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Abstract: In this paper, a fishery model with a reserved and 

unreserved area for prey in the presence of bird predator has 

been proposed and analysed. Holling type II functional 

response is considered for this research work. The harvesting is 

applied on predator as well as on prey in an unreserved area 

due to some commercial value. Local stability of the system is 

discussed in this paper whereas threshold for the existence of 

biological and bionomical equilibrium points of the model have 

also determined. Further, optimal harvesting policy has been 

studied with the assistance of the Pontryagin's Maximum 

Principle. Finally, the theoretical results have obtained and 

verified with the help of numerical simulations through 

MATLAB. 
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I. INTRODUCTION 

In the past few decades, dynamics of associating natural 

species has been examined from various angles [1-6]. Many 

species have become threatened or endangered, and many 

others are on the verge of extinction due to various reasons 

like overexploitation, over-predation, environmental 

pollution, mismanagement of natural resources etc. To save 

these species, marine protected and marine reserved areas 

have been proposed as the most important tools to conserve 

the marine life and sustain ecosystems. Beaverton and Holt 

were the first in considering the idea of marine reserves. 

Clark [7] introduced the concept of economic and biological 

aspects of renewable resources of multispecies fisheries. 

Recently, it is proved by Dubey [8] that the reserved area 

has stabilizing effects on the predator-prey dynamics. It is 

demonstrated that regardless of whether the fishery is 

exploited constantly in the unreserved zone, fishery density 

can be kept up at an appropriate equilibrium level in the 

natural surroundings. Kar and Misra [9] have studied that 

the interior equilibrium level is never disturbed. It has been 

observed that, in the absence of predators, even under 

continuous harvesting in the unreserved zone, the fish 

population may be maintained at an appropriate equilibrium 

level. On the other hand, in the presence of predators, 

populations may be sustained at an appropriate equilibrium 

level if the population in the unreserved zone lies in a 

certain interval. 

Dubey [10] proved that the role of the  reserved zone is an 

essential coordinating idea in ecology and evolution. By 

creating reserved zones in the habitat, where the predatorhas 

no access or chance of settling, the prey species can grow 

without any external disturbances. 
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Therefore, the prey species can be maintained at an 

appropriate level. As per observational information of Lake 

Kasumigaura in Japan, Kitabatake [11] built up a dynamic 

model for fishery assets with a prey–predator system in a 

two-patch environment. He examined the possibilities of the 

existence of bionomic equilibrium and an optimal harvesting 

policy is given by Pontryagin’s maximum principle. 

Srinivasu and Gayatri [12] observed that the reserve 

capacity has a vital part in guaranteeing eitherpresence of 

predators or their eradication. Kar and Matsuda [13] 

established the significance of marine protected areas 

(MPAs), from both economic and biological perspective. 

Rui Zhang [14] has demonstrated that in the absence or 

within the sight of predators, the fishing populations may be 

remaining at an suitable equilibrium level. Yunfei et al. [15] 

investigated that marine reserves ensured the sustainability 

of the system. Aquatic reserves secure both the species 

inside the reserve area as well as increase fish abundance in 

adjoining areas. An appropriate equilibrium level of prey 

population is always maintained irrespective of presence or 

absence of predators in the unreserved zone. Amit Sharma 

and Bhanu Gupta [16] studied the dynamics of fishery 

resource with reserve area in the presence of bird predator. 

In this work they have given criteria for finding the 

biological and bionomic equilibrium points of the 

system.Optimal harvesting policy has also established using 

Pontryagin’s maximum principle. 

All the reserve and unreserved area models have been 

motivated by the marine national park in Kenya, and in the 

Iroise sea, a coastal sea west of Brittany (France). Where 

artificial boundary in the form of fencing of suitable mesh 

size, has been created to restrict the entry of predator in the 

reserved zone.The Latest researchersfound that MPAs are 

very effective tool for enhancing yield as well as assurance 

of stocks and sustainability of endangered species. 

 Keeping this in view,we have modified the model 

proposed by Amit Sharma et al. [16], within the sight of bird 

predator. Holling type-II predator functional response is 

considered, which seems to be more realistic then Holling  

type-I functional response. 

