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On R-hued Coloring of Some Perfect and
Circulant Graphs

Chenxu Yang, Xingchao Deng, Ruifang Shao

Abstract—A r-hued k-coloring of a graph G is a proper Conjecture 1.18 whenG is a planar graph, then
coloring with & colors such that for every vertexv with degree
d(v) in G, the neighbors of v must be colored by at least r+3, if 1<r<2,
min{d(v),r} different colors. The r-hued chromatic number, (G)<{ r+5 if 3<r<7 (1)
x+(G), of G is the minimum k for which G has ar-hued k- E3 :'_ L it r>8
coloring. In this paper, we study the r-hued coloring of some 2 ’ =
perfect and circulant graphs. . . .

Observation 1 x,(G) > min{A(G),r} + 1. Equality

Index Terms—r-hued coloring, r-hued number, perfect holds for trees.

graphs, tree, circulant graphs.

Observation 2If r» > A(G), thenx,.(G) = xa(e)(G).

I. INTRODUCTION Observation 3 For any graphG, x1(G) < x2(G) <
< xe(G) £ < xalG) = xa41(G) = - = x(G?).
N this paper, we consider graphs which are connected,
finite, undirected and simple. A-coloring of G is proper ~ The [ — th power of a graph, denoted byG™"), is a
if no two distinct adjacent vertices have the same coldiraph with the same vertex set 6f such that two vertices
For any integers: and b with a < b, we use the notation are adjacent if and only if their distance is at mbo#t G.
[a, 0] for the set{a,a + 1,---,b}; and [k] for [1,k]. Let ¢
(mod k) denote the remainder éfmodulek. The smallest ~ Conjecture 1213 letG be a planar graph of maximum
integerk such thatG has a propek-coloring is known as degreeA. The chromatic number of its square is
the chromatic number of7, denoted byx(G). For every

v € V(G), Ng(v) denotes the neighbor set ofin G and 7, if A=3,
Ng[v] = Ng(v) U {v}. In [1], Lai et al. proposed-hued x(G*) < A+5, if 4<A<T, (2)
Coloring of Graphs based on multi-agentsystems(MAS). An L%J +1, if A>8.

MAS can be modeled as a graph for which a typical vertex

represents a situation in which the typical individual has Recently, C. Thomassen [12] proved that the conjecture is
a great variety in the type of relations. Thus, the overaprrect forA = 3.

interactions would not be so limited but more hued. This This conjecture has also been generalized to like
motivates the definition of the hued coloring. @&,r)- coloring.

coloringc of a graphG is a propeltk-coloring of G such that

for everyv € V(G), we have|c(Ng(v))| > min{d(v),r}. Conjecture 1.313 Let G be a planar graph with maxi-
where a typical vertex is adjacent to more than one vertexum degree\, then the list chromatic number of its square
with different colors. The-hued chromatic number, x,(G), is

of G is the minimumé for which G has ar-hued k-coloring.

By definition, x1(G) = x(G). The2-hued chromatic number 7, if A=3,
of G is named the dynamic chromatic number, denoted by ch(G*) < { A+5, if 4<ALT, 3)
x2(G) or xq(G). Itis easy to know thak(G) < x2(G). 28] +1, if A>8.

Recently, ther-hued coloring of a grapliG has been ]
studied by many research groups, see [2], [4], [5], [6], [7], Cranston and Klm_ [14] proved that the square of any
18], [9], [10] and [11]. It is shown in [3] that fom > 3, connected graph ( withA < 3)(not necessarily planar) is
if 3n, theny2(C,) = 3, if n = 5, theny2(C,) = 5, and 8-choosable, except for the Petersen graph. Havet et al. [4]
v2(C,) = 4 otherwise. In [1], it is proved that for everyProved the conjecture asymptotically:
graphG, if A(G) < 3, x2(G) < 4 unlessyz(G) = 5 for 4
G = Cs; and if A(G) > 4, thenx»(G) < A(G) + 1. More- Theorem 1.4% For sufficient largeA, the square of
over, Song et al. in [8] proposed the following conjecture.€very planar graptG has list chromatic number at most
(1+0(1)) 3 A.
. . . . In [1], Lai et al. obtained a theorem analogous of
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II. R-HUED COLORING OF SOME PERFECT  ¢(v;) = i (mod 5) is a r-hued 5-coloring of P2, thus

