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Abstract—This paper is concerned with the stabilization of
linear and nonlinear stochastic systems by linear stochastic
feedback control from discrete-time observations. By using
Itô formula, Borel-Cantelli lemma, Burkholder-Davis-Gundy
inequality, Hölder inequality and Gronwall inequality, the
almost sure exponential stabilization of the stochastic systems
are studied and the sufficient conditions are provided. The
results are extended to stochastic feedback control with Lévy
noises as well.

Index Terms—Nonlinear stochastic system, almost sure ex-
ponential stabilization, discrete-time state observation.

I. INTRODUCTION

It is well known that noise can be used to stabilize a given
unstable system or to make a system even more stable when
it is already stable [2], [7], [9], [18]–[20]. For example,
the nonlinear scalar differential equation dx(t)

dt = f(x(t))
is unstable but it can be stabilized by a Brownian motion
Ax(t)dB(t), namely, the nonlinear stochastic differential
equation

dx(t) = f(x(t))dt+Ax(t)dB(t)

is stable. From the point of control theory, it is the stochastic
feedback control Ax(t)dB(t) that stabilizes the unstable
system dx(t)

dt = f(x(t)). During the past few decades, some
authors have studied the stabilization of the system. Mao
[15] developed a general theory on stabilization and destabi-
lization by a linear stochastic feedback control. Appleby and
Mao [3] stabilized a class of functional differential equations
by noise. Mao et al. [16], [17] used Lyapunov method to
solve the stabilization problems. Wu et al. [21] investigated
the stabilization issue of stochastic coupled systems with
Markovian switching by using feedback control.

We observe that a common feature of the stochastic
feedback controls is that the controls depend on the current
state x(t) continuously. However, the state of the given
system is in fact observed only at discrete times such as
0, τ, 2τ, ...,, where τ > 0 is the duration between two
consecutive observations. It also costs less if τ is larger. In
the past few decades, the stabilization of system by discrete-
time stochastic feedback control have been discussed in some
literatures. For example, Hagiwara and Araki [6] designed
the stable state feedback controller based on the multirate
sampling of the plant output. Allwright et al. [1] studied
the asymptotic stabilization of linear systems by period-
ic, piecewise constant, output feedback. Ebihara et al. [5]
discussed the periodically time-varying controller synthesis
for multiobjective H2/H∞ control of discrete-time systems.
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Some other work in this area was made by Li et al. [8], Dong
[4], Xie and Jiang [22]. However, the almost surely stochastic
stabilization problem for nonlinear stochastic system has not
been studied so far. In this paper, we studied the stabilization
of nonlinear stochastic system by linear stochastic feedback
control from discrete-time observations. The almost sure
exponential stabilization of the nonlinear stochastic system
is discussed and the sufficient conditions are provided.

This paper is constructed in the following way. In Sec-
tion 2, the nonlinear stochastic system is introduced, some
mathematical preliminaries and basic assumptions are given.
Section 3 discusses the almost sure exponential stabilization
of the nonlinear stochastic system and provides the suffi-
cient conditions. In Section 4, The results are extended to
stochastic feedback control with Lévy noises. The conclusion
is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, unless otherwise specified, let
(Ω,F , {Ft}t≥0, P ) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions that it
is right continuous and F0 contains all P -null sets. Let
B(t) = (B1(t), · · · , Bn(t))T be an n-dimensional Brownian
motion defined on the probability space.

Let us consider an unstable ODE system:

dy(t)

dt
= f(y(t)) (1)

where f : Rn → Rn. Now we design a state feedback
stochastic control Ax(δt)dB(t) based on the discrete-time
observations and a Brownian motion to stabilize the system:

dx(t) = f(x(t))dt+Ax(δt)dB(t) t ≥ 0, (2)

where A ∈ Rn×n, x(0) = x0 and

δt = [
t

τ
]τ, (3)

where τ is the discrete time gap between two adjacent
observations, [ tτ ] is the integer part of t

τ . To discuss the
stochastic stabilisation theory, we also impose the following
assumptions.