 

II. THE MATHEMATICAL MODEL 

 

Consider a habitat, in a biological community, with prey 

(fishes) dispersal in a two-patch environment, one is 

assumed to be a free fishing zone and other is a reserved 

zone, where fishing and other additional activities are 

restricted. Both zones are supposed to be homogeneous. 

There is also a bird predator in this system, which is feeding 

on fishes in both the reserved and unreserved zones. It is 

assumed that the bird predator population is also harvested 

in the unreserved zone. We assume that he fish species 
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migrate between the two zones randomly. Keeping view the 

all above assumptions, a model is represented by the 

following ordinary differential equations. 

 

 

 

 

 

 

 
 

 

 

 

 

All the parameters of the system (1) are assumed to be 

positive and are defined in the following Table. 

 

Table I 

Variables and Parameters used in Proposed Model 

 

Variable 

/Parameter 
Description 

( )x t  Biomass density of the prey species     

inside the unreserved area 

( )y t  Biomass density of the prey species 

inside the reserved area 

( )z t  Biomass density of the bird 

predator 

r  Intrinsic growth rate of the prey 

species inside the unreserved area 

s  Intrinsic growth rate of the prey 

species inside the reserved area 

K  Carrying capacity of prey species 

inside the unreserved area 

L  Carrying capacity of prey species 

inside the reserved area 

1 2,   Migration rate from the unreserved 

area to reserved area and reserved 

area to unreserved area respectively 

21,E E  Harvesting efforts applied on the 

prey (fishes) and the predator(bird) 

respectively 

,  1 2q q  Catchability coefficient of prey in 

unreserved area and predator 

respectively 

1m , 2m  Capturing rates of prey by predator 

in unreserved and reserved area 

respectively 

1 2,  k k  Conversion rates of prey to 

predator young ones in unreserved 

and reserved zone respectively 

d  

  

Death rate of a predator(bird) 

Half saturation level coefficient 

 

In above model, if there is no-relocation of fish population 

from the reserved zone to the unreserved zone i.e  2 0  and

1 1 1- - 0r q E  , then 0
dx

dt
 , thus fish species will extinct 

from the unreserved area. Similarly if there is no migration 

of fish population from unreserved area to reserved area i.e.

 1 0  and 2 0s   , then 0
dy

dt
  holds consequently, 

fish species will extinct from the reserved area. To protect 

the fish species from extinction, migration of prey species 

from both the patches is mandatory. Therefore,we assume 

that 

1 1 1 2- - 0 and - 0                             (2)r q E s  
 

To make the proposed model easier, the capturing rates 

and conversion rates are considered to be equal i.e. 

1 2 1 2 1 1 2 2 1
,     then k k k m m m k m k m km         

Thus model (1) becomes 

 

 

 

 

 

 
 

 

 

 

III.  STABILITY ANALYSIS 

 

A.Boundedness of the solution 

 

Theorem 1.All the solutions of the model system (3) with the 

positive initial conditions  0 0 0, ,  x y z are uniformly 

bounded within , and the set 3 ,R  is positively 

invariant for the system (3),  

Where 

  3

1 2 2

, , : 0
m G

x y z R x y z
d q E




     


 
 
   

   
2 2

2 2 1 1 2 2
4 4

K L
G r d q E q E s d q E

r s
        

Proof: If (0) 0, (0) 0 and (0) 0x y z    

Let
1

 and 0
m

x y z 


    be a constant.  

1 21                           
dy myzy

sy x y
Ldt y

 


 
     

  

1 2 1 11
dx x mxz

rx x y q E x
dt K x

 


     


 
 
 

1
1 1 2 1 1

m xzdx x
rx x q E x

dt K x

y 


     



 
 
 

2
1 21                                

m yzdy y
sy x y

Ldt y
 



 
     

  

1 1 2 2
2 2                            (1)                               

k m xz k m yzdz
dz q E z

dt x y 
    

 

 
 
 

1 2 2                       (3)
dz xz yz

dz q E z
dt x y


 

    
 

 
 
 
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Then 

 

1

2 21 1

1

1 - - 1 -

d dx dy m dz

dt dt dt dt

d x y m
rx q E x sy d q E z

dt K L









  

   
   
   
   

 

 

 

Hence 

 

 

 

 

 

 

Applying the theory of differential inequality (Birkoff and 

Rota, 1982) , following inequality will be obtained 

 

 

 

 

As t   solution of (3) will be always within the set . 