GRAPHS xr(P2) =5 for r > 4. O
Let C,,(P,) denote cycle(path) witl vertices, respec- ) )
tively. Since any three successive vertices induégan P2 Let T" be a tree with maximum degre® and
andC?,, we havey»(C2) = x(C2) andx2(P?) = x(P2). Adl <A
Theorem 2.1For any integers: > 3 and2 <! <n —1, f(r)y=¢A+2, ifr=A+1,
we haveys(Pl) = x(P.) =1+ 1. min{2A + 1,7}, if r > A+2.

Proof Let V(P,,) = {v1,va, -+ ,v,}. Clearly, x2(P?) >
3 sincewy,vg, v3 induce a subgraplis. It is obvious that ~ Theorem 2.41f T is a tree with|V(T)| > 5, which is
the coloringe : ¢(v;) =i (mod 3) is a 2-hued coloring, thus not a path, theny,.(T?) < f (r) .
x2(P2) < 3. Therefore, we obtain thag.(P2) = 3.
Similarly, we haveys(P!) = x(P!) = [ + 1 since any  Proof We argue by induction on n#/(T')|. For n = 5,
I + 1 successive vertices inducefg; andc : c¢(v;) =4 let T be a tree withA(T) = 3. W.l.o.g., we may assume
(mod [ + 1) is a 2-hued coloring of!. O thatd(ve) = 3, d(vs) = d(v3) = d(v1) = 1, d(vs) = 2.
Whenr < A, we letc(vs) = ¢(v1) =2, ¢(v1) = 1,¢(vs) =
Lemma 2.2Bezout’'s Theorem)m For any relatively 3, c(vs) = 4. If + > A, we give the following coloring:
prime positive integers and b, then there are integets c(vs) = c(vi) = 2, c¢(vy) = 1, c(vs) = 3, ¢(va) = 4.
andy such thatm = ax + by. It is easy to see that is a r-hued coloring ofT? with 4
colors. Moreover, ifI" is a star with5 vertices, theril'? is
Moreover, for large enough integefn, there are a K5 which needs$ colors in anyr-hued coloring. Now the
nonnegative integers and y satisfy the above equation.coloring giving each vertex different colors.
This result can be proved as follows. Assume thatn > 5 and the theorem holds for smaller
values ofn. Let T' be a tree onn vertices andv, be a
W.l.o.g., assume thdt > a. Since there are integens leaf adjacent ta; with minimized degree among all vertices
and yo such thataxy + byo = 1 with —a < yo < a and which are adjacent to leaves in
—b < z0 < b by relatively primeness of andb, one of By induction, x,.((T — vo)?) < f (r). Let ¢ be ar-hued
xo andyy is positive and another is negative. Suppose thesloring of (7' — vo)? with at most f(r) colors. Since
xo is negative, themy, is positive, and there are nonnegative, is adjacent to at mosti(v;) < A(T) vertices, we
integersq andr with 0 < r < a such thatm = ga +r by can choose*(vy) € {1,2,3,..., f (r)}\{c(Nr (v))} and
division algorithm. So we have c*(v) = ¢c(), forv € V(T —v), thenc* is a r-hued
coloring of T2 with at mostf (r) colors. O
m = qa+r = qa+ razo + rbyo = (¢ + rxzo)a + (ryo)d.
Let z = ¢+ rxzo andy = ryo. Theny > 0, andz > 0 when Theorem 2.5If T is a tree with|V (T))| > 3, thenT? is
q > ab > rb > —rxo, so we have the desired result wher@ perfect graph.

m>a’b+a>ab+r.
Proof We prove by induction om = |V (T')|. Forn = 3,

Theorem 2.3Let n > 3 be an integer. Then it is easy to see that(H)=w(H) for any induced subgraph
H of T2. Thus the theorem is valid for = 3.
s(P2) = {37 n=3, Assume thah > 4 and the theorem holds for trees with at
" 4, otherwise. mostn —1 vertices. Letl’ be a tree wit vertices andyy be
and a leaf of T" with its neighbor degree minimized . Since

[V (T —wo)| < n, by induction, we have (H) = w (H) for

) 5 n=3 any induced subgrapH of (T — vg)?.
Xe(Py) =4, n=4, By the definition of perfect graph, we will prove that
5, otherwise. X (H) = w(H) for every induced subgrapi of T2 by
for r > 4. the following two cases.