Assumption 1: Assume that the drift functions f(x) is
globally Lipschitz continuous

|f(x)− f(y)| ≤ K1|x− y| (4)

for all x, y ∈ Rn, where K1 is a positive constant.
Due to the discussion of stability, we also assume the

origin is an equilibrium point f(0) = 0. It is easy to see that
Assumption 1 implies the following linear growth condition

|f(x)| ≤ K1|x| (5)
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for all x ∈ Rn. Besides, we also require some conditions
on the diffusion coefficient, which is our controller function
Ax(t).

Assumption 2: Assume that the diffusion coefficient fulfill
the following

|Ax|2 ≤ K2|x|2 and |xTAy|2 ≥ K3|x|2|y|2 (6)

for all x, y ∈ Rn, where both K2 and K3 are positive
constants.

Because the controller function is human designed, thus
the assumption we required is reasonable. One may known
from [10], [11] that it is not difficult to find the examples of
the square matrix A that fulfils Assumption 2.

Definition 1: The solution of system (31) is said to be
almost sure exponential stability if it satisfies

lim
t→∞

sup
1

t
log(|x(t)|) < 0 a.s.

We also need some lemmas such as Burkholder-Davis-
Gundy inequality, Borel-Cantelli lemma and Hölder inequal-
ity as follows.

Lemma 1: (Burkholder-Davis-Gundy inequality) [12] For
t ≥ 0, let x(t) =

∫ t
0
g(s)dB(s) A(t) =

∫ t
0
|g(s)|2ds. Then,

for any p > 0, there exist positive constants cp and Cp
satisfying

cpE|A(t)|
p
2 ≤ E( sup

0≤s≤t
|x(s)|p) ≤ CpE|A(t)|

p
2 ,

where
cp =(

p

2
)p, Cp = (

32

p
)
p
2 , 0 < p < 2;

cp =1, Cp = 4, p = 2;

cp =(2p)−
p
2 , Cp = (

pp+1

2(p− 1)p−1
))
p
2 , p > 2.

Lemma 2: (Borel-Cantelli lemma) [15] For the complete
probability space (Ω,F , {Ft}t≥0, P ),

(1) if {Ak} ⊂ F and
∑∞
k=1 P(Ak) <∞, then

P(lim sup
k→∞

Ak) = 0.

Namely, there exist a positive constant k0 and set Ω0,
where Ω0 ∈ F and satisfying P(Ω0) = 1, for any ω ∈ Ω0,
it follows that

ω /∈ Ak k ≥ k0.

(2) If {Ak} ⊂ F are independent and
∑∞
k=1 P(Ak) =∞,

then
P(lim sup

k→∞
Ak) = 1.

Namely, there exist a set Ω1 satisfying P(Ω1) = 1, and
Aki , for any ω ∈ Ω1, it follows that

ω ∈ Aki ∀i ∈ I+.

Lemma 3: (Hölder inequality) [14] If p > 1, q > 0, 1
p +

1
q = 1,X ∈ Lp, Y ∈ Lq , X,Y ∈ (Ω,F ,P), then

E|XY | ≤ (E|X|P )
1
p (E|Y |q)

1
q .

III. MAIN RESULTS

To illustrate our main theorem, let us present an useful
lemma first.

Lemma 4: Let Assumptions 1 and 2 hold. Let us define

K(τ) = (8τ2K2
1 + 4τK2)e4τ

2K2
1 , (7)

If τ > 0 is sufficiently small such that for K(τ) < 1, then
the solution of (31) satisfies

E|x(s)− x(δ(s))|2ds ≤ K(τ)

1−K(τ)
E|x(s)|2 (8)

for any t ≥ 0.
Proof: Fix any t ≥ 0, there must exist an integer k ≥ 0

such that t ∈ [kτ, (k + 1)τ), thus we have δ(t) = kτ . It is
easy to see from (31) that

x(t)− x(δ(t))

= x(t)− x(kτ)