Thus, the system (3) is dissipative. The proof of the theorem 

is completed 

 

B. The existence of non-negative equilibria 

 

Following are the three possible equilibria of the system (3) 

I.  
0 0, 0, 0 ,P which always exists; (extinction of all 

species)  

II. P1(x1,y1,0), (The predator free equilibrium point) 

III. 2 *, *, * ,P x y z 
 
   (The interior equilibrium point) 

 

The predator-free equilibrium pointP1(x1, y1, 0) 

From the first two equations of (3) 

   
2 2

1 1 12 1 2
,          (5)

rx sy
y r q E x x s y

K L
         

 
After simplification, we get cubic equation in x as 

 
3 2

0                                                       (6)ax bx cx d     
Where 

 2
1 1 1

2 2 2

2 2

2
,

rs r q Esr
a b

L K L K



 

  
   

      
2

1 1 1 2 2 1 1 1

12

2 2 2

,
s r q E s r s r q E

c d
L K

   


  

     
   

By Descartes rule of a sign, the equation (6) has a unique 

positive solution x=x1 if the following inequalities hold. 

   

  

2

1 1 1 2

2

 2 1 1 1 1 2

,  

                                      (7)

s r q E s r

L K

s r q E

 



   

  


   
 

Knowing the value of x1 the value of y1 can be computed 

from (5) as 

 
2

1
1 1 11 1

2

1 rx
y r q E x

K



   

 
 
 

 , which exist provided            

 1 1 11

K
x r q E

r
      (8) 

Hence, P1(x1, y1,0) exist, provided conditions (7) and (8) are  

Satisfied.  

For the interior equilibrium point 2 *, *, *P x y z 
 
   

On solving system (3) for non-zero point, we get
 

  

 

 
2 2 6

6 1 6

d q E xE
y

E x E




 

 


 

 
 
 

  (9)                                           

 

 

 

Value of x is the root of following 6th degree equation  
6 5 4 3 2

1 2 3 4 5 6 7 0S x S x S x S x S x S x S      
       

(11) 

Where   

  

 
2

6 5
1

L E rE
S

K




 

 

 

2

6 2
6 5 6 5 76 3 5

2 5

6 51 5

r E L r
E L E E E E E E E

S EK K

L E E E

 




    


 

  
  

  
    

  
  

   

2 26
3 5 6 7 5 6 3 3

3 6
2 2

6 5 4 1 3 2

3
2 25 2

6 6 7 5 7 4 6 7 1 1 65

2

        - 3

r E
L E E E E E E

KS s E

E E s L E E

L rE
E E E E E L E E E E E

K






   


  

  
      

   
 

     

     

 
 

    

 
  

3 2 3 26
3 5 7 5 6 6 7 6 4 5 7 6

3 3 2 2 2
6 1 4 7 5 1 6 5 6 4 5 6 5 7 1 6 5 7 24

4 3 25
7 6 6 6 3 2 5 6 7 5 6

2

3 2 2

3

r E
L E E E E E E E E s LE E E E

K

S L E E E E E E E E E E E E E E E

LrE
E E sE L E E E E E E E

K


  

    

  

  
        

  
 

       
 
  
        

    

 

      

  

4

5 6 7 3 2 3 4 5 2 6

4 4 22
6 3 2 5 2 76 7 6 4 6 7 1

4 2 3 4 5 2

4 7 5 6 7 1 6 7 6

2

  

  2 3

r
S L E E E E E E E

K

L E E E E E E L E E E E

s LE E E E E L E sE E


  

    

    

     

      

    

  
  
  

 

 

    

5 2 5

6 7 4 3 2 2 7

6 5 22
7 5 6 7 6 4 6 6 77

L E E E E L E
S

E E E E E E LE E s E E

   

 

   


     

 
 
  

 
6 2

7 2 6 7 0S L E E  

 
3 1 1 1 (  )0 by assumptionE r q E     

4 2 (  )0 by assumptionE s     

     
2 2

2 2 1 1 2 2 2 2-
4 4

d K L
d q E r q E d q E s d q E G

dt r s


        

     2 2

2 2 1 1 2 2 2 2d q + 
d r s

E x r q E d q E x y s d q E y

dt K L


          