Casel. vy ¢ V(H). Then H is an induced subgraph of
Proof Let {v1,vs, - ,v,} be the vertex set oP2. For (T — vo)” . By induction we know that(H) = w(H).
n =3, P§ = K3 soxs(P{) = x,(P§) =3.Forn = 4,itis  Case2.v, € V(H). The vertexy, is adjacent ta» and has
obvious thatA(P}) = 3. By Observations 1-2y3(P}) > 4, neighbors inNg(v) in T2, where Ng(v) = {v1,...,vs},
S0 x,(P}) > 4. But x3(Pf) = xa(P}) < 4 becausePf has s < A. Wo.lg., v; is adjacent tow; and Ng (w;) =
four vertices, henCQ3(P42) = X7'(P42) =4. {wﬂ, Wi, Wiz, .., wit}, wherew;; = v; andt < A,
Assume thatn > 5. By Observations 1-2, we haveas Figure 1 showen.
x3(P?) > 4 and x,.(P?) > 5 for r > 4 since A(P?) = 4

Consider the folowing 4-coloring of P2 : Case2.1 Sincev € V(H) and{N[v]\vo} NV (H) = &,

we have thal/ (H) C {vo UV (T) \ N[v]}. In this caseuq

c:{vi,ve,- - ,un} — [4],c(v;) =i (mod 4). is an isolated vertex off, soy (H) = w (H).
Itis clear thatic(N(v;))| = 3 andc is a 3-hued 4-coloring  Case 2.2 When vy € V(H) and V(H)({N[v]\vo}
of P2. Henceys(P2) = 4. Similarly, the coloringe with = {v,v9,...,vs1}, 51 < s. By induction, we know that
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Figure 1:The graph in Case 2 of Theorem 2.5 )
Figure 3:The second graph in Theorem 2.6

X(H—-v)=w(H —v). fw(H)=w(H —v), then we

havey (H) = w (H). Otherwisew (H) = w (H — vy) + 1, E(T) are embedded;vl,vvg(u_ul,uug) can be embedded

then the maximal clique off is K.+ In this case, we also IN zv — facgzu — face) according to clockwise around the

havey (H) = w (H). root v(u), in turn. For any two edgesz,zy € E(T),
ry € E(T?), so we obtain two new triangles, v,z and

Case 2.3 vy € V(H) antd [IN[v[\vo] \V(H) # &, 4 u,2. The construction is illustrated in Figure 4.
V(H) = {Nu\v} UH{vo}U;—y Nr[Nrlvs]], this case is
obvious correct. Thus we proved that any induced subgraph

H of T? satisfy x (H) = w (H). O

By Theorems 2.4 and 2.5, one can easily obtain that
X(T?) = xa(T?) = x2(T?) = -+ = o (T?%) = A(T) + 1,
if r <A(T).

Theorem 2.61f T is a tree WithA(T') < 3, thenT? is a
planar graph.

Proof Since A(T) < 3, we add a vertex t&@" which is
adjacent to a 2-vertex, one by one. By the proc&sdas
only 3-vertices and 1-vertices. Assume thats such a tree.
Let d(z) = 3, wherez is adjacent to three vertices v, w,

as shown in Figure 2. To prove the theorem, we only needConsider the vertex, the edgesvui,viuz,vov and
to give a method to embed? into plane. vvg, V22, zv produce two triangles which are denoted by

zv1 — face andzv, — face respectively.