=

∫ t

kτ

f(x(s))ds+

∫ t

kτ

Ax(kτ)dB(s)

By the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, Hölder’s
inequality and Burkholder-Davis-Gundy inequality, we have

E|x(t)− x(δ(t))|2

≤ 2E|
∫ t

kτ

f(x(s))ds|2 + 2E|
∫ t

kτ

Ax(kτ)dB(s)|2

≤ 2τ

∫ t

kτ

E|f(x(s))|2ds+ 2

∫ t

kτ

E|Ax(kτ)|2ds

≤ 2τK2
1

∫ t

kτ

E|x(s)|2ds+ 2τK2E|x(kτ)|2

≤ 4τK2
1

∫ t

kτ

E|x(s)− x(δ(t))|2ds

+(4τ2K2
1 + 2τK2)E|x(kτ)|2

By the Gronwall inequality, it follows that

E|x(t)− x(δ(t))|2

≤ (4τ2K2
1 + 2τK2)e4τ

2K2
1E|x(kτ)|2

≤ (8τ2K2
1 + 4τK2)e4τ

2K2
1 (E|x(t)− x(kτ)|2

+E|x(kτ)|2)

≤ K(τ)

1−K(τ)
E|x(t)|2

Theorem 1: Let Assumptions 1 and 2 hold, the controlled
system (31) is almost sure exponential stable.

Proof: Since

d|x(t)|2 = [2x(t)T f(x(t)) + |Ax(δ(t))|2]dt

+2x(t)TAx(δ(t))dB(t).
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let p ∈ (0, 1), then we have

d|x(t)|p

= (
p

2
(|x(t)|2)

p
2−1[2x(t)T f(x(t)) + |Ax(δ(t))|2]

+
p

4
(
p

2
− 1)(|x(t)|2)

p
2−2|2x(t)TAx(δ(t))|2)dt

+
p

2
(|x(t)|2)

p
2−12x(t)TAx(δ(t))dB(t)

= (
p

2
|x(t)|p−2[2x(t)T f(x(t)) + |Ax(δ(t))|2]

+p(
p

2
− 1)|x(t)|p−4|x(t)TAx(δ(t))|2)dt

+p|x(t)|p−2x(t)TAx(δ(t))dB(t).

Therefore,

E(eθ(k+1)τ |x((k + 1)τ)|p)

≤ eθkτE|x(kτ)|p + E
∫ (k+1)τ

kτ

(θeθs|x(s)|p

+eθs(
p

2
|x(s)|p−2[2x(s)T f(x(s)) + |Ax(δ(s))|2]

+p(
p

2
− 1)|x(s)|p−4|x(s)TAx(δ(s))|2))ds.

Because of p
2 − 1 < 0 and according to all assumptions,

it can be checked that

E(eθ(k+1)τ |x((k + 1)τ)|p)

≤ eθkτE|x(kτ)|p + E
∫ (k+1)τ

kτ

(θeθs|x(s)|p

+eθs(
p

2
|x(s)|p−2[2K1|x(s)|2 + 2K2|x(s)|2

+2K2|x(s)− x(δ(s))|2]

+p(
p

2
− 1)|x(s)|p−2K3|x(δ(s))|2))ds. (9)

By the elementary inequality a2 ≥ 1/2b2 − |a − b|2 and
notice that p

2 − 1 < 0 again, we have

p(
p

2
− 1)|x(s)|p−2K3|x(δ(s))|2

≤ p(p
2
− 1)|x(s)|p−2K3(

1

2
|x(s)|2

−|x(s)− x(δ(s))|2). (10)

Substituting (10) into (9), it follows that

E(eθ(k+1)τ |x((k + 1)τ)|p)

≤ eθkτE|x(kτ)|p +

∫ (k+1)τ

kτ

[θ + p(K1 +K2

−K3

2
(1− p

2
))]eθsE|x(s)|pds

+

∫ (k+1)τ

kτ

p[K2 + (1− p

2
)K3]eθsE(|x(s)|p−2

|x(s)− x(δ(s))|2)ds.

