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Abstract—We consider initial value problems for several
systems of two conservation laws in one spatial dimension,
where the initial data result in shocks, rarefaction waves,
and transitional shock waves. We compute the approximate
solutions using a recently proposed overlapping grids finite
volume numerical method. We confirm the effectiveness of this
method by comparing the obtained numerical results to the
approximate solutions obtained using a regular finite volume
method with the Lax–Friedrich numerical flux.

Index Terms—conservation laws, finite volume methods, Rie-
mann problem, shocks, rarefaction waves.

I. INTRODUCTION AND SUMMARY

CONSERVATION laws are time-dependent partial dif-
ferential equations that describe many fundamental

problems in science and engineering, including gas dynamics
and aerospace engineering, multiphase flow applications in
secondary oil recovery in petroleum industry, applications
to traffic flow, supply-chain systems, chemistry, biology, etc.
Since such problems are often very complex and nonlinear
and, as a consequence, it is not possible to solve them
analytically, there is a need to develop numerical methods
for their approximate solving. These numerical methods
have to be carefully designed in order that the numerical
approximations converge to a physically correct solution of
the conservation law. In this paper we consider a recently
proposed overlapping grids finite volume method by Jegdić
[10] and we test its effectiveness on several examples of
conservation laws. The significance of the overlapping grids
methods in general is in the applications when the topology
of the object considered is very complex that it might be
very difficult, if not impossible, to create a grid around that
object.

A system of conservation laws in one space dimension is
given by

∂tu + ∂xf(u) = 0, (x, t) ∈ R × [0,∞),

where u = (u1, ..., um) is the unknown vector of densities
of conserved quantities and f = (f 1, ..., fm) is the known
spatial flux density field defined on a domain of conservation
states. The system is supplemented by an initial condition

u(x, 0) = u0(x), x ∈ R,

where u0 is a bounded and measurable function on R. The
system is hyperbolic if the Jacobian matrix

[
∂f i/∂uj

]
m×m
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has real eigenvalues. If, in addition, the eigenvalues are dis-
tinct, the system is strictly hyperbolic. Let λi and ri denote
the ith eigenvalue and the ith right eigenvector, respectively.
The i-characteristic family is said to be genuinely nonlinear
if

∇λi(u)ri(u) 6= 0,

and linearly degenerate if

∇λi(u)ri(u) = 0,

for all conservation states u. In this paper we consider a
piecewise constant Riemann initial data

u(x, 0) =

{
ul, x < 0,
ur, x ≥ 0.

It is well known that if each characteristic family is
either genuinely nonlinear or linearly degenerate, the above
Riemann problem with ul sufficiently close to ur, has a
solution consisting of the superposition of m elementary
waves (shocks, rarefaction waves, or contact discontinuities).
For theoretical results, we refer to Bressan [3], Dafermos [4],
Godlewski and Raviart [6], Holder and Risebro [8], Kružkov
[12], Lax [13], and Smoller [19].

However, for non strictly hyperbolic and mixed type
conservation laws, there are examples of systems where the
solutions have much more complex structure and the main
focus of this paper is on the numerical study of transitional
shock waves. We consider three such systems studied by
Azevedo, Marchesin, Plohr, and Zumburn in [1], Schecter,
Plohr, and Marchesin in [18], and Hwang in [9], using a
recently proposed overlapping grids finite volume method
by Jegdić [10].

In §2 we recall the definition of the overlapping grids finite
volume method and the main results from [10]. In §3 we
use the overlapping grids method to compute solutions to a
variety of Riemann problems illustrating transitional shock
waves. We test the effectiveness of the overlapping grids
method by comparing the obtained numerical results with
the results obtained using a regular finite volume method. In
both cases we use the well-known Lax–Friedrich numerical
flux.

II. OVERLAPPING GRIDS FINITE VOLUME METHODS

The application problems in conservation laws usually deal
with the nonlinear spatial flux function f leading to nonlinear
systems of equations which cannot be solved exactly and
there is a need to develop numerical schemes.

In this section we first briefly recall derivation of the
finite volume method. One of the assumptions in the finite
volume methods is that the approximate solution is given as
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a piecewise constant function. Let us assume that the spatial
domain R has a partition consisting of cells

∆ = {Ωi | i ∈ I},

where |Ωi| denotes the size of the ith cell. The numerical
solution obtained via the finite volume method is a piecewise
constant function at every time step and we denote it by

un(x) =
∑

I

un
i χΩi

(x),

where χ represents characteristic function and un
i represents

the cell average of the cell i at the time step n. Clearly, we
have

u0(x) =
∑

I

u0
i χΩi

(x),

where u0
i is calculated using the initial data by

u0
i =

1

Ωi

∫

Ωi

u0(x) dx.

