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Abstract—In this paper, we propose new dual Orlicz mixed
volume and compute the corresponding variational formula.
Further, we also establish dual Orlicz mixed Minkowski in-
equality, dual Orlicz mixed Brunn-Minkowski inequality and
demonstrate the equivalence between them.

Index Terms—star body, dual Orlicz mixed volume, dual
Orlicz mixed Minkowski inequality, dual Orlicz mixed Brunn-
Minkowski inequality.

I. INTRODUCTION

THE classical Brunn-Minkowski theory is the product
of combining the Minkowski linear combination with

volume, its essences are mixed volume, mixed area measure
and basic Brunn-Minkowski inequalities. Its dual counterpart
called dual Brunn-Minkowski theory can be developed from
a few basic concepts: star body, radial function and dual
mixed volume. We use Sno to denote the set of star bodies
with respect to the origin in Euclidean space Rn and Sn−1

the unit sphere. For K1,K2, · · · ,Kn ∈ Sno , the dual mixed
volume Ṽ (K1,K2, · · · ,Kn) is defined by (see [20])

Ṽ (K1,K2, · · · ,Kn)

=
1

n

∫
Sn−1

ρ(K1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u), (1.1)

where ρ denotes the radial function and S(u) the Lebesgue
measure on Sn−1. Its special case, dual mixed volume
Ṽi(K,L) is given by

Ṽi(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−iρ(L, u)idS(u),

where i is allowed to be any real number (see [20]). Specif-
ically, Ṽ0(K,L) just is volume V (K) of the body K. As a
key ingredient of dual Brunn-Minkowski theory, dual mixed
volume has been widely studied (e.g., [21], [22], [38]).

Associated with the Lp harmonic radial combination, Lut-
wak [24] proposed Lp dual mixed volume: For K,L ∈ Sno ,
ε > 0 and real p ≥ 1, the Lp dual mixed volume Ṽ−p(K,L)
is defined by

−n
p
Ṽ−p(K,L) = lim

ε→0+

V (K+̃−pε ◦ L)− V (K)

ε
,

which actually can be written as (see [24])

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u).

Manuscript received May 21, 2019; revised June 11, 2019. This work
was supported in part by the Research Fund for Excellent Dissertation of
China Three Gorges University (2018SSPY133) and the Natural Science
Foundation of China (11371224 and 11561020).

Hai Li is with the Department of Mathematics, China Three Gorges
University, Yichang, 443002, China, e-mail: lihai121455@163.com.

∗Weidong Wang is corresponding author with the Department of Math-
ematics and Three Gorges Mathematical Research Center, China Three
Gorges University, Yichang, 443002, China, e-mail: wangwd722@163.com.

Tongyi Ma is with the College of Mathematics and Statistics, Hexi
University, Zhangye, 734000, China, e-mail: matongyi@126.com.

These together with succedent researches, including funda-
mental Minkowski and Brunn-Minkowski inequalities, gen-
eralized the dual Brunn-Minkowski theory to Lp case and
established Lp dual Brunn-Minkowski theory. In fact, the
more general combinations for real p 6= 0 (called Lp radial
combination) were proposed by Gardner [6] and Grinberg et
al [11]. For the (dual) Brunn-Minkowski theory and their Lp
versions, we refer the reader to [7], [23], [24], [29].

In recent years, investigations toward to Orlicz case, called
Orlicz Brunn-Minkowski theory. This groundbreaking work
was launched by Lutwak, Yang, and Zhang in 2010 ([25],
[26]). Gardner, Hug and Weil [8] provided a general frame-
work for such theory, their work shows the relation to Orlicz
spaces and norms. Ye [35] developed the basic setting for
the dual Orlicz Brunn-Minkowski theory and gave a formula
for the Orlicz Lφ dual mixed volume based on linear Orlicz
ϕ-radial addition. Whereafter, Gardner, Hug, Weil and Ye
[10] extended Ye’s results from star bodies to star sets. The
more developments of the Orlicz Brunn-Minkowski theory
also see [1], [3], [4], [5], [9], [12], [13], [14], [15], [16],
[17], [18], [19], [27], [28], [30], [32], [33], [34], [36], [37],
[39], [41].