Figure 4:The third graph in Theorem 2.6

z

Suppose we have embedded the-2)-th vertexv(,, o). If
every 3-vertex is embedded, then the process can be finished.
If we have a vertex,,_o with d(v,—2) = 3, w.0.l.9., v, 2
is adjacent tar,v,_1,v, andx is its parent, the others are
its children. So the edges,_sv,,—1, vy,—2Up, V10, Can be
embedded in thew,,_, — face We can get a new triangle
Figure 2:The first graph in Theorem 2.6 rxn—12, Which is denoted by, _,)-face. We note that the
edges are not crossing and the process can be finished with

Now, we embed edges @f in plane using the following finite steps. For any, v € V/(T), d(u,v) = 2, we add the
method. Firstly, we consider the edge < T. The plane are €d9€uv into theT’ so we get the grapif”®. Thus7* is a
divided into two parts, the upper half plane and lower hafflanar graph. U
plane.zv, zu can be embed in the upper half plane according ]
to clockwise around the roat ww;, ww, can be embed in _ BY Theorems 2.4 and 2.6, we know th@t confirms
the lower half plane according to the clockwise around teohjecture 1.1, wheff is a tree withA(T) < 3.
root w, in turn. The construction is illustrated in Figure 3.

For any two edgesz, zy € E(T), thenzy € E(T?), so we IIl. R-HUED COLORING OF SOME
obtain a new trianglevw as shown in Figure 3. The triangles CIRCULANT GRAPHS

zvu andzuw are denoted byv—face zu—face respectively. ) _

Thus we complete the embedding of the children nodes of Firstly, we study the-hued coloring ofC?:.

z.

We implement the process one by one forc V(T). Theorem 3.1Letm > 3 be an integer, then
Note thatd(v) = 1 or d(v) = 3. If d(v) = 1, we complete

the embedding progress. Whelfw) = 3, we continue the 3, if 3m,

i : (C2) = x2(C%) =45, ifm=5
following process: X)) = X2(bpy ) ;
W.0.l.9., supposewv,vuy € E(T), we can embed the edges 4, otherwise.

incident with v into the zv; — face and similarly foru,
the construction is illustrated in Figure 4. When, zu €
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Proof Let {v1, v, -+ , v, } be the vertex set of’2,. Itis receive different colors.
obvious thaty,(CZ2,) > 3 by Observation 1.
Case 1.t = 0, thenm = k(I + 1). The coloringc

Case 1.m =3k for k > 1 or m = 5. with ¢(v;) = ¢ (mod! + 1) is a 2-hued coloring, so
Clearly, ¢ : ¢(v;) =i (mod 3) is a 2-hued 3-coloring, so x2(C!,) < 1+ 1. Hencex(C!,) = x2(C%,) =1+ 1 in this
xX(C2) = x2(C2) = 3. case.

It is obvious thatC? = K3, so x(C2) = x2(C2) =
Case 2.t # 0 andk > t. If we usel + 1 colors to color

Case 22m =3k + 1 for k > 1. C!., then we can assume that the coloring thatc(v;) = i
(mod I +1) for 1 < i < k(I 4 1). Then c(viqs1y+1) ¢
It is obvious that the coloring : {vy,va,--- ,vs} — [3] [1,1 + 1] since some adjacent vertex can receive the same

with ¢(v;) = i (mod 3) and c(vsky1) = 4 is a hued color. Henceyz(CL,) > 1+2.
coloring of C2,, so x2(C?2,) < 4. Since adjacent vertices Sincek > ¢, m = (k —t)(l+ 1)+ ¢(l + 2). We define a
must receive different colors, we hawgC?) > 4. Hence coloringc: ¢(v;) =i( (mod I+1) for1 <i < (k—t)(I+1),

X(C2%) = x2(C%) = 4. ande(v;) =4 (mod 1+ 2) for (k—t)(I4+1)4+1<i<m.
It is clear thatc is a hued coloring, so2(CL,) < 1+ 2.
Case 3.m =3k +2fork > 1. Thereforex(C!,) = x2(C!,) = 1 + 2 in this case.

Suppose we color the graph by three colors, Since anyCase 3.t € [[] andk = 1, thenm = [+ 1 + ¢
consecutive three vertices must be colored by different cé\- 2-hued coloringc with c(v) =g fori e [l + 1]
ors, we obtain that(v;) = i( (mod 3) for i < 3k and would satisfy c(vii1)41) = [+ 1+ 1, c(vggpiy42) =
c(vakt1), c(vak42) ¢ [3], a contradicition. So we need atl + 1 +2, -, c(vgr1+¢) = | + 1+t since anyl + 1
least four colors, i.e.x2(C%) > 4. successive vertices must receive different colors. Thus we
obtain thaty(C!)) = x2(CL) =1+ 1+ t.
(i) Assume thatm =2 (mod 4), i.e.,m = 4t + 2.
Case 4.t € [[] and2 < k < ¢, thent = kq + r with

. _ S . . _
Sincem = 3k + 2, we have thatn > 14 in this case ¢ > 1,andm — (k—r)(I+1+q)+r(I+2-+q) by Lemma 2.2.