By Lemma 4, I wish we can somehow get∫ (k+1)τ

kτ

p[K2 + (1− p

2
)K3]eθsE(|x(s)|p−2

|x(s)− x(δ(s))|2)ds

≤
∫ (k+1)τ

kτ

p[K2 + (1− p

2
)K3]

K(τ)

1−K(τ)
eθsE(|x(s)|p)ds.

Then let p sufficient small so that

K1 +K2 <
K3

2
(1− p

2
).

When τ is sufficient small, it follows that

[K2 + (1− p

2
)K3]

K(τ)

1−K(τ)
<
K3

2
(1− p

2
)− (K1 +K2).

Then, let

θ = −p(K1 +K2 −
K3

2
(1− p

2
)

+[K2 + (1− p

2
)K3]

K(τ)

1−K(τ)
) > 0.

We can obtain

E(eθ(k+1)τ |x((k + 1)τ)|p) ≤ eθkτE|x(kτ)|p, (11)

which means

E|x((k + 1)τ)|p ≤ eθτE|x(kτ)|p. (12)

By [11] we know that there exist a constant H such that

E( sup
kτ≤t≤(k+1)τ

|x(t)|p) ≤ HE|x(kτ)|p ≤ H|x0|pe−kθτ , (13)

for all k ≥ 1.
So we have

P ( sup
kτ≤t≤(k+1)τ

|x(t)|p ≥ e− 1
2kθτ ) ≤ H|x0|pe−

1
2kθτ , (14)

for all k ≥ 1.
Then by the well-know Borel-Cantelli lemma, we have

sup
kτ≤t≤(k+1)τ

|x(t)|p < e−
1
2kθτ , (15)

holds for all but finitely many k.
Thus, for almost all ω ∈ Ω, there exist an integer k0 =

k0(ω) such that

sup
kτ≤t≤(k+1)τ

|x(t, ω)|p < e−
1
2kθτ , (16)

for all k ≥ k0(ω).
Therefore, for kτ ≤ t ≤ (k + 1)τ and k ≥ k0, we have

1

t
log(|x(t, ω)|) < −

1
2kθτ

p(k + 1)τ
. (17)

Letting t→∞, we get

lim sup
t→∞

1

t
log(|x(t, ω)|) < − θ

2p
< 0, (18)

for almost all ω ∈ Ω. Which means that the system is almost
sure exponential stable.

The proof is complete.
Remark 1: Let us consider an unstable linear ODE sys-

tem:
dx(t)

dt
= αx(t). (19)

Now we design a state feedback stochastic control
βx([t/τ ]τ)dB(t) based on the a Brownian motion to stabilize
the system:

dx(t) = αx(t)dt+ βx([t/τ ]τ)dB(t) t ≥ 0, (20)

where x(0) = x0 ∈ R, τ is a positive constant. Let us form
this equation as a stochastic differential delay equation.
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In the following theorem, the almost sure exponential
stable of the stochastic system is proved.

Theorem 2: For any initial value x0 ∈ R, the controlled
system (20) is almost sure exponential stable.

Proof: Let tk = kτ for k = 0, 1, 2, ... and set xk =
x(tk). For t ∈ [tk, tk+1], x(t) can be regarded as the solution
to the following equation

dx(t) = αx(t)dt+ βxkdB(t), (21)

with initial value xk = x(tk) at time tk. Then, it can be
checked that

x(t) = eα(t−tk)xk + β

∫ t

tk

eα(t−s)xkdB(s). (22)

In particular,

xk+1

= xke
ατ + β

∫ t

tk

eα(tk+1−s)xkdB(s)

= xk(eατ + β

∫ t

tk

eα(tk+1−s)dB(s).

Hence, for p ∈ (0, 1), we obtain that

E|xk+1|p = E|xk|pE|eατ + β

∫ t

tk

eα(tk+1−s)dB(s).