 2 2

2 2 2 2

0 ( ) (0)         (4)
d q E t G G

t e
d q E d q E

 
 

   
 

 
 
 

    
 

2 2 2 6
3

6 1 6

             (10)
x d q E xErx

z E x
K E E xmx

  

 

    
    

    
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5 1 2 2 6 1 2 2 7 2 22 ,  ,  0E d q E E d q E E d q E         

 6 5 4 3 2

1 2 3 4 5 6 7Let  ( )F x S x S x S x S x S x S x S        

It is obvious that
 

(0) 07F S   

and if 
 

6 5 4 3 2

1 2 3 4 5 6 7  (K) 0      (12)F S K S K S K S K S K S K S       

Then there exists a positive value of   say x* x in the 

interval [0, ]K  

Now, the sufficient condition for *x  to be unique is 

     

   

5 4 3

1 2 3

2

4 5 6

( *) 6 * 5 * 4 *

              3 * 2 * 0                           (13)

F x S x S x S x

S x S x S

   

   
 

Value of y
*
and z

*
will be obtained from (9) & (10), and will 

be positive, if following inequality holds 

   2 2 1 1 1

6

6

0  and Min , 1              (14)
d q E q E

E x K
E r

  
  

  
  
  

 
Hence, the equilibrium 2 *, *, *P x y z 

 
  exists provided 

conditions (12), (13), (14) are satisfied.

 
 

C. Stability analysis 

 

Theorem 2.If the equilibrium point  
0 0, 0, 0 ,P  exist, then it 

will be always unstable. 

 

Proof: The characteristic equation of the system (3) is 

 

1 1 1 2

1 2

2 2

0

0

0

0 0

r q E

s

d q E

  

  





  

 

  

 

 

On solving the characteristic equation of system (3) at P0 (0, 

0, 0)is given by 

 

      2 2 1 1 1 2 1 1 1 2 1 2
2 0d q E r q E s r q E s                         

One of the eigenvalue is  1 2 2- 0d q E     

Other two eigenvalues are given by 

     1 1 1 2 1 1 1 2 1 2

2
0r q E s r q E s                   

As    1 1 1 2- - - 0r q E s       (by assumptions) 

So, all the eigenvalues of the above characteristics equation 

have not negative real parts as there is at least one change of 

sign. Therefore, the equilibrium point  
0 0, 0, 0P  is always 

unstable. 

Biological meaning: With the creation of marine reserves, it 

is seen that the equilibrium point  
0 0, 0, 0P  remains always 

unstable. So it may be concluded that even if the system is 

exploited constantly in the unreserved zone, the prey or the 

predator populations persist and doesn’t extinct for 

sufficiently large time.  

 

Theorem 3.If the Equilibrium point P1(x1, y1, 0) exists, then 

it will be always locally asymptotically stable, provided. 

1 2 2 1 1 1 2

2 2
2 ,  0

rx sy
d q E r q E s

K L
          

   
   
   

 

1 1 1 2 1 2

2 2rx sy
r q E s

K L
        

  
  
  

 

 

Proof: The Characteristic equation at P1(x1, y1, 0) is given 

by 

 

 

 

One of the eigenvalues is 

1 1 1 1
1 2 2

1 1

x y
d q E

x y

 


 
    

 
 

It will be negative, if  

1 1 1 1
2 2

1

.

1

x y
i e d q E

x y

 

 
  

 
 

After simplification i.e. 

      1 2 22                                                 (15)d q E    

Other two eigen values are given by obviously 

 

2 1 1
1 1 1 2

1 1
1 1 1 2 1 2

2 2

2 2
0

rx sy
r q E s

K L

rx sy
r q E s

K L

   

   

      

       

    
    
    

  
  
  

 

It’s two eigens values will have negative real parts, provided 

 

1 1
1 1 1 2                   

2 2
0 (16)

rx sy
r q E s

K L
       

   
   
   

    

 

1 1
1 1 1 2 1 2

2 2
            (17)

rx sy
r q E s

K L
        

  
  
    

Thus equilibrium point  1 11 , , 0P x y of the system (3) is 

locally asymptotically stable provided, (15), (16) and (17) 

hold. 

Biological meaning: From above, it may be concluded 

that with the suitable harvesting of prey in the unreserved 

zone and of bird predator, it may be possible to extinct a 

bird predator from the system, if they are harmful to the 

system. 