Besides the spatial direction, the time direction is also
discretized, meaning that if we need to find the approximate
solution at a time level T , then we will be required to do a
series of time steps of size ∆t until we reach T . The time
steps are defined by

∆t M ≤ min
i

|Ωi|

|∂Ωi|
CFL,

where the CFL constant is given by the Courant – Friedrichs
– Lewy condition, |∂Ωi| is the size of Ωi’s boundary, and
M is a constant proportional to fastest wave speed. In scalar
case we take

M = max
u

|f ′(u)| .

It is clear that the time step depends directly on the size of the
smallest cell, meaning that, if we have at least one very small
cell, our time step will be very small. Besides the problems
with the time step, the small cells being next to the big cells
could cause the finite volume method not to converge to a
weak solution anymore, i.e., the Lax-Wendroff Theorem [14]
does not hold. Then for the finite volume method we have

0 = |Ωi|
(
un+1

i − un
i

)
+ ∆t

∑

k

∫

Si,k

hnk·F ds,

where ∆t = tn+1 − tn represents the time step from time
tn to time tn+1, Si,k is the edge between cells i and k,
nk is the corresponding outward normal and hnk·F is the
numerical flux function.

Let us now consider the scalar case (m = 1). Then the
finite volume method is given by

un+1
i = un

i −
∆t

∆xi

(hi+1 − hi) ,

where by hi+1 we denote the numerical flux between the
cells i and i+1, which usually depends only on ui and ui+1,
and ∆xi is the size of cell i. Some of the most well known
numerical fluxes are Godunov’s, Roe’s, Engquist-Osher’s and
Lax-Friedrichs’s fluxes [5], [6], [7], [8], [15], [16], [17].

Depending on the topology of the object that is considered,
sometimes it may be very difficult, if not impossible, to
design a grid around that object. The idea of so-called
overlapping grids is used in such cases. Basically, a different

grid is designed for each piece of the object and some of
those grids may overlap in certain regions. In our case we
study the problem of two overlapping grids.

Let us consider two overlapping grids; the ”bottom” grid
on the interval (−∞, b] (with cell size ∆xB) and the ”top”
grid on [a,∞) (with cell size ∆xT ), such that a < b. The
numerical method that we suggest is to extend both grids to
cover the whole space R. The extended bottom grid has the
same partition as earlier on (−∞, b], while on (b,∞) it is
defined using the partition from the top grid. Similarly, we
define the extended top grid.

We also define the union grid on R as the union of
partitions of the bottom and the top grids. We denote by
un(x), vn(x) and wn(x) the numerical solutions on the
bottom, the top, and the union grids, respectively, as depicted
in Figure 1.
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Fig. 1. Extended bottom and top grids with the union grid

Our idea is to first compute the mid solutions ũn(x)
and ṽn(x) by performing a regular finite volume method,
where we modify the fluxes hb0 and hb1 for the bottom grid
and ht

−1
and ht0 for the top grid. The modified fluxes are

computed as

hb0 =θBh (u0, u1) + (1 − θB) h (u0, u2) ,

hb1 = (1 − θB) h (u0, u2) + θBh (u1, u2) ,

ht
−1

=θT h (v−2, v−1) + (1 − θT ) h (v−2, v0) ,

ht0 = (1 − θT ) h (v−2, v0) + θT h (v1, v0) ,

where
θB = ∆x−1/ min{∆xB , ∆xT }

and
θT = ∆x1/ min{∆xB , ∆xT },

as illustrated in Figure 2.
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Fig. 2. Numerical fluxes ht
−1

and ht0
for the top grid

Next, we define wn(x) by projecting those mid solutions
over the union grid and, finally, we get un+1(x) and vn+1(x)
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by projecting wn(x) over the bottom and the top grids,
respectively. We note that the time step is defined in the
same way as in a regular finite volume method by

∆t max
u

|f ′(u)| ≤ min{∆xB , ∆xT }CFL.

A similar idea for computing the fluxes is presented
by Berger, Helzel, and LeVeque in [2]. One of the main
differences between their and our work is that we average
fluxes while they average cell averages. Also, we are able
to use any numerical flux, including the Godunov numerical
flux.