In 2014, Zhu et al [40] presented the following Orlicz
radial combination: For a, b ≥ 0 (not both zero) and φ ∈ Φ,
the Orlicz radial combination a ·K+̃φb · L of K,L ∈ Sno is
defined by

ρa·K+̃φb·L(u)

= sup

{
t > 0 : aφ

(
ρK(u)

t

)
+ bφ

(
ρL(u)

t

)
≤ φ(1)

}
.

(1.2)
Here Φ denotes a set of convex functions φ : (0,∞) →
(0,∞) that are strictly decreasing and satisfy limt→∞ φ(t) =
0 and limt→0 φ(t) =∞. It is easy to conclude from [29] that
φ is continuous and both left derivative φ′l and right derivative
φ′r are existent.

From this, they [40] also gave the dual Orlicz mixed
volume Ṽφ(K,L) by

Ṽφ(K,L) =
1

n

∫
Sn−1

φ

(
ρ(L, u)

ρ(K,u)

)
ρ(K,u)ndS(u), (1.3)

and proved two fundamental inequalities respectively.
Theorem 1.A If φ ∈ Φ and K,L ∈ Sno , then

Ṽφ(K,L) ≥ V (K)φ

((
V (L)

V (K)

) 1
n
)
, (1.4)

equality holds if and only if K and L are dilates.
Theorem 1.B If φ ∈ Φ, a, b > 0 and K,L ∈ Sno , then

φ(1) ≥ aφ
((

V (K)

V (a ·K+̃φb · L)

) 1
n
)

+bφ

((
V (L)

V (a ·K+̃φb · L)

) 1
n
)
, (1.5)
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equality holds if and only if K and L are dilates.
Quite recently, Chen and Guo [2] introduced the Orlicz

mixed volume based on the mixed volume functional and
Orlicz combination. In this paper, by applying the func-
tion Ṽ : (Sno )n → R to Orlicz radial combination, we
consider the dual case. For 1 ≤ m ≤ n − 1, we let
C = (Km+1, · · · ,Kn) and write

Ṽ(0)(K) = Ṽ (K, · · · ,K︸ ︷︷ ︸
m

,Km+1, · · · ,Kn)

= Ṽ (K[m],C)

=
1

n

∫
Sn−1

ρ(K,u)mc(u)dS(u), (1.6)

where c(u) =
∏n
i=m+1 ρ(Ki, u), u ∈ Sn−1.

Ṽ(1)(K,L)

= Ṽ (K, · · · ,K︸ ︷︷ ︸
m−1

, L,Km+1, · · · ,Kn)

= Ṽ (K[m− 1], L,C)

=
1

n

∫
Sn−1

ρ(K,u)m−1ρ(L, u)c(u)dS(u). (1.7)

We now define dual Orlicz mixed volume
Ṽ(φ,m,1)(K,L,C) and derive its integral representation
as follows.
Definition 1.1 For 1 ≤ m ≤ n − 1, φ ∈ Φ and
Km+1, · · · ,Kn,K, L ∈ Sno , let C = (Km+1, · · · ,Kn) and
define dual Orlicz mixed volume Ṽ(φ,m,1)(K,L,C) by

Ṽ(φ,m,1)(K,L,C) =
φ′r(1)

m
lim
ε→0+

Ṽ(0)(Kε)− Ṽ(0)(K)

ε
,

(1.8)
where Kε = K+̃φε · L.
Theorem 1.1 For 1 ≤ m ≤ n − 1 and
Km+1, · · · ,Kn,K, L ∈ Sno , let C = (Km+1, · · · ,Kn) and
φ ∈ Φ, then

Ṽ(φ,m,1)(K,L,C)

=
1

n

∫
Sn−1

φ

(
ρ(L, u)

ρ(K,u)

)
ρ(K,u)mc(u)dS(u). (1.9)

Furthermore, we respectively give significant dual Orlicz
mixed Minkowski inequality, dual Orlicz mixed Brunn-
Minkowski inequality and state the equivalence between
them.
Theorem 1.2 For 1 ≤ m ≤ n−1 and Km+1, · · ·,Kn,K, L ∈
Sno , let C = (Km+1, · · · ,Kn). If φ ∈ Φ, then

Ṽ(φ,m,1)(K,L,C) ≥ φ
((

Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
Ṽ(0)(K), (1.10)

equality holds if and only if K and L are dilates.
Theorem 1.3 For a, b ≥ 0 (not both zero), 1 ≤ m ≤ n− 1,
K,L ∈ Sno . If φ ∈ Φ, then