Thus, we can define a 4-colorirgwith ¢(v;) =i (mod 4)
for i < 4t — 4, andc(vat) = c(var—3) = 1, c(vapq1) =
c(vgt—2) = 2 andce(vgr42) = c(vgz—1) = 3. Clearly, this is a
2-hued coloring ofC2,, so x2(C2,) < 4, thusx»(C2,)) = 4.

Subcase 4.1 = 0, thenm = k(I + 1 + ¢). The coloring
c:c(vy)) =t (modl+1+4g¢q)forl <i<k(l+1+q)
is an optimal 2-hued coloring, s@2(C!,) < I+ 1+ q.

(i) Assume thatm = 3 or 4 (mod 4). Let m pi(l + 1) + pa(l + 2) + -+ + ps(l + ),

wherep; > 0 for 1 < j < s andps > 0, such

It is not difficult to verify that the coloring: : {vi, v2, that s is as small as possible. Then we can use s

-, vskt2} — [4] with ¢(v;) = 7 (mod 4) is a 2-hued colors to color C! (it is enough to definec(v;) = i
coloring of C2,, so x2(C?) < 4. Hencexz(C2,) = 4. (mod I + 1) for i € [p1(l+ 1)], c(v;) = (i —p1 (L + 1))
(mod I + 2) for i — pi(l + 1) € [p(l +2)), -+,
and c(vl) (i — 35 “ipil + 7)) (mod I + s)) for

In this casem > 17, so we havem — 3z + 4y for i~ >y pill+j) € [ps(l+5)]) Itis clear thats = ¢ + 1,
some positive integerse,y by Lemma 2.2. Define a hencex(C;,) = x2(C},) =1+ 1+4q.

(iii) Assume thatm =1 (mod 4), i.e., m =4t + 1.

4-coloring ¢ with ¢(v;) = i (mod 3) for ¢ < 3z and _
c(v;) =i (mod 4) for 3z+1 < i <m. Itis clear tharisa  Subcase 4.2Suppose thal < r < k. We consider
hued coloring ofC2,, sox2(C2,) < 4, hencey»(C?) = 4.0 the coloring ¢ with ¢(v;) = 4 (mod! + 1 + q) for

1<i<(k—r)l+1+¢q) andc(v;) =4 (mod l+2+ q))
Since anyl + 1 successive vertices induce I, in for (k—r)(I+1+¢)+1 <i < m. Hencexz(C},) < 1+2+¢.
Cl, we haveys(CL) = y(CL) > I+ 1. It is obvious We obtain thaty(Cy,) = x2(C},) = I+ 2 + ¢ similarly. O
that 2 (C!) = x(C!,) = m form < [+1 sinceC!, = K,,.
Theorem 3.3 Let m > 3 be an integer andS =
Theorem 3.2Let m > | + 1 > 4 be integers withm = Z7\{3,5,6,7,11}. Then
k(l+1)+tand0 <t <I. Then

3, m:’?’a
I+1 t=0 x3(Cp) =q4, m=i (modd)i€[4andmes
, =0, 5’ m:5,637111'
)=y =41 T8 EEh
I+2+q, t>kandt=kg+r.  Proof Let {vj,vs,--- v, } be a vertex set of2,.