By the elementary inequality |a+b+c|p ≤ 3p(|a|p+|b|p+
|c|p) for any real numbers a, b and c and Burkholder-Davis-
Gundy inequality, we derive

E|eατ + β

∫ t

tk

eα(tk+1−s)dB(s)|p

≤ 3pE(eατp + |β
∫ t

tk

eα(tk+1−s)dB(s)|p

≤ 3peατp + 3p|β|pcp(
∫ tk+1

tk

e2α(tk+1−s)ds)
p
2

≤ e−ετ ,

where cp s a positive number dependent on p only and ε > 0.
Then, we obtain that

E|xk+1|p = E|xk|pe−ετ ,∀k ≥ 0. (23)

Thus, we get

E|xk+1|p = |x0|pe−ε(k+1)τ ,∀k ≥ 0. (24)

Note that

E( sup
tk≤t≤tk+1

|x(t)|p) = E|xk|pE( sup
tk≤t≤tk+1

|eατ

+β

∫ t

tk

eα(tk+1−s)dB(s).

By the same methods above, it follows that

E( sup
tk≤t≤tk+1

|eατ + β

∫ t

tk

eα(tk+1−s)dB(s)

≤ 3peατp + 3p|β|pcpτ
p
2 eατp

= 3peατp(1 + |β|pcpτ
p
2 ).

Let 3peατp(1 + |β|pcpτ
p
2 ) = C, we obtain that

E( sup
tk≤t≤tk+1

|x(t)|p) ≤ C|x0|pe−εkτ ,∀k ≥ 0. (25)

Since

P( sup
tk≤t≤tk+1

|x(t)|p ≥ e−0.5εkτ )

≤
E(suptk≤t≤tk+1

|x(t)|p)
e−0.5εkτ

≤ C|x0|pe−0.5εkτ .

By the Borel-Cantelli lemma, it can be checked that

sup
tk≤t≤tk+1

|x(t)|p < e−0.5εkτ , (26)

holds for all but finitely many k. That is, for almost all ω ∈
Ω, there is an integer k0 = k0(ω) such that

sup
tk≤t≤tk+1

|x(t, ω)|p < e−0.5εkτ ,∀k ≥ k0(ω). (27)

Therefore, for tk ≤ t ≤ tk+1 and k ≥ k0, we obtain that

1

t
log(|x(t, ω)|) < − 0.5εkτ

p(k + 1)τ
. (28)

Let t→∞, for almost all ω ∈ Ω, we get

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ − ε

2p
. (29)

IV. LINEAR EQUATIONS WITH LÉVY NOISES

Throughout this paper, unless otherwise specified, let
(Ω,F , {Ft}t≥0, P ) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions that it is
right continuous and F0 contains all P -null sets. Let B(t)
be a scalar Brownian motion defined on the probability space.
N(t, y) is an l-dimensional Ft-adapted Poisson random
measure on [0,+∞) × Rl with compensator Ñ(t, y) which
satisfies Ñ(dt, dy) = N(dt, dy)− λφ(dy)dt, where λ is the
probability density of Poisson process and φ is the probabil-
ity distribution of y. B(t) and N(t, y) are independent.

Let us consider an unstable linear ODE system:

dx(t)

dt
= αx(t). (30)

Now we design a state feedback stochastic control
βx([t/τ ]τ)dB(t) +

∫
Y
x([t/τ ]τ)N(dt, dy) based on the a

Brownian motion and a Lévy noise to stabilize the system:

dx(t) = αx(t)dt+ βx([t/τ ]τ)dB(t) (31)

+

∫
Y

x([t/τ ]τ)N(dt, dy) t ≥ 0,

where x(0) = x0 ∈ R, τ is a positive constant. Let us form
this equation as a stochastic differential delay equation.

In the following theorem, the almost sure exponential
stable of the stochastic system is proved.

Theorem 3: For any initial value x0 ∈ R, the controlled
system (31) is almost sure exponential stable.

