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Abstract—In this work, a high-order classical Boussinesq-
Burgers equation is investigated. We establish a transfora-
tion which turns the high-order classical Boussinesq-Burgers
equation into a single Sharma-Tasso-Olver equation, then we
obtain Bäcklund transformation and abundant exact solutions,
including multi-solitary wave solution, trigonometric function
series solution, rational series solution and solution consisting
of the three types of solutions.

Index Terms—high-order classical Boussinesq-Burgers
(HCBB) equation, Bäcklund transformation, Soliton solution,
Homogenous balance method.

I. INTRODUCTION

IT is well known that nonlinear evolution equations
play an important role in describing nonlinear scientific

phenomena, such as marine engineering, fluid dynamics,
plasma physics, chemistry, and physics. The research on
qualitative and quantitative features of these equations has
increased significantly in recent decades. It has become
an extremely active area of study to solve these nonlinear
evolution equations. With the aid of symbolic computation,
a variety of powerful methods are presented, such as Hirota’s
bilinear method [1,2], Bäcklund transformation (BT) [3-5],
Darboux transformation (DT) [6,7], Painlevé analysis [8-
10], homogeneous balance method (HB) [11-13] and so
on. In Refs. [14,15], Fan extended HB method to search
for Bäcklund transformations and similarity reductions of
nonlinear PDE. So more solutions can be obtained by the
extended HB method.

In this work, we will discuss the following high-order
classical Boussinesq-Burgers (HCBB) equation [16]

ut =
3
2 (β − 1)(uux)x +

3
2 (uv)x + 3u2ux +

1
4uxxx,

vt = 3β(1− 1
2β)(2uxuxx + uuxxx) +

3
2 (1− β)

(uvx)x +
3
2vvx + 3(u2v)x +

1
4vxxx.

(1)

where β is an arbitrary constant. When β = 1, Eq. (1)
becomes a high-order Boussinesq-Burgers (HBB) equation

ut =
3
2 (uv)x + 3u2ux +

1
4uxxx,

vt = 3uxuxx +
3
2uuxxx +

3
2vvx + 3(u2v)x

+ 1
4vxxx.

(2)

When β = 0, Eq. (1) becomes a high-order Boussinesq
system

ut = − 3
2 (uux)x +

3
2 (uv)x + 3u2ux +

1
4uxxx,

vt =
3
2 (uvx)x +

3
2vvx + 3(u2v)x +

1
4vxxx.

(3)
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In this work, we first establish a transforation which turns
the HCBB equation into a single Sharma-Tasso-Olver (STO)
equation. By the extended HB method [14,15], we reduce
the STO equation to a linear PDE and obtain Bäcklund
transformation of it. In addition, the self-transformation of
solutions for the HCBB equation can be obtained. By the
Bäcklund transformation and various series solutions of the
linear PDE, we obtain abundant exact solutions of the HCBB
equation, including multi-solitary wave solution, trigonomet-
ric function series solution, rational series solution and solu-
tion consisting of the three types of solutions. Furthermore,
more exact solutions can be obtained by repeatedly using the
self-transformation of solutions.

II. BÄCKLUND TRANSFORMATION FOR THE HCBB
EQUATION

For simplicity, we consider the function transformation
v = λux + µ, which converts Eq. (1) into

ut =
3
2 (β − 1)(uux)x +

3
2 [u(λux + µ)]x + 3u2ux +

1
4uxxx,

λuxt = 3β(1− 1
2β)(2uxuxx + uuxxx) +

3
2λ(1− β)(uuxx)x

+ 3
2λ(λux + µ)uxx + 3[u2(λux + µ)]x +

1
4λuxxxx.

Especially, if we set λ = 2− β, µ = 0, the above equations
convert into a simple STO equation [17]

ut = 3u2ux +
3
2u

2
x +

3
2uuxx +

1
4uxxx. (4)

According to the extended HB method [14,15], we suppose
that the solution of Eq. (4) has the following form

u(x, t) = f ′(ω)ωx(x, t) + u0(x, t), (5)

where f, ω are functions to be determined later, and u0(x, t)
is a solution of Eq. (4). Then we have

ut = f ′′(ω)ωxωt + f ′(ω)ωxt + u0t,
ux = f ′′(ω)ω2

x + f ′(ω)ωxx + u0x,
uxx = f ′′′(ω)ω3

x + 3f ′′(ω)ωxωxx + f ′(ω)ωxxx
+u0xx,

uxxx = f (4)(ω)ω4
x + 6f ′′′(ω)ω2

xωxx + f ′′(ω)
(4ωxωxxx + 3ω2

xx) + f ′(ω)ωxxxx + u0xxx.

(6)

Substituting (6) into Eq. (4), we have

−( 32f
′f ′′′ + 3f ′2f ′′ + 3

2f
′′2 + 1

4f
(4))w4

x

−(6f ′f ′′ + 3
2f
′′′)u0w

3
x − ( 152 f

′f ′′wxx + 3f ′3wxx
+ 3

2f
′′′wxx + 3f ′′u0x + 3f ′2u0x + 3f ′′u20)w

2
x

+(f ′′wt − 6f ′2u0wxx − 6f ′u0u0x − 9
2f
′′u0wxx

−f ′′wxxx − 3
2f
′2wxxx − 3

2f
′u0xx)wx

+u0t + f ′wxt − 3f ′u20wxx − 3f ′u0xwxx
− 3

2f
′u0wxxx − 3

2u
2
0x − 3u20u0x − 3

2f
′2w2

xx

− 3
2u0u0xx −

3
4f
′′w2

xx − 1
4f
′wxxxx − 1

4u0xxx = 0.