Case 1.m € [3,5]. Clearly, C?, is one of K3, K, and
Proof Let {vy,v2, -+ ,v,} be the vertex set o) . K5, sox3(C2?) = 3,x3(C?) =4, andx3(C2) = 5.
Clearly, x2(C!,) > 1+ 1 since any adjacent vertices must

(Advance online publication: 20 November 2019)
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Case 2.m =i (mod 4) for i € [4], i.e., m = 4k + . d)  e(vy) =1, elva) = 2, ¢(vs) = 3, c(va) =

Sincem > 5, A(C?) = 4. By Observation 1y3(C?) > 4. 4, c(vs) = 2, c(vg) =3, c(vy) = 4.
For (a) and (b), we have (N (v1))| = 2 which contradicts

(1) m =0 (mod 4), i. e., m =4k + 4 for somek > 1. the definition of3-hued coloring, so we need at least five

Consider a 4-coloring of of C7,, colors. In (c) and (d), we havéc(N(vs))| = 2 which
contradicts the definition o8-hued coloring, so we need
at least five colors. lfc(vg) = 5, then the upper coloring
is a 3-hued 5-coloring of'?, hencey;(C?) = 5 in this case.

c:{v1,va, + ,Um} — [4], with ¢(v;) =4 (mod 4).

It is clear that|c(N(v;))| = 3 andc¢ is a 3-hued 4-coloring
of C2,. Henceys(C?) = 4 in this case. o
(8) Whenm = 11, we havex3(C%) = 5 similar

(2)m =1 (mod 4), i.e., m =4k + 1 for somek > 2. argument as in (1), (2). O

Consider a 4-coloring: of C2,. c¢(v;) = i (mod 4) for Theorem 3.4Let m > 3 andr > 4 be two integers and
i < 4(k — 1), moreoverc(vyr_3) = 2, c(v_2) = N =1{11,12,16,17,18}. Then
1, c¢(vak—1) = 3, cl(vag) = 2 and c(vgpy1) = 4. It is
clear that|c(N(v;))] = 3 and ¢ is a 3-hued 4-coloring of
C2. Henceys(C2) = 4 in this case. n(C2) = 5 5|m,
e 6, 5fm,and m >20o0r m € N,
7, me {13,14,19}.

m, m € [3,9],

(3) m =2 (mod 4), i.e., m =4k + 2 for somek > 2.

Consider the following 4-coloring: of C2. c(v;) =
i (mod 4) for ¢ < 4(k — 2), moreover c(vap—7) =
1, c(vap—6) = 2, c(vap—s5) = 3, c(vak—a) =1, c(vap—3) =
4, c(vag—2) = 2, c(vap—1) = 1, c(va) = 3, c(vars1) = Claim 1. We have the following claim by lemma 2.2. For
2, andc(va42) = 4. Itis clear thatjc(N (v;))| = 3 andcis  any integerm > 20, we have nonnegative integessandq,
a 3-hued 4-coloring of’7,. Henceys(C?,) = 4 in this case. such thatn = 5p + 6q.

Suppose thatn = 5k + ¢t with nonnegative integer < 4,
thenk > 4, som = 5(k—t)+6t, hence we haver = 5p+6¢
with p =k — ¢t andg = t.

Proof Let {v1, v, -+ ,v,,} be the vertex set of’?,.

(4) m =3 (mod 4), i.e., m =4k + 3 for somek > 3.

Consider a 4-coloring of of C2,. c(v;) =4 (mod 4) for

i < 4(k—2), andc(vag—7) = 1, c(vak—¢) = 2, c(vag—s5) = 3, Claim 2.By the definition ofr-hued coloring, we observe
c(Vag—1) = 1, c(vap—3) = 4, c(vak—2) = 2, c(vak—1) = the following fact. Any five successive vertices must receive
1, c(var) = 3, c(vagt1) = 2, c(vagt2) = 4, andc(vart3) =  different colors.

3. Itis clear thatjc(N (v;))| = 3 andc is a 3-hued 4-coloring

of C7,. Hencexs(Cy,) = 4 in this case. We will prove the theorem by the following four cases.

Case 3.m = 6,7, or 11. Sincem > 5, A(C7) =4.By  Case 1um € {3,4,5}. The graphC2, inducesks, K4, K,
Observation 1x3(C7,) > 4. respectively. Thus,(C3) = 3, x,-(C3) = 4, and x,.(C2) =

. . _ 5.
(1) Whenm = 6, since any adjacent vertices must be
colored by different colors, we have the 3-hued 4-coloring Case 2.m ¢ [6,9], the coloringe of C2, with c(v;) = i

of G as follows.c(v1) = 1, ¢(v2) =2, ¢(v3) =3, ¢(va) = (mod m) is ar-hued coloring, soy,(C2) < m. For any
1, c(vs) = 4, c(ve) = 3 or c(v1) = 1, c(v2) = 2, c(v3) =3, r-hued coloring:, w.0.l.g., assume tha{(v;) = i for i € [5],
c(vs) = 4, c(vs) = 2, c(ve) = 3. thenc(vg) ¢ [5], let ¢(vs) = 6, thenc(vr) ¢ [6], c(vr) =7,