Proof: Let tk = kτ for k = 0, 1, 2, ... and set xk =
x(tk). For t ∈ [tk, tk+1], x(t) can be regarded as the solution
to the following equation

dx(t) = αx(t)dt+ βxkdB(t) +

∫
Y

xkN(dt, dy), (32)
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with initial value xk = x(tk) at time tk. Then, it can be
checked that

x(t) = eα(t−tk)xk + β

∫ t

tk

eα(t−s)xkdB(s) (33)

+

∫ t

tk

∫
Y

eα(t−s)xkN(ds, dy).

In particular,

xk+1 = xke
ατ + β

∫ t

tk

eα(tk+1−s)xkdB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)xkN(ds, dy)

= xk(eατ + β

∫ t

tk

eα(tk+1−s)dB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)).

Hence, for p ∈ (0, 1), we obtain that

E|xk+1|p = E|xk|pE|eατ + β

∫ t

tk

eα(tk+1−s)dB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)|p.

By the elementary inequality |a+b+c|p ≤ 3p(|a|p+|b|p+
|c|p) for any real numbers a, b and c and Burkholder-Davis-
Gundy inequality, we derive

E|eατ + β

∫ t

tk

eα(tk+1−s)dB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)|p

≤ 3pE(eατp + |β
∫ t

tk

eα(tk+1−s)dB(s)|p

+|
∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)|p

≤ 3peατp + 3p|β|pcp(
∫ tk+1

tk

e2α(tk+1−s)ds)
p
2

+3pλ
p
2 (

∫ tk+1

tk

e2α(tk+1−s)ds)
p
2

≤ e−ετ ,

where cp s a positive number dependent on p only and ε > 0.
Then, we obtain that

E|xk+1|p = E|xk|pe−ετ ,∀k ≥ 0. (34)

Thus, we get

E|xk+1|p = |x0|pe−ε(k+1)τ ,∀k ≥ 0. (35)

Note from (33) that

E( sup
tk≤t≤tk+1

|x(t)|p) = E|xk|pE( sup
tk≤t≤tk+1

|eατ

+β

∫ t

tk

eα(tk+1−s)dB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)|p).

By the same methods above, it follows that

E( sup
tk≤t≤tk+1

|eατ + β

∫ t

tk

eα(tk+1−s)dB(s)

+

∫ t

tk

∫
Y

eα(tk+1−s)N(ds, dy)|p)

≤ 3peατp + 3p|β|pcpτ
p
2 eατp + 3pλ

p
2 eατp

= 3peατp(1 + |β|pcpτ
p
2 + λ

p
2 ).

Let 3peατp(1 + |β|pcpτ
p
2 + λ

p
2 ) = C, we obtain that

E( sup
tk≤t≤tk+1

|x(t)|p) ≤ C|x0|pe−εkτ ,∀k ≥ 0. (36)

Since

P( sup
tk≤t≤tk+1

|x(t)|p ≥ e−0.5εkτ )

≤
E(suptk≤t≤tk+1

|x(t)|p)
e−0.5εkτ

≤ C|x0|pe−0.5εkτ .

By the Borel-Cantelli lemma, it can be checked that

sup
tk≤t≤tk+1

|x(t)|p < e−0.5εkτ , (37)

holds for all but finitely many k. That is, for almost all ω ∈
Ω, there is an integer k0 = k0(ω) such that

sup
tk≤t≤tk+1

|x(t, ω)|p < e−0.5εkτ ,∀k ≥ k0(ω). (38)

Therefore, for tk ≤ t ≤ tk+1 and k ≥ k0, we obtain that

1

t
log(|x(t, ω)|) < − 0.5εkτ

p(k + 1)τ
. (39)

Let t→∞, for almost all ω ∈ Ω, we get

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ − ε

2p
. (40)

The proof is complete.

V. NONLINEAR EQUATIONS WITH LÉVY NOISES

In this section, we consider the stochastic feedback control
with Lévy noises as follows:

dx(t) = f(x(t))dt+Hx(δt)dB(t)

+

∫
Y

x(δ(t))N(dt, dy) t ≥ 0, (41)

where x(0) = x0, H ∈ Rn×n, N(t, y) is an l-dimensional
Ft-adapted Poisson random measure on [0,+∞)×Rl with
compensator Ñ(t, y) which satisfies Ñ(t, y) = N(dt, dy)−
ν(dy)dt, ν(dy) is a Lévy measure.