φ(1) ≥ aφ
((

Ṽ(0)(K)

Ṽ(0)(a ·K+̃φb · L)

) 1
m
)

+bφ

((
Ṽ(0)(L)

Ṽ(0)(a ·K+̃φb · L)

) 1
m
)
, (1.11)

equality holds if and only if K and L are dilates.
Theorem 1.4 Let m and C be as above. If a, b ≥ 0 (not
both zero), K,L ∈ Sno and φ ∈ Φ, then (1.10) and (1.11)
are equivalent.

Our work further enriches and develops the dual Orlicz
Brunn-Minkowski theory, please see the next section for
interrelated backgrounds.

II. PRELIMINARIES

A. Radial Function and Star Bodies

Let K ⊂ Rn be a star-shaped with respect to the origin,
its radial function ρK for x ∈ Rn \ {o} is defined by (see
[7], [29])

ρK(x) = ρ(K,x) = max{c ≥ 0 : cx ∈ K}, x ∈ Rn \ {o}.

If ρK is positive and continuous, K will be called a star
body (about the origin). Two star bodies K and L are said
to be dilates of each other, if ρ(K,u) = cρ(L, u) for all u ∈
Sn−1 (c > 0). For general linear transformation Λ ∈ GL(n),
ρΛK(x) = ρK(Λ−1x), x ∈ Rn \ {o}, and for the standard
unit ball B, we have ρ(B, u) = 1, u ∈ Sn−1.

B. Lp Radial Combination

For K, L ∈ Sno , real p 6= 0 and λ, µ ≥ 0 (not both zero ),
define Lp radial combination λ ◦K+̃pµ ◦ L by (see [6])

ρ(λ ◦K+̃pµ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p. (2.1)

For p = 1, this is the classical case. If p > 0, then (2.1) is
Grinberg and Zhang’s definition (see [11]), and p ≤ −1 the
Lp harmonic radial combination (see [24]).

III. RESULTS AND PROOFS

The proof of Theorem 1.1 requires the following two
lemmas (see [40]).
Lemma 3.1 Let φ ∈ Φ. If ai, bi ≥ 0 and ai → a, bi → b,
as i→∞, then

ai ·K+̃φbi · L→ a ·K+̃φb · L, as i→∞, (3.1)

for all K,L ∈ Sno .
Lemma 3.2 Let φ ∈ Φ and K,L ∈ Sno , then

lim
ε→0+

ρK+̃φε·L(u)− ρK(u)

ε
=
ρK(u)

φ′r(1)
φ

(
ρ(L, u)

ρ(K,u)

)
, (3.2)

uniformly for u ∈ Sn−1.
Proof of Theorem 1.1. According to (1.1) and (1.6), we

know

Ṽ(0)(Kε)− Ṽ(0)(K)

ε

=
Ṽ (Kε[m],C)− Ṽ (K[m],C)

ε

=
m∑
i=1

1

ε

×
(
Ṽ (Kε[i],K[m−i],C)−Ṽ (Kε[i−1],K[m−i+1],C)

)
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=
m∑
i=1

1

n

∫
Sn−1

1

ε
c(u)

×
(
ρKε(u)iρK(u)m−i − ρKε(u)i−1ρK(u)m−i+1

)
dS(u)

=
m∑
i=1

1

n

∫
Sn−1

ρKε(u)i−1ρK(u)m−ic(u)

×ρKε(u)− ρK(u)

ε
dS(u).

This together with definition (1.8), (3.1) and (3.2), yields

Ṽ(φ,m,1)(K,L,C)

=
φ′r(1)

m
lim
ε→0+

Ṽ(0)(Kε)− Ṽ(0)(K)

ε

=
φ′r(1)

m
lim
ε→0+

[ m∑
i=1

1

n

∫
Sn−1

ρKε(u)i−1ρK(u)m−i

×c(u)
ρKε(u)− ρK(u)

ε
dS(u)

]

=
φ′r(1)

m

m∑
i=1

[
lim
ε→0+

1

n

∫
Sn−1

ρKε(u)i−1ρK(u)m−i

×c(u)
ρKε(u)− ρK(u)

ε
dS(u)

]

=
φ′r(1)

m

m∑
i=1

[
1

n

∫
Sn−1

ρK(u)m−1c(u)

×ρK(u)

φ′r(1)
φ

(
ρ(L, u)

ρ(K,u)

)
dS(u)

]
=

1

n

∫
Sn−1

ρK(u)mc(u)φ

(
ρ(L, u)

ρ(K,u)

)
dS(u).