 

Theorem 4. For the system (3), if the Interior equilibrium 

point  2 *, *, *P x y z  exists, then it will be always locally 

asymptotically stable provided

1 1

1 1 1 2

1

1 1

1 2

1

1 1 1 1

2 2

1 1

2

2
0

0 0

rx mx
r q E

K x

sy my
s

L y

x y
d q E

x y

  



  



 


 

    



    



    

 
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1 3 1 2 30, 0 and - 0C C C C C   , where 1 2 3,  ,  C C C are given 

in the proof. 

 

Proof: The characteristic equation of the variational matrix 

of the system (3) at P2 is 

 

On solving  

        

3 2

1 2 3. .                        0               (18)i e C C C       

Where   

   
1 2

2 2

* ** * * * * *

1
* * * ** *

x ysy mz mz rx mz mz
C

L y y K x xy x

  

  

       
  

   
1 1

2 2 13 3

* * * *

* *

m y z m x z
C

y x

 
 

 

  

 

 

   
2 1

2 2
   +

* ** * * * * *

* * * ** *

y xrx mz mz sy mz mz

K x x L y yx y

  

  

     
  

  
  
  
  

 

   
1 1

3 2

* * ** * *

* ** *

m x z xsy mz mz

L y yx y

  

 

  

 

 
 
 
 

 

   
1 2

3 2

* * ** * *

* ** *

m y z yrx mz mz

K x xy x

  

 

  

 

 
 
 
 

 

 

Using the Routh-Hurwitz criteria, it will be easy to check 

that all roots of the equation (18) will have negative real 

parts if 1 3 1 2 30, 0 and - 0C C C C C   holds. So, the interior 

equilibrium point  2 *, *, *P x y z of the system (3) will be 

locally asymptotically stable, provided

1 3 1 2 30,  0 and - 0C C C C C    

 

IV.  BIONOMIC EQUILIBRIUM 

 

The economic rent (revenue at any time) is given as  

( ) - ( )TR E TC E   

 Let 1c and 2c
 
be the harvesting cost per unit effort for prey 

(fish) in the unreserved area and predator (bird) respectively. 

Further considering 1p and 
2

p be the price per unit biomass 

of the prey in the unreserved area and bird predator 

respectively. Then 

   1 1 1 2 2 21 1 2 2- , -p q x c E p q z c E     

Will be representing net revenue for the prey in unreserved 

area and predator respectively. Therefore, net economic 

revenue from harvesting of prey in unreserved area and 

predator at any time t is given by 

   1 1 1 2 2 21 2- -p q x c E p q z c E    

The Bionomic equilibrium point  1 2, , , ,x y z E E    

will be obtained by solving the following simultaneous 

equations. 

1 2 1 11 0                 (19)
x mxz

rx x y q E x
K x

 


     


 
 
   

1 21 0                             (20)  
y myz

sy x y
L y

 


    


 
 
   

1 2 2             0      (21)
xz yz

dz q E z
x y


 

    
 

 
 
   

   1 1 1 1 2 2 2 2      0        (22)p q x c E p q z c E     

  

By considering the following cases, we will determine the 

bionomic equilibrium points.  

Case 1: If 2 2 2 1 1 1 and c p q z c p q x    

Here the cost of harvesting of predator (bird) is greater than 

the revenue received and cost of harvesting of prey (fish) is 

less than revenue. Subsequently, the harvesting of a predator 

(bird) will be ceased and the only prey (fish) harvesting (in 

an unreserved area) remains operational. Thus we have 

2 0E    

  
 

1 1 1 11

1 1 1 1 1 1 1 1 1 1

,
2

d c d p qc
x y

p q p q c dc d p q

  

  

 
  

  
 

Which will exist provided 

1 1 1 1 1 1 12 ( )       (23)c d c p q c      

Now substituting the values 2 ,   & x y E  
in equation 

(20)
  

 

2

1 1 1 1z       will be positive  provided  is satisfied       (24)c L s p q 


1 1 2

1

1
1             (25)

x

x mx z
E rx x y

q K x
 



  
   

 

    


  
  
  

 

1
E  will be positive,  provided 

 

 

Case 2: If 1 1 1c p q x  and 2 1 1c p q z
 

     