Then, the assumptions in Section 3 should be changed to
Assumption 3: Assume that the drift functions f(x) is

globally Lipschitz continuous

|f(x)− f(ξ)|+
∫
Y

|x− ξ|ν(dy) ≤ K1|x− ξ| (42)

for all x, ξ ∈ Rn, where K1 is a positive constant.
Assumption 4: Assume that the diffusion coefficient fulfill

the following conditions

|Hx|2 ≤ K2|x|2 and |xTHξ|2 ≥ K3|x|2|ξ|2 (43)
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for all x, ξ ∈ Rn, where both K2 and K3 are positive
constants.

Therefore, by using the technique of generalized Itô for-
mula for Lévy stochastic integral, Borel-Cantelli lemma,
Burkholder-Davis-Gundy inequality, Hölder inequality and
Gronwall inequality, it fololows that

Lemma 5: Let Assumptions 3 and 4 hold. Let us define

K(τ) = (12τ2K2
1 + 6τ(K2 + 1))e6τ

2K2
1 , (44)

If τ > 0 is sufficiently small such that for K(τ) < 1, then
the solution of (19) satisfies

E|x(s)− x(δ(s))|2ds ≤ K(τ)

1−K(τ)
E|x(s)|2 (45)

for any t ≥ 0.
Theorem 4: Let Assumptions 3 and 4 hold, the controlled

system (19) is almost sure exponential stable.
Remark 2: The proof of Lemma 5 and Theorem 2 have

some different places with Lemma 4 and Theorem 1 because
of the Lévy noises. For example,

x(t)− x(δ(t))

= x(t)− x(kτ)

=

∫ t

kτ

f(x(s))ds+

∫ t

kτ

Hx(kτ)dB(s)

+

∫ t

kτ

∫
Y

x(kτ)N(ds, dy).

E|x(t)− x(δ(t))|2

≤ 3E|
∫ t

kτ

f(x(s))ds|2 + 3E|
∫ t

kτ

Hx(kτ)dB(s)|2

+3E|
∫ t

kτ

∫
Y

x(kτ)N(ds, dy)|2

≤ 3τ

∫ t

kτ

E|f(x(s))|2ds+ 3

∫ t

kτ

E|Hx(kτ)|2ds

+3E
∫ t

kτ

∫
Y

|x(kτ)|ν(dy)ds

≤ 3τK2
1

∫ t

kτ

E|x(s)|2ds+ 3τK2E|x(kτ)|2

+3τE|x(kτ)|2

= 3τK2
1

∫ t

kτ

E|x(s)|2ds+ 3τ(K2 + 1)E|x(kτ)|2

≤ 6τK2
1

∫ t

kτ

E|x(s)− x(δ(t))|2ds

+(6τ2K2
1 + 3τ(K2 + 1))E|x(kτ)|2.

E|x(t)− x(δ(t))|2

≤ (6τ2K2
1 + 3τ(K2 + 1))e6τ

2K2
1E|x(kτ)|2

≤ (12τ2K2
1 + 6τ(K2 + 1))e6τ

2K2
1 (E|x(t)

−x(kτ)|2 + E|x(kτ)|2)

≤ K(τ)

1−K(τ)
E|x(t)|2.

d|x(t)|2

= [2x(t)T f(x(t)) + |Hx(δ(t))|2]dt

+2x(t)THx(δ(t))dB(t) +

∫
Y

x2(δ(t))νdy

+2x(t)T
∫
Y

x(δ(t))N(dt, dy).

d|x(t)|p

= (
p

2
(|x(t)|2)

p
2−1[2x(t)T f(x(t)) + |Hx(δ(t))|2]

+
p

4
(
p

2
− 1)(|x(t)|2)

p
2−2|2x(t)THx(δ(t))|2)dt

+
p

2
(|x(t)|2)

p
2−12x(t)THx(δ(t))dB(t)

