classifying 

them to task types. Respectively, each employee e from the 

set of employees E has a collection Ke of skills. In addition, 

each employee e has a time constraint [elbe, eube] for the 

total working time and a contiguous availability set Ae of 

timeslots. An employee e must not work less than elbe or 

more than eube timeslots in the targeted day. An employee e 

cannot execute tasks that are assigned to the timeslots not in 

Ae. Furthermore, each employee e has a unique mode of 

transport re. The global transition matrix M consists of 

transitions mijk where mijk indicates the number of timeslots 

needed using transport mode i to transit from location j to 

location k. For example, one employee can use a car or a 

bus while the other can use a bicycle. The time from the 

employee’s home depot to the first task, the transition times 

between the tasks and the time from the last task back to the 

employee’s home depot are not counted as working time. 

Only the transitions between tasks count against employee 

availability. 

In summary, an employee e can be assigned to the shift s 

only if the following criteria hold: 

 

(C1) He/she possesses all the skills indicated by the task 

types of the tasks assigned to the shift (skill). 

(C2)  The total working time of the tasks in the shift is 

within [elbe, eube] (working time). 

(C3)  All the timeslots of the tasks in the shift are 

included in Ae (availability). 

(C4)  He/she has enough transition time to move between 

the tasks in the shifts (transition time). 

 

The GTSGP has four basic assumptions: 

 

(B1) Each task will be assigned to a shift. 

(B2) Preemption of tasks is not allowed. 

(B3) Each task is processed only once without 

interruption. 

(B4) Each employee can execute only one task at a time.  

 

A solution to the GTSGP is feasible, if the following five 

hard constraints have no violations: 

 

(H1) The tasks in the shift do not overlap in time 

(overlap). 

(H2) Some tasks may have shift-local precedence 

constraints, that is, a task may not be executed after 

some other tasks in the same shift (precedence). 

(H3) Each shift can be executed (C1-C4 hold) by one or 

more employees (shift). 

(H4) Each shift can be assigned to an employee s.t. all 

shifts are assigned to someone and no employee is 

assigned to multiple shifts (combination). 

 

Lunch and other breaks can also be created using the idea 

given in [19]. To evaluate the hard constraint H4, we have 

to solve the corresponding assignment problem. Note, that 

the criterion H4 actually implies H3. Figure 2 shows a 

solution to an assignment problem with six shifts and six 

employees. The corresponding assignment problem would 

have no solution, if employee F could not execute shift 3, 

even though criterion H3 would still hold. 

 

 

Fig. 2. An assignment problem with six shifts and six employees. The cells 

indicate the values for criteria C1-C4 (1 = criterion holds). An employee 

can execute the shift if all the cell values are one. A solution to the 

assignment problem is denoted with x. 

 

The GTSGP can now be stated as follows: 

 

1) Maximize the sum of number of feasible (shift, 

employee) pairs over all pairs. 
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2) Satisfy the hard constraints H1-H4. 

The number of shifts employees are able to execute in the 

example given in Figure 2 is 13. Note, that in the GTSGP, 

the shift structure is implicitly generated from the skills, 

working times, availabilities and transition times of the 

employees (criteria C1-C4). Lin and Ying [28] state that it 

would be interesting and useful to take into account 

employee preferences, such as assignments to a preferred 

task. In our model the staff preferences are considered in the 

staff rostering phase (see Figure 1). 

 

The GTSGP can also include the same soft constraints as 

for the employee-based shift generation problem (see [19]), 

for example the following: 

 

(S1)  Shifts of less than k1 and over k2 timeslots in length 

must be minimized. 

(S2) The average shift length should be as close to k3 

timeslots as possible.  

(S3) Shifts that start between timeslots k4 and k5 must be 

minimized. 

(S4) Shifts that end between timeslots k6 and k7 must be 

minimized. 

(S5) Each shift should contain at most k8 switches from 

one task to another. 

IV. SOLUTION METHOD 

The search space of the GTSGP is enormously larger than 

that of the SMPTSP. For example, consider an instance with 

ten shifts and with one hundred tasks each having a duration 

of ten timeslots and a time window of nineteen timeslots. In 

the SMPTSP, we have ten possible assignments for each 

task totaling 10100 solution candidates. In the GTSGP, 

however, we have 10 x 20 possible assignments for each 

task totaling 200100 solution candidates, i.e. 20100 times more 

candidates. 

The computational requirements even for the large-scale 

SMPTSPs are so high that exact methods may not produce a 

feasible solution within a limited computing time. The 

metaheuristic and matheuristic algorithms developed for the 

SMPTSP (see the references in Section II) use the idea of 

maximal cliques to reduce the search space. A clique is a set 

of overlapping tasks for a worker at a given time. The same 

idea is not applicable in the GTSGP since the tasks are not 

fixed in time.  