* * * *
2 1 1 1

3 2 2
* * * *

m y z m x z
C

y x x y

   

   

  

   

 

   

 

 

 

   

2 1 1 1 1

1 1 1 1 1 1 1 1

21 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

22

1 1 1 1

2

1 1 1 1 1 1 1 1 1 1 1 1

 

2

2

 2

L s d c d p q

p q c dc d p q

p q c L c
p q c dc d p q

p q

s d c d p q

z

Lm d c d p q p q c dc d p q

   

  

  
  

  

    

  

  


   

  


    

   
 
 
 
 
 
 

   

  

2 11                          (26)
x mx z

rx y x
K x

 


  
  



   


 
 
 

 

   

 

2 22

1

1 2

1 1

2 2

*  *  *  *
*

* * **

* * *  *  *
0

* * **

 *  *
0

( *)*

  

r y m z m z m x
x

K x x xx

x sy mz m z m y

y L y yy

z z

yx


  

 

 
 

 

   





    

 


     

 




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Here the harvesting cost of prey (fish) (in an unreserved 

area) is greater than the revenue received and harvesting 

cost of predator is less than revenue. Hence, the harvesting 

of a prey (fish) will be ceased and the only predator 

harvesting remains operational.  

Thus, we have 

2
1

2 2

,  0
c

z E
p q

  

 

2

2 2

Substitute  in (21)
c

z
p q

 

 

We get 
2

2
1

2 2 2

1
                 

( )
(27)

mc rx
y r x

p q x K


 


 



   


  
  
  

2

2 2 1

 , 0    
( )

Now provided                (28)
mc

y x
p q r




   


 
 
   

From (21), we get 

2 2

1

                                       (29)
d q Ex y

x y  


 

 

 
 
 

 

Adding (19) &(20) and using (29) 

 

We get the following 6thdegree equation in x  
6 5 4 3 2

1 2 3 4 5 6 7 0R x R x R x R x R x R x R        

Where  
2 2

1 22 2 2 2 2

2 2 2 2 2

2 2
,  

sr sr rsB
R R

L K L K KL p q



  
  

 
 
 

 

   
2 2 2

23 2 2 2 2 2
2 22 2 2 2

2r rs s r B
R s A B

K KL p q L K p q


 

 

 
      
 
 

 

4
2 22 2

2
2 22 2 2

2
2

2
        +

       

sBr s K
R

K p q

sA B r
p q KL p q


  





 
   
   
    

 
 
 
  

   



 
2

2 2 2 2
5 2 2 2

2 2 2 2 2 2 12 2 2

( )
1 2

r s s A s mc d q E
R A B r

K p q p qL p q
  

  

 
          

     

22 2 2
6

2 2 1 2 2 2

2 ( )mc d q E A s
R r

p q p q

 


 


  
 
 
 

 

2

2 2 2
7

2 2 1

( )mc d q E
R

p q







 
 
 

 
 11 2 2 2 2 2 2 2where ,A p q rp q mc B p q r       

  6 5 4 3 2

1 2 3 4 5 6 7G(x)Let R x R x R x R x R x R x R      

7 (0) 0 it is obvious that G R   

And if  

 

6 5 4 3 2

1 2 3 4 5 6 7( ) 0   

                                                                                                           (30)

G K R K R K R K R K R K R K R       

Then there exists a positive value of x (say x ) in the 

interval[0,K]. 

Now, the sufficient condition for x  to be unique is 

5 4 3 2

1 2 3 4 5 6( ) 6 5 4 3 2 0

               (31)

G x R x R x R x R x R x R     
       

From(21) 

2 1

2

1
                                         (32)

x y
E d

q x y


 

 


 

   
 

  
  

    
It will exist, provided 

1

                                                  (33)
x y d

x y  

 
 

  

Hence bionomic equilibrium  , , , 0, 2x y z E    exists 

provided (28),(29), (30) and (33) are satisfied. 

 

Case 3: If 1 1 1  c p q x and 2 2 2 c p q z

 In this case, the fishing cost exceeds the revenue for both the 

prey (fish) in unreserved area and predator (bird),then we 

will obtain negative economic rent. Thus no harvesting will 

be done. 

 

Case 4:If 1 1 1c p q x  and 2 2 2c p q z   

At that point, the income of both the species, prey(fish) in 

the unreserved area and predator(bird) are positive. 