Hence, we obtain (1.9).
Let φi, φ ∈ Φ and i ∈ N , we say that φi → φ implies

lim
i→+∞

max
t∈I
| φi(t)− φ(t) |= 0,

for each compact interval I ⊂ (0,+∞).
The following results can be immediately obtained from

Theorem 1.1.
Proposition 3.1 Let Ki, Li,K, L ∈ Sno , φi, φ ∈ Φ (i ∈ N ),
1 ≤ m ≤ n− 1 and C = (Km+1, · · · ,Kn), we have
(i) If L1 ⊆ L2, then

Ṽ(φ,m,1)(K,L1,C) ≥ Ṽ(φ,m,1)(K,L2,C).

(ii) If Li → L, Ki → K, then

Ṽ(φ,m,1)(Ki, Li,C)→ Ṽ(φ,m,1)(K,L,C).

(iii) If φi → φ, then

Ṽ(φi,m,1)(K,L,C)→ Ṽ(φ,m,1)(K,L,C).

(iv) For any general linear transformation Λ ∈ GL(n), one
has

Ṽ(φ,m,1)(ΛK,ΛL,ΛC) =| detΛ | Ṽ(φ,m,1)(K,L,C).

Proof. The conclusions (i)-(iii) are obvious, we only
prove the case (iv). For convenience, we write c′(u) =∏n
i=m+1 ρ(ΛKi, u), u ∈ Sn−1 and v = Λ−1(u)

‖Λ−1(u)‖ , then

c′(u) = ‖Λ−1(u)‖−(n−m)ρ(Km+1, v) · · · ρ(Kn, v)

= ‖Λ−1(u)‖−(n−m)c(v).

By (1.9), one has

Ṽ(φ,m,1)(ΛK,ΛL,ΛC)

=
1

n

∫
Sn−1

φ

(
ρ(ΛL, u)

ρ(ΛK,u)

)
ρ(ΛK,u)mc′(u)dS(u)

=
1

n

∫
Sn−1

φ

(
ρ(L,Λ−1u)

ρ(K,Λ−1u)

)
ρ(K,Λ−1u)mc′(u)dS(ΛΛ−1u)

=| detΛ | 1

n

∫
Sn−1

φ

(
ρ(L, v)

ρ(K, v)

)
ρ(K, v)mc(v)dS(v)

=| detΛ | Ṽ(φ,m,1)(K,L,C),

this gets the desired result.
The following dual Aleksandrov-Fenchel inequality [7] is

needed for the proof of Theorem 1.2.
Lemma 3.3 If K1,K2, · · · ,Kn ∈ Sno , m = 1, 2, · · · , n,
then

Ṽ (K1,K2, · · · ,Kn)m ≤
m∏
i=1

Ṽ (Ki[m],Km+1, · · · ,Kn),

(3.3)
equality holds if and only if K1, · · · ,Km are dilates of each
other.

Proof of Theorem 1.2. From (1.6), (1.7) and (3.3), we see
that

Ṽ(1)(K,L) ≤ Ṽ(0)(K)
m−1
m Ṽ(0)(L)

1
m . (3.4)

Note that φ is convex and strictly decreasing, and
ρ(K,u)mc(u)dS(u)

nṼ(0)(K)
is a probability measure on Sn−1, these

combined with (1.7), (1.9), (3.4) and Jensen’s inequality,
yield

Ṽ(φ,m,1)(K,L,C)

Ṽ(0)(K)

=

∫
Sn−1

φ

(
ρ(L, u)

ρ(K,u)

)
ρ(K,u)mc(u)dS(u)

nṼ(0)(K)

≥ φ
(∫

Sn−1

ρ(K,u)m−1ρ(L, u)c(u)

nṼ(0)(K)
dS(u)

)

= φ

(
Ṽ(1)(K,L)

Ṽ(0)(K)

)