We solve the GTSGP using the PEAST algorithm 

described in [29]. The algorithm is a population-based 

metaheuristic. The acronym PEAST stems from the methods 

used: Population, Ejection, Annealing, Shuffling and Tabu. 

It has been used in staff rostering [30], employee-based shift 

generation [19], professional sports league scheduling [31] 

and school timetabling problems [32]. Furthermore, the 

algorithm has been used to solve somewhat more academic 

problems, such as balanced incomplete block design [33], 

single round robin tournaments with balanced home-away 

assignments and pre-assignments [33] and constraint 

minimum break problems [34]. 

The PEAST algorithm seeks to overcome the three 

biggest challenges for metaheuristics: a good quality of the 

generated solutions, the acceptable running time of the 

algorithm and that it can be used to solve wide variety of 

problems. These are often contradicting requirements that a 

metaheuristic attempts to balance. Simple and small 

neighborhoods decrease the running time, but the quality 

improvement of an individual iteration of the algorithm is 

expected to be low, thus requiring larger total number of 

iterations. On the other hand, in large complex 

neighborhoods, as in the PEAST, single iterations require 

significantly more time, but the quality improvement is 

expected to be much higher requiring less iterations. 

A metaheuristic is specified by four core issues: initial 

solution, search space, neighborhood and cost function. The 

heart of the PEAST is the local search called GHCM, which 

is used to explore promising areas in the search space. 

Another important feature of the algorithm is the use of 

shuffling operators, which assist in escaping from local 

optima. Furthermore, simulated annealing and tabu search 

are used to avoid staying stuck in promising search areas too 

long. The algorithm uses ADAGEN, the adaptive genetic 

penalty method, which assigns dynamic weights to the hard 

constraints based on the constant weights assigned to the 

soft constraints. For the detailed discussion of the algorithm, 

we refer to [29] and [35]. The pseudo-code of the algorithm 

is given in Figure 3.  

 

Fig. 3. The pseudo-code of the PEAST algorithm. 

 

In the GHCM search the basic hill-climbing step is 

extended to generate a sequence of moves in one step, 

leading from one solution candidate to another. In the 

GTSGP, the GHCM search moves a task t1, from its 

currents shift s1, to a new shift s2, and then moves another 

task t2, from shift s2 to a new shift s3, and so on, ending up 

with a sequence of moves. The first task is selected by 

tournament selection. The shift and the starting timeslot that 

receives the task is selected by considering all the possible 

shifts and in those shifts all the starting timeslots that are not 

booked, and selecting the one that causes the least increase 

in the cost function. Then, a task from that shift is selected 

by considering all the tasks in that shift and picking the one 

for which the removal causes the most decrease in the cost 

function. Next, a new shift for that task is selected, and so 

on. The sequence of moves stops if the last move causes an 

increase in the cost function value and if the value is larger 
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than that of the previous non-improving move, or if the 

maximum number of moves is reached. Then, a new 

sequence of moves is started. 

Due to the complexity issues and the very large search 

space of the GTSGP, we have to consider five calculation 

key points when solving real-world instances. First, 

whenever possible, we should reduce the number of tasks 

by grouping or sequencing smaller tasks into bigger single 

tasks. Second, we should similarly group skills to larger 

skill groups. This is not as vital as with the number of tasks. 

Third, without losing too much important information, the 

slot size should be as long as possible, i.e. the number of 

timeslots should be as small as possible. 

Fourth, when generating a sequence of moves, we have to 

calculate the cost function many times during one GHCM 

operation. Furthermore, we have to calculate the cost 

function while rollbacking the moves, often down to the 

starting point. The computational resources are too high to 

calculate the solution value. Therefore, we should 

recalculate only those parts of the solution, which are 

changed due to the single moves of the move sequence. This 

is very tough to implement, but it is vital for real-world use 

of the PEAST algorithm. 

Finally, to check out the hard constraint H5, we have to 

solve the assignment problem as described in Section III. 

The problem was originally solved in O(n4) time, but it can 

be solved in O(n3) time using appropriate data structures 

[36]. Unfortunately, this is still far too slow since we have 

to solve the assignment problem in each single move in the 

move sequence. One possibility would be to use a greedy 

heuristic, but it does not guarantee that we can generate 

such shifts that the staff rostering can be completed. 

Fortunately, implementing the move sequence in such a way 

that we can apply the ideas presented in [37], we are able to 

calculate only the changes incurred to the initial assignment 

problem. In our implementation the calculation of changes 

requires O(n2) time. 

V. FIRST COMPUTATIONAL RESULTS 

In this section we present our first computational results. 

We first try to solve some of the SMPTSP benchmark 

instances and then we present one GTSGP benchmark 

instance. Real-world benchmark instances for SMPTSP do 

not exist at the moment, but three artificial benchmark 

instances have been published.  