Hence,the harvesting of prey in unreserved area and 

predator is possible. 

1 2

1 1 2 2

,
c c

x z
p q p q

    

Substituting the value of x
and z in eq. (20) 

1 21 0
myzy

sy x y
L y

 



    



 
 
   

We get following cubic equation

 

 
3 2

21 22 23 24                                0     (34)D y D y D y D   
 

Where 

 21 22 2,D s D s s L      

 2 1 1 1 1
23 2 24

2 2 1 1 1 1

,
mc c L c

D L L s D
p q p q p q

 
      

 
 
 

 

Thus, we get one unique positive root of (34) say y as 

there is one change of sign if  

  2 1 1
2

2 2 1 1

and                                (35)
mc c

s s L
p q p q


   

 
 
 

 

Also 

2 1

2

1
                                  (36)

x y
E d

q x y


 

 


 

   
 

  
  

    

1 1 2

1

1
1             (37)

x mx z
E rx x y

q x K x
 



  
   

 

    


  
  
  
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0 and  0 1 2  E E   Provided following inequalities 

hold. 

2 1 1 1 ,
x mx z x y

rx y x d
K x x y

  
  

    
  

  

     
  

  
   
         (38)   

 

Hence, the nontrivial bionomic equilibrium point 

 1 2, , , ,P x y z E E     exists, provided conditions 

(35) and (38) are satisfied. 

 

V.  OPTIMAL HARVESTING POLICY 

 

In this segment, the objective is to maximize the present 

value of “J”of a continuous time stream of revenues given 

by 

          1 1 1 1 2 2 2 2
0

    39 
t

J e p q x c E t p q z c E t dt


 
   

 
Here δ is supposed to be the instantaneous annual rate of 

discount. We intend to maximize (39)subject to the state 

equations (3)with the help of Pontryagin's maximal principle 

(Clark [1]),the control variable ( )E ti  (i = 1, 2) are subjected 

to the constraint 

0 ( ) ( )maxE t Ei i 
 

The Hamiltonian function of the model (3) is given by 

   1 1 1 1 2 2 2 2

1 1 2 1 1

2 1 2

3 1 2 2

( ) ( )

         1

       1

        

t
H e p q x c E t p q z c E t

x mxz
rx x y q E x

K x

y myz
sy x y

L y

xz yz
dz q E z

x y



  


  


 
 


   

     


    


    
 

  

  
  
  

  
  
  

  
  
  

 

 

Where , ,1 2 3   are denoted as the adjoint variables. The 

control variables  and 1 2E E appear linearly in the 

Hamiltonian Function H. 

According to Pontryagin's maximum principle 

31 2

1 2

0, 0, , ,      

                                                                                                       (40)

H H H H H

E E t x t y t z

       
       

       

Where 

,  ,  x y z , 1  E and 2E are constants for finding the optimal  

Equilibrium solution of the model (3).

 Considering the interior equilibrium  *, *, * ,F x y z the 

first equation of (40) is given by

 
1

1 1

1 1

0                               (41)
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Similarly the 2nd equation of (40) can be written as 
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By using 3rd Equation of (40)
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By using 4th equation of (40) 
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It is easy to verify that N1 ,N2 , B1 , B2 can be written as the 

function of x*only because y*, z* are in the form of x* 

Where 

  

 

 

 

 

From (41) and (43) we get desired equation of the singular 

path as
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Where equation (47) can be written as  
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Then positive root of F (x*) = 0 gives the optimal level of 

fish population in unreserved area at *x x It may be noted 

that there exists a unique *x x in the interval 0 x K 

if the following inequalities hold: 

 

(0) 0,   ( ) 0,   ( *) 0,   for  * 0                           (48)F F K F x x     

 

Knowing the value of * ,x x  the optimal level of prey 

population in the reserved zone ( *y y ), predator ( z*=z ) 

will be obtained from (11), (12)and optimal level of efforts 

are given by respectively. 
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Consequently, once the optimal equilibrium  , ,x y z  
 is 

obtained then optimal harvesting efforts 1 2 and E E  will be 

determined from (49) provided(50)is satisfied.
 

 

VI.  NUMERICAL SIMULATIONS 

 

In order to investigate the dynamics of the system (3) with 

help of numerical simulation, we choose different set of 

parameters. 