For the former coloring, we havéc(N(v2))] = 2 andc(v;) = j for j € [6,m] similarly, hencey,.(C2,) = m.

which contradicts the definition df-hued coloring, so we

need at least five colors. For the later coloring, we haveCase 35|m. Itis easy to see that,(C;,) > 5 by Claim 2.
le(N(vs))| = 2 which contradicts the definition of-hued The coloringe with c(v;) =i (mod 5) is ar-hued coloring
coloring, so we need at least five colorscfi) = 5, then 0f C,, S0 x-(C7,) < 5. Hencex,.(C7,) = 5.

i i - _ i 2
the upper coloring is a 3-hued 5-coloring 6f5, hence Case 4.m £ 0 (mod 5) andm = 5k + ¢ with ¢ € [4].

o
x3(C5) = 5 in this case. Clearly, x,-(C2,) > 5 by Claim 2. If we use five colors to
colorG, w.o.l.g., assume thafv;) = ¢ (mod 5) fori € [5k],
?henc(v5k+1) ¢ [5] by Claim 2. Thusy,(C%) > 6 in this
case.

(2) Whenm = 7, since any adjacent vertices must b
colored different colors, we have the 3-hued 4-colordnaf
C?2 in the following.

Subcase 4.1m € {11,12,16,17,18} and m > 20.

@ clvr) =1, c¢(v2) = 2, c(vs) = 3, ¢(va) = 1, Assume thatm = 5k + t with ¢ € [1,4]. By Claim 1,
c(vs) =4, c(vg) =2, c(vr) =3 we havem = 5p + 6 wherep and ¢ are nonnegative

(0) (1) = 1, c(vz) = 2, c(vs) = 3, c(vy) = 4, integers. We consider the coloringof C2, with c(v;) = i(
c(vs) =1, c(vg) =2, c(vy) =3 (mod 5) for 1 < ¢ < 5p and ¢(v;) = i( (mod 6) for

(€) (1) =1, c(v2) = 2, c(vs) = 3, c(va) = 4, bdp+1<i<m,whichis a hued coloring, sg,(C2,) < 6.
c(vs) =1, c(ve) =3, c(vr) =4 Hencey..(C2,) = 6.

(Advance online publication: 20 November 2019)
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Subcase 4.2n € {13,14,19}.

(i) m = 13. If we use five colors to colaf?2, with c(v;) =
i (mod 5) for1 <4 <10, thenc(vi1), c(vi2) ande(vy3) are
pairwise distinct andc(v11), c(v12) c(v13)}N ¢ [1,5] = ¢,

six colors to colorC?, with c(v;) =i (mod 6) for 1 <i <
12, thenc(v13) ¢ [6] by Claim 2, hence there are at least

IR X Li7]
seven colors in this coloring. If we use seven colors to color
C2, with c(v;) =i (mod 7) for 1 <4 < 13, then it is a [18]

r-hued coloring which is optimal, sg,.(C%) < 7. Hence
xr(C2%) =1.

(i) m € {14,19}. We can obtain thaty,(C2) = 7
similarly. O

[21]

IV. REMARKS

In this paper, we study the-hued chromatic number of [22]

power of trees and cycles. By Theorems 2.3 and 2.5, we
know that7? confirms the conjecture of Song et al. in [8],
whenT is a tree withA(T") < 3. For the power of trees, we
obtained thaty(7?) = x1(1?%) = x2(T?) = - - = x,(T?)

= A(T) + 1, if r < A(T). We proved thafl? is a perfect
graph in Theorem 2.4. But we know that similar results do
not hold for all perfect graphs. Thus the following question
is interesting.

Question 4.1 Which perfect graphs satisfw(G) =
x1(G) = x2(G) = = x+(G) = w(G), whenr <
w(G) - 1.

Question 4.2 Characterize perfect graphs satisfying the
condition of Question 4.1.
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