Krishnamoorthy et al. [21] presented a data set of 137 

instances for the SMPTSP. The data set is referred to as 

KEB instances. Smet et al. [38] generated ten more difficult 

instances than KEB instances, referred to as SWMB 

instances. Furthermore, Fages and Lapegue [39] generated a 

new data set of 100 instances, because the KEB and SWMB 

instances are trivial with regard to finding good quality 

lower bounds. This data set is referred to as FL instances. A 

good summary of the instances and an excellent greedy 

algorithm for the SMPTSP can be found in [40].  

It is obvious, that the PEAST algorithm designed for the 

GTSGP cannot compete with the specifically tailored 

SMPTSP algorithms described in [9], [21], [24], [25], [38] 

and [40]. However, as a first test, we decided to select seven 

instances from the KEB data set. The instances were 

selected to cover different task sizes and employee sizes and 

their ratio. In addition, four of the instances are such that the 

heuristic presented in [21] were not able to solve them to 

optimality. Table 1 shows the test instances and our first test 

runs. We were able to solve six of the seven instances.  

 
TABLE I 

TEST RESULTS FOR THE SEVEN KEB INSTANCES 

KEB #Tasks #Emps Optimum Heuristic PEAST 

1 40 23 20 20 20 

9 104 49 40 41 40 

26 203 116 100 100 100 

27 204 49 40 40 40 

39 351 45 40 41 40 

63 577 97 80 82 80 

75 665 72 60 71 65 

KEB = KEB instance id, #Tasks = number of tasks, #Emps = number of 

employees, Optimum = optimum value, Heuristic = the value obtained 

using the heuristic in [21], PEAST =the value obtained using the PEAST 

 

Next, we present one GTSGP benchmark instance, which 

introduces all the features and hard constraints of the 

problem described in Section III. We have implemented a 

GTSGP test generator, which we used to generate the test 

instance. Test instances are generated in a way that at least 

one solution with no hard constraint violations exists. The 

instance was created using the following settings:  

 

- Number of task type precedence constraints: 13 

- Minimum (max) number of skills in task types: 5 (10) 

- Average number of employees fit for a shift: 3 

- Average gap of employees’ minimum and maximum 

working time: 20% 

- Average difference of shift durations: 20% 

- Percentage of backup-office tasks: 0% 

- Percentage of fixed tasks: 50% 

- Average task window deviation: 50% 

- Probability of a location change between the tasks in the 

same shift: 50% 

- Number of transition timeslots required between the 

tasks in the same shift: 0, 1 or 2. 

 

Table 2 shows the characteristics of the test instance. The 

data for the instance is available online [41] (instance #8). 

We were able to find a solution with no hard constraint 

violations and with 39 feasible pairs (see Figures 4a and 

4b).  

 
TABLE II 

CHARACTERISTICS OF THE TEST INSTANCE 

Timeslots 20   Min (Max) number skills of employees 

(see C1) 

20 (29) 

Tasks 100   Min (Max) working  

time limits of employees (see C2) 

11-13 (18-20) 

Shifts 20   Min (Max) employee available 

timeslots (see C3) 

13 (20) 

Employees 20   Min (Max) number of employee  

transition times of length 2 (see C4) 

18 (44) 

Task types 10   Min (Max) number of skills related to  

task types 

5 (10) 

Precedences 13   Min (Max) time window length of 

tasks 

1 (17) 

Skills 30   Min (Max) duration of tasks 

 

1 (16) 

Locations 11     
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Fig. 4a. A solution with no hard constraint violations and with 39 feasible 

pairs. Numbers in parentheses denote the starting timeslot of task. 

 

 

 

Fig. 4b. The 39 feasible pairs of the solution and one possible solution 

(denoted by *) to the corresponding assignment problem. 

VI. CONCLUSION 

We presented the General Task-based Shift Generation 

Problem (GTSGP). To the best of our knowledge, the 

problem has not been studied in the literature. We briefly 

described the PEAST algorithm, which was used to solve 

the presented test instances. We first solved seven SMPTSP 

instances, which are very special cases of GTSGP. Then we 

solved one GTSGP instance, which introduced all the 

features and hard constraints of the GTSGP. The 

computational results were encouraging.  

The PEAST algorithm for staff rostering has been 

integrated into Visma Numeron WFM, a market-leading 

workforce management software in Finland. This research 

has contributed to better systems for our industry partners. 

We are currently working on integrating the shift generation 

and the GTSGP to the WFM software.  

Our current direction is to provide the mathematical 

formulation of the GTSGP, apply the PEAST algorithm to 

all the KEB, SWMP and FL instances, and to use the 

GTSGP test generator to create a large set of benchmark 

instances for the GTSGP. 
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