Let 

1 2 1 2 1

2 1

6,  2,  0.8,  0.4,  0.3,  4,  3,  1.5,

0.08,  0.9, 56,  100,  0.0702,  0.1                          (51)

r s m q q E

E d K L

 

 
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For this set of parameters, equilibrium point 

(14.6458,  86.7534, 0)1P exists and it is also locally 

asymptotically stable as existence conditions (7), (8) and 

stability conditions of Theorem 3 are satisfied. As 2P does 

not exist and 0P is always unstable for this set of data, so

1(14.6458,  86.7534, 0)P will always be globally stable in the 

absence of limit cycles whenever it is locally stable (Fig. 1).  

 

 
 

 

Fig 1: The Phase diagram showing the global stability of 

P1for data set (51) 

 

Now for another set of parameters 

Equilibrium points 
   

0 1,  0, 0, 0 21.199, 92.8903, 0P P and

 
2 0.8719, 74.5977, 20.685P existbut P2 is the only  locally 

stable equilibrium point by Theorem 4. As other equilibrium 

points are unstable, therefore  P2 is also globally stable in 

the absence of limit cycles (Fig. 2). 

 

 
 

 

Fig 2: The Phase diagram showing the global stability of 

equilibrium point P2for data set (52) 

 

We also notice here that when 
1

1.43 2,    limit cycles are 

observed in this range. For e.g. on taking α1=1.45, keeping 

all other parameters same as in (52), limit cycles are 

seen(Fig. 3a, Fig. 3b). 

 

 
 

 

Fig 3a: The Phase diagram showing the limit cycle of P2on 

taking α1=1.45 along with data set (52)   

1 2

1 1 2 1

7.8, 3.7, 56, 100, 0.6, 0.4,  0.3,

4,  3,   1.5,  0.08,  2,  1.5, 12

                                                                                                  (52) 
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Fig. 3b: Time series plot of x(t), y(t) and z(t) for same data 

set (52) 

Now on considering 1 2
0.6 2.1,  0.4 1.1    

keeping all 

other parameters same as in (52), the non-zero point 

P2islocally stable. We also observe here that when

1 2
2.2,  1.2  

limit cycles are observed in this range. As 

on taking 1 2
2.2,  1.2    keeping all other parameters same 

as in (52), limit cycles occur (Fig.4a, Fig.4b). 

 

 
 

 

Fig 4a:The Phase diagram showing the limit cycle of P2 for 

same data set (52)taking 
1 2

2.2,  1.2  
 

 

 

 

 

Fig4b: Time series plot of x(t), y(t) and z(t) for same data set 

(52)in which 
1 2

2.2,  1.2    

 

VII. CONCLUSIONS 

In this paper, a mathematical model has been presented and 

examined to understand the dynamics of a prey-predator 

system with bird as a predator, which moves in  both reserve 

(where harvesting of prey is restricted) and unreserved area 

of prey. Thresholds for existence and local stability of the 

system at various equilibrium points have been examined. 

The global stability of equilibrium points and existence of 

Hopf bifurcation of the system have been shown with the 

help of numerical simulation. Dubey concluded that 

reserved zone has a stabilizing effect on prey-predator 

dynamics. But this is not true for Holling type II predator 

functional response. As ranges for Hopf bifurcation have 

been found in our analysis of the model. It has been 

observed that if the system is exploited persistently in the 

unreserved zone, even then prey species will not extinct 

from a system and prey species in the unreserved zone will 

always remain at appropriate equilibrium level due to 

migration between two zones and restriction of harvesting in 

reserved zone. The volume of these equilibrium points will 

primarily depend upon intrinsic growth rates, the coefficient 

of migration of the prey population and the carrying 

capacities of the prey in unreserved and reserved zones. 

Further, it is examined that with the appropriate harvesting 

of prey in the unreserved zone and bird predator, we may be 

able to extinct a bird predator from the system if they are 

destructive to the system. It is also concluded that with the 

creation of reserved zone, prey in both the areas never 

extinct. 

In the next section, Pontryagin’s maximum principle has 

been used to discuss the optimal harvesting policy. It has 

been concluded that with the increase in discount rate, the 

economic rent decreases and as discount rate tends to 

infinity, then the economic rent even may tend to zero. 
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