For the overlapping grids methods in [10], in the scalar
case m = 1, we prove that if we have bounded convergence
of approximate solutions, then the approximate solutions
converge to the weak solution which is also the entropy
solution. It is important to emphasize that we prove con-
vergence to the entropy solution regardless of the cell sizes
in both grids. The main contribution of this paper is in
confirming the effectiveness of the overlapping grids method
proposed in [10] numerically on several examples of systems
of conservation laws (m > 1).

III. NUMERICAL EXAMPLES

We consider three one-dimensional systems of two con-
servation laws (m = 2) with quadratic flux functions.
These systems are examples of conservation laws for which
there are Riemann initial data where the solutions are not
superpositions of shocks and rarefaction waves. We illustrate
the effectiveness of the overlapping grids method on several
Riemann problems by comparing our solutions to the numer-
ical solutions obtained using a regular finite volume method.
In both cases we use the Lax–Friedrich numerical flux.

A. The first system

This system of conservation laws was studied in [1] by
Azevedo, Marchesin, Plohr, and Zumburn, and in [18] by
Schecter, Plohr, and Marchesin, and is given by

ut + (−0.5u2 + 0.5v2 − 0.12u + 0.23v)x = 0,

vt + (uv − 0.23u− 0.12v)x = 0.

The eigenvalues are

λ1,2 = −0.12±
√

u2 + v2 − 0.0529,

implying that the system is strictly hyperbolic only if

u2 + v2 > 0.0529.

We consider several one-parameter Riemann problems for
this system that were studied in [18] using a numerical
method based on the Dafermos regularization and a con-
tinuation method. We compute numerical solutions to these
problems using the overlapping grids finite volume method.

We solve the Riemann problems approximately on the
interval [−3, 3]. The bottom grid is taken to be on the interval

[−3, 0.99854852],

while the top grid is taken to be on the interval

[−1.033665588, 3],

so that the overlap is not trivial. Both the bottom and
the top grids contain 1000 cells each. The overlap is on
approximately 500 cells. The CFL constant is taken to be
0.8 relative to min{∆xB , ∆xT }. For the comparison, we use
the regular finite volume method with the grid consisting of
1500 cells.

As in [18], we fix

(ul, vl) = (0.366078, 0.308156)

and vr = 0.1. The solutions of the Riemann problems in
Examples III.1 and III.2 have a classical structure consisting
of shocks and/or rarefaction waves, while the solution in
Example III.3 is much more complicated and, in particular,
it contains transitional shocks.

We note that the numerical results obtained using our
overlapping grids method from [10] do not differ from the
numerical results obtained using a regular finite volume
method.

Example III.1. Assume ur = 0.3 (this problem corresponds
to problem 1 in [18]). The solution of the Riemann problem
consists of a 1-shock followed by a 2-shock. We plot numer-
ical solutions for u and v obtained using the overlapping
grids method and the finite volume method in Figures 3 and
4, respectively, at three different time levels.

Example III.2. Let ur = 0.15 (this problem corresponds
to problem 3 in [18]). The solution of the Riemann problem
consists of a 1-rarefaction wave followed by a 2-shock, and
is plotted in Figures 5 and 6, using the overlapping grids
method and the finite method, respectively, at three different
time levels.

Example III.3. Assume ur = −0.61 (this problem corre-
sponds to problem 17 in [18]). In this case the solution of
the Riemann problem is much more complex and it consists of
a 1-shock, 1-transitional shock, and a composite 2-wave (2-
transitional shock and a 2-rarefaction wave). The numerical
approximations for u and v are plotted in Figures 7 and
8, using the overlapping grids method and the finite volume
method, respectively, at three different time levels.

B. The second system

This system of two conservation laws with quadratic flux
functions was studied by Hwang in [9] using a front-tracking
method, and is given by

ut + (0.25u2 + 0.2uv + 0.5v2)x = 0,

vt + (0.1u2 + uv)x = 0,

with eigenvalues

λ1,2 = 0.75u + 0.1v ±
√

0.1025u2 + 0.35uv + 1.01v2.

It is easy to show that

0.1025u2 + 0.35uv + 1.01v2 > 0

for all states (u, v) ∈ R \ {(0, 0)}, implying that this system
fails to be strictly hyperbolic if (u, v) = (0, 0). We illustrate
the effectiveness of the overlapping grids method from [10]
in the next example modeling a transitional wave.
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Fig. 3. Example III.1: the solutions u and v at times 1.5, 2.5, and 3.5

using the overlapping grids method.
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Fig. 4. Example III.1: the solutions u and v at times 1.5, 2.5, and 3.5

using the finite volume method.
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Fig. 5. Example III.2: the solution u and v at times 1.5, 2.5, and 3.5

using the overlapping grids method.
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Fig. 6. Example III.2: the solution u and v at times 1.5, 2.5, and 3.5

using the finite volume method.
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Fig. 7. Example III.3: the solution u and v at times 1.5, 2.5, and 3.5

using the overlapping grids method.