+
p

2
(|x(t)|2)

p
2−12x(t)T

∫
Y

x(δ(t))N(dt, dy)

+
p

4
(
p

2
− 1)(|x(t)|2)

p
2−2

(4(x(t)T )2 + 1)

∫
Y

x2(δ(t))νdy

= (
p

2
|x(t)|p−2[2x(t)T f(x(t)) + |Hx(δ(t))|2]

+p(
p

2
− 1)|x(t)|p−4|x(t)THx(δ(t))|2)dt

+p|x(t)|p−2x(t)THx(δ(t))dB(t)

+p|x(t)|p−2x(t)T
∫
Y

x(δ(t))N(dt, dy)

+
p

4
(
p

2
− 1)|x(t)|p−2(4(x(t)T )2 + 1)

∫
Y

x2(δ(t))νdy.

Remark 3: If the state feedback stochastic control is driv-
en by α-stable noises as follows:

dx(t) = αx(t)dt+ βx([t/τ ]τ)dB(t)

+x([t/τ ]τ)dZ(t) t ≥ 0,

where Z = {Zt, t ≥ 0} is a strictly symmetric α-stable Lévy
motion.

A random variable η is said to have a stable distribu-
tion with index of stability α ∈ (0, 2], scale parameter
σ ∈ (0,∞), skewness parameter β ∈ [−1, 1] and location
parameter µ ∈ (−∞,∞) if it has the following characteristic
function:

φη(u) =



exp{−σα|u|α(1− iβsgn(u) tan
απ

2
) + iµu}

ifα 6= 1,

exp{−σ|u|(1 + iβ
2

π
sgn(u) log |u|) + iµu}

ifα = 1.

Then, the methods to prove the almost sure exponential
stable is different from Lévy noises and it is more difficult.
For example:

x(t)− x(δ(t))

= x(t)− x(kτ)

=

∫ t

kτ

f(x(s))ds+

∫ t

kτ

Hx(kτ)dB(s)

+

∫ t

kτ

x(kτ)dZ(s).
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E|x(t)− x(δ(t))|2

≤ 3E|
∫ t

kτ

f(x(s))ds|2 + 3E|
∫ t

kτ

Hx(kτ)dB(s)|2

+3E|
∫ t

kτ

x(kτ)dZ(s)|2

≤ 3τ

∫ t

kτ

E|f(x(s))|2ds+ 3

∫ t

kτ

E|Hx(kτ)|2ds

+3E(

∫ t

kτ

|x(kτ)|2αds) 1
α

≤ 3τK2
1

∫ t

kτ

E|x(s)|2ds+ 3τK2E|x(kτ)|2

+3τ
1
αE|x(kτ)|2α

≤ 6τK2
1

∫ t

kτ

E|x(s)− x(δ(t))|2ds

+(6τ2K2
1 + 3τK2 + 3τ

1
α )E|x(kτ)|2.

E|x(t)− x(δ(t))|2

≤ (6τ2K2
1 + 3τK2 + 3τ

1
α )e6τ

2K2
1E|x(kτ)|2

≤ (12τ2K2
1 + 6τK2 + 6τ

1
α )e6τ

2K2
1 (E|x(t)

−x(kτ)|2 + E|x(kτ)|2)

≤ K(τ)

1−K(τ)
E|x(t)|2.

VI. CONCLUSIONS

In this paper, the almost sure exponential stable of nonlin-
ear stochastic system by linear stochastic feedback control
from discrete-time observations has been studied. By using
Itô formula, Borel-Cantelli lemma, Burkholder-Davis-Gundy
inequality, Hölder inequality and Gronwall inequality, the al-
most sure exponential stabilization of the nonlinear stochastic
system has been discussed and the sufficient conditions have
been provided. Moreover, the results have been extended
to stochastic feedback control with Lévy noises. Further
research topics will include the stabilisation problem of
hybrid stochastic systems.
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