(7)
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Setting the coefficient of w4
x to zero, we obtain the ODE

about f(w)

3
2f
′f ′′′ + 3f ′2f ′′ + 3

2f
′′2 + 1

4f
(4) = 0. (8)

which admits the solution f(w(x, t)) = 1
2 lnw(x, t) or

f(w(x, t)) = lnw(x, t). In order to obtain Bäcklund trans-
formation of Eq. (4), we choose the solution

f(w(x, t)) = 1
2 lnw(x, t). (9)

From (9), it holds that

f ′2 = − 1
2f
′′, f ′f ′′ = − 1

4f
′′′, f ′3 = 1

8f
′′′.

We can use these expressions to linearize the derivative terms
of f(w) in (7) and obtain sum of some terms of f ′ and f ′′.
Setting their coefficients to zero, we can obtain the following
reduction equations

u0t − 3u20u0x − 3
2u

2
0x − 3

2u0u0xx −
1
4u0xxx = 0,

wxt − 6u0u0xwx − 3u20wxx − 3
2u0xxwx

−3u0xwxx − 3
2u0wxxx −

1
4wxxxx = 0,

wtwx − 3u20w
2
x − 3

2u0xw
2
x − 3

2u0wxwxx
− 1

4wxwxxx = 0.

(10)

We find that above conditions can be satisfied, provided that

u0t − 3u20u0x − 3
2u

2
0x − 3

2u0u0xx −
1
4u0xxx = 0,

wt − 3u20wx − 3
2u0xwx −

3
2u0wxx −

1
4wxxx = 0.

(11)

Substituting the expression of (9) into (5), we obtain a
Bäcklund transformation

u(x, t) = 1
2
∂
∂x lnω(x, t) + u0, (12)

where ω(x, t) and u0(x, t) satisfy (11).
It is interesting to note that if the original solution

u0(x, t) = ω(x, t), Eqs. (11) become the same form

ωt − 3ω2ωx − 3
2ω

2
x − 3

2ωωxx −
1
4ωxxx = 0. (13)

which is exactly Eq. (4). So, from the Bäcklund transforma-
tion (12), we can see that if u(x, t) is a solution of Eq. (4),
then

U(x, t) = 1
2
ux(x,t)
u(x,t) + u(x, t).

is still the solution of Eq. (4). Similarly, we can obtain that
if u(x, t) and v(x, t) are a solution of the HCBB equation,
then

U(x, t) = 1
2
ux(x,t)
u(x,t) + u(x, t),

V (x, t) = 1
2

[
v(x,t)
u(x,t)

]
x
+ v(x, t).

(14)

is still the solution of the HCBB equation. It means (14) is
a self-transformation of solutions for the HCBB equation.

III. ABUNDANT EXPLICIT AND EXACT SOLUTIONS TO
THE HCBB EQUATION

In order to obtain exact solutions, we choose the original
solution u0(x, t) = b in Eqs. (11), where b is an arbitrary
constant. Eqs. (11) become a linear PDE

ωt − 3b2ωx − 3
2bωxx −

1
4ωxxx = 0. (15)

Especially, choosing the original solution u0(x, t) = 0 in
Eqs. (11), we can obtain a more simple PDE

ωt − 1
4ωxxx = 0. (16)

Case 1 (Multi-solitary solutions). We apply the traveling
wave transformation ω(x, t) = ω(ξ) = ω(k(x + ct)) to Eq.
(15), which will yield

(c− 3b2)ω′ − 3
2bkω

′′ − 1
4k

2ω′′′ = 0. (17)

where ′ denotes d/dξ and the constant c is the velocity of
traveling wave. Obviously, Eq. (17) admits the solution

ω(ξ) = c0 + c1e
k(x+(3b2+ 3

2 bk+
1
4k

2)t) (18)

where c0, c1, k are arbitrary constants and the traveling wave
velocity c = 3b2 + 3

2bk + 1
4k

2. Since (17) is linear, by the
superposition principle,

ω(ξ) = c0 +
n∑
i=1

cie
ki(x+(3b2+ 3

2 bki+
1
4k

2
i )t) (19)

is still the solution of Eq. (17), where c0, ci, ki(i =
1, 2, ..., n) are arbitrary constants.

From (19) and the Bäcklund transformation (12), multi-
solitary solution of Eq. (4) can be expressed by

u(x, t) = 1
2

n∑
i=1

cikie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i )t)

c0+
n∑

i=1

cie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i
)t)

+ b.

Similarly, we can obtain that multi-solitary solution of the
HCBB equation can be expressed by

u(x, t) = 1
2

n∑
i=1

cikie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i )t)

c0+
n∑

i=1

cie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i
)t)

+ b,

v(x, t) = 2−β
2

{ n∑
i=1

cik
2
i e

ki(x+(3b2+ 3
2
bki+

1
4
k2
i )t)

c0+
n∑

i=1

cie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i
)t)

−

[ n∑
i=1

cikie
ki(x+(3b2+ 3

2
bki+

1
4
k2
i )t)

c0+
n∑

i=1
cie

ki(x+(3b2+ 3
2
bki+

1
4
k2
i
)t)

]2}
.

(20)

Especially, choosing the original solution u0(x, t) = 0, we
can obtain the solution of (16)

ω(ξ) = c0 +
n∑
i=1

cie
ki(x+

1
4k

2
i t) (21)

and multi-solitary solution of Eq. (4) with compact form

u(x