≥ φ
(
Ṽ(0)(K)

m−1
m Ṽ(0)(L)

1
m

Ṽ(0)(K)

)

= φ

((
Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
,

this establishes (1.10), with equality if and only if K and L
are dilates.
Remark 3.1 If m = n, then (1.6) implies Ṽ(0)(K) = V (K),
combining (1.3) and (1.9), one gets Ṽ(φ,n,1)(K,L,C) =

Ṽφ(K,L) and (1.10) just is (1.4).
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Remark 3.2 If m = n − i, φ(t) = t−p with p ≥ 1 and
the tuple C consists only of unit ball B, then c(u) = 1,
Ṽ(0)(K) = Ṽ (K[n− i], B[i]) = W̃i(K). In such case, (1.9)
means

Ṽ(φ,n−i,1)(K,L,C)

=
1

n

∫
Sn−1

ρ(K,u)n+p−iρ(L, u)−pdS(u)

= W̃−p,i(K,L),

where W̃i and W̃−p,i are called dual quermassintegral and
Lp dual mixed quermassintegral, respectively. Thus, (1.10)
yields

W̃−p,i(K,L) ≥ W̃i(K)
n+p−i
n−i W̃i(L)

−p
n−i ,

which was just established by Wang and Leng [31].
Proposition 3.2 For 1 ≤ m ≤ n − 1 and
Km+1, · · · ,Kn,K, L ∈ Sno , let C = (Km+1, · · · ,Kn). If
φ ∈ Φ and for any Q ∈ Sno ,

Ṽ(φ,m,1)(Q,K,C) = Ṽ(φ,m,1)(Q,L,C), (3.5)

or

Ṽ(φ,m,1)(K,Q,C)

Ṽ(0)(K)
=
Ṽ(φ,m,1)(L,Q,C)

Ṽ(0)(L)
, (3.6)

then K = L.
Proof. Suppose (3.5) holds. If we take K for Q, then from

(1.9), (1.6) and (1.10), we get

φ(1)Ṽ(0)(K) = Ṽ(φ,m,1)(K,L,C)

≥ φ
((

Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
Ṽ(0)(K).

That is to say,

φ(1) ≥ φ
((

Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
,

by the monotonicity of φ, we know Ṽ(0)(K) ≤ Ṽ(0)(L).
Similarly, If we take L for Q, we have Ṽ(0)(K) ≥ Ṽ(0)(L).
Hence, Ṽ(0)(K) = Ṽ(0)(L), i.e., K = L.

By the same way, we can state the other case (3.6).
Proof of Theorem 1.3. Since definition (1.2) can be

equivalently transformed into

aφ

(
ρK(u)

ρa·K+̃φb·L(u)

)
+ bφ

(
ρL(u)

ρa·K+̃φb·L(u)

)
= φ(1), (3.7)

this together with (1.6), (1.9) and (1.10), yields

φ(1)Ṽ(0)(a ·K+̃φb · L)

= φ(1)
1

n

∫
Sn−1

ρa·K+̃φb·L(u)mc(u)dS(u)

=
1

n

∫
Sn−1

aφ

(
ρK(u)

ρa·K+̃φb·L(u)

)
×ρ(a ·K+̃φb · L, u)mc(u)dS(u)

+
1

n

∫
Sn−1

bφ

(
ρL(u)

ρa·K+̃φb·L(u)

)
×ρ(a ·K+̃φb · L, u)mc(u)dS(u)

= aṼ(φ,m,1)(a ·K+̃φb · L,K,C)

+bṼ(φ,m,1)(a ·K+̃φb · L,L,C)

≥ aφ
((

Ṽ(0)(K)

Ṽ(0)(a ·K+̃φb · L)

) 1
m
)
Ṽ(0)(a ·K+̃φb · L)

+bφ

((
Ṽ(0)(L)

Ṽ(0)(a ·K+̃φb · L)

) 1
m
)
Ṽ(0)(a ·K+̃φb · L).