Example III.4. As in [9], we assume the following Riemann
initial data

(ul, vl) = (−1.632, 1.278),

(ur, vr) = (−1.658,−1.269).

The solution of the Riemann problem consists of a 1-shock,
transitional wave, and a 2-shock. We solve this Riemann
problem approximately on the interval [−2, 2], using the
overlapping grids method and the regular finite volume
method. The numerical solutions are plotted in Figures 9
and 10, respectively, at three different time levels.

For the overlapping grids method, the bottom grid is taken
to be on the interval

[−2, 1.0101010101],

while the top grid is taken to be on the interval

[−0.59999, 2],

so that the overlap is not trivial. The bottom grid con-
sists of 1000 cells, while the top grid consists of 1200
cells. The CFL constant is taken to be 0.8 relative to
min{∆xB , ∆xT }. For the comparison, we use the regular
finite volume method on a grid with 1300 cells.
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Fig. 8. Example III.3: the solution u and v at times 1.5, 2.5, and 3.5

using the finite volume method.

C. The third system

This system was considered by Hwang in [9] using the
front-tracking method. It is given by

ut + (−0.5u2 + 0.5v2 + 0.23v)x = 0,

vt + (uv − 0.23u)x = 0,

with eigenvalues

λ1,2 = ±
√

u2 + v2 − 0.0529.

The system is strictly hyperbolic only if

u2 + v2 − 0.0529 > 0.

We consider one example of initial data where the Riemann
problem results in a transitional wave and we compare
the numerical results obtained using the overlapping grids
method and the regular finite volume method.

Example III.5. As in [9], let us assume

(ul, vl) = (0.273, 0.182),

(ur, vr) = (−0.246, 0.31).

The solution of the Riemann problem consists of a 1-
rarefaction, a transitional wave, and a 2-shock. We solve
the Riemann problems approximately on the interval [−2, 2]
using the overlapping grids method and the regular finite
volume methods, in Figures 11 and 12, respectively, at three
different time levels.
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Fig. 9. Example III.4: the solution u and v at times 0.25, 0.5, and 0.75

using the overlapping grids method.

For the overlapping grids method, the bottom grid is taken
to be on the interval

[−2, 1.0101010101],

while the top grid is taken to be on the interval

[−0.59999, 2],

so that the overlap is not trivial. Both the bottom and the
top grid contain 100 cells each. The CFL constant is taken
to be 0.8 relative to min{∆xB , ∆xT }. For the comparison,
we use the regular finite volume method consisting of 150
cells.

IV. CONCLUSION

The overlapping grids are important when the topology of
the object considered is very complex and it is difficult, or
impossible, to create a grid around it. In [10] we define an
overlapping grids method and we prove several theoretical
results including that, in the scalar case (m = 1), if we
have bounded convergence of approximate solutions, then the
approximate solutions converge to the weak solution which
is also the entropy solution regardless of the cell sizes in
overlapping grids. In this paper we numerically test and
confirm the effectiveness of this overlapping grids method
by computing approximate solutions to Riemann problems
for several systems of conservation laws (m > 1).

Besides computing the approximate solutions to problems
whose solutions posses the classical structure containing
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Fig. 10. Example III.4: the solution u and v at times 0.25, 0.5, and 0.75

using the finite volume method.

rarefaction and shock waves, we also consider problems
resulting in a much more complicated structure and which
contain transitional shock waves.

We compare our numerical results to those obtained using
the regular finite volume method with the Lax–Friedrich
numerical flux. We note that the approximate solutions for
the overlapping grids method in all of the above examples
have graphs with thicker curves because the approximate
solution is composed of solutions on both the bottom and
the top grids.

In all of the above examples, the numerical solutions
obtained using the overlapping grids method do not differ
from the numerical solutions obtained using the regular
finite volume method. Even though, the theoretical results
regarding convergence of the approximate solutions of this
overlapping grids method for systems of conservation laws
are still not known, the numerical results of this paper show
that it could be used effectively also for one-dimensional
systems.
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[11] I. Jegdić, ”Numerical study of singular and delta shock solutions using
a large time step method”, Applications and Applied Mathematics: An
International Journal, vol. 13, issue 2, pp. 1110-1122, 2018.
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using the regular finite volume method.
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