This obtains (1.11), the equality condition of (1.10) shows
that equality holds in (1.11) if and only if K and L are
dilates.
Remark 3.3 If m = n, then (1.11) reduces to (1.5).
Remark 3.4 If m = n− i and the tuple C consists only of
unit ball B, then Ṽ(0)(K) = W̃i(K), and (1.11) implies

φ(1) ≥ aφ
((

W̃i(K)

W̃i(a ·K+̃φb · L)

) 1
n−i
)

+bφ

((
W̃i(L)

W̃i(a ·K+̃φb · L)

) 1
n−i
)
. (3.8)

Specially, the case of φ(t) = t−p with p ≥ 1 reduces to

W̃i(a ·K+̃−pb · L)−
p
n−i ≥ aW̃i(K)−

p
n−i + bW̃i(L)−

p
n−i ,

this inequality was previously proved in [31].
Finally, we demonstrate the equivalence between two types

of fundamental inequalities.
Proof of Theorem 1.4. The proof of Theorem 1.3 shows

that (1.11) can be deduced from (1.10), here we only need
to prove (1.10) by (1.11).

For ε ≥ 0, let Kε = K+̃φε·L and construct a new function

F (ε) = φ

((
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m
)

+εφ

((
Ṽ(0)(L)

Ṽ(0)(Kε)

) 1
m
)
−φ(1),

it is easy to check that F (ε) ≤ 0, F (0) = 0 and

lim
ε→0+

F (ε)− F (0)

ε

= lim
ε→0+

φ

((
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m
)

+ εφ

((
Ṽ(0)(L)

Ṽ(0)(Kε)

) 1
m
)
− φ(1)

ε

= lim
ε→0+

φ

((
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m
)
− φ(1)(

Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m

− 1

lim
ε→0+

(
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m

− 1

ε

+φ

((
Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
. (3.9)

Since φ is decreasing and (3.7) implies Kε ⊆ K for a

given fully small positive ε. Thus,
(
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m

→ 1+ as

ε→ 0+ and

lim
ε→0+

φ

((
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m
)
− φ(1)(

Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m

− 1
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= lim
t→1+

φ(t)− φ(1)

t− 1

= φ′r(1). (3.10)

From (1.6) and (1.8), we know

lim
ε→0+

(
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m

− 1

ε

= − lim
ε→0+

Ṽ(0)(Kε)
− 1
m lim
ε→0+

Ṽ(0)(Kε)
1
m − Ṽ(0)(K)

1
m

ε

= −Ṽ(0)(K)−
1
m

1

m
Ṽ(0)(K)

1
m−1 lim

ε→0+

Ṽ(0)(Kε)− Ṽ(0)(K)

ε

= − 1

φ′r(1)

Ṽ(φ,m,1)(K,L,C)

Ṽ(0)(K)
. (3.11)

It follows from (3.9), (3.10) and (3.11) that

lim
ε→0+

F (ε)− F (0)

ε

= −
Ṽ(φ,m,1)(K,L,C)

Ṽ(0)(K)
+ φ

((
Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
≤ 0,

this gets (1.10). Equality holds in (1.10) if and only if F (ε) =
F (0) = 0, which shows that equality condition of (1.10) can
be obtained from (1.11).
Remark 3.5 In fact, by (1.11) we can give another proof
of (1.10), however, the equality condition is hard to obtain.

Second proof of Theorem 1.2. Since φ is convex and
strictly decreasing, we know

φ′r(1)(x− 1) ≤ φ(x)− φ(1), for x ≥ 1. (3.12)

By (1.8), (3.11), (3.12) and (1.11), we have

Ṽ(φ,m,1)(K,L,C)

=
φ′r(1)

m
lim
ε→0+

Ṽ(0)(Kε)− Ṽ(0)(K)

ε

=
φ′r(1)

m
·mṼ(0)(K)

m−1
m lim

ε→0+

Ṽ(0)(Kε)
1
m − Ṽ(0)(K)

1
m

ε

= −φ′r(1)Ṽ(0)(K) lim
ε→0+

1

ε

(
Ṽ(0)(K)

1
m

Ṽ(0)(Kε)
1
m

− 1

)

≥ −Ṽ(0)(K) lim
ε→0+

1

ε

(
φ

((
Ṽ(0)(K)

Ṽ(0)(Kε)

) 1
m
)
− φ(1)

)

≥ Ṽ(0)(K) lim
ε→0+

φ

((
Ṽ(0)(L)

Ṽ(0)(Kε)

) 1
m
)

= Ṽ(0)(K)φ

((
Ṽ(0)(L)

Ṽ(0)(K)

) 1
m
)
.

Thus, we have concluded (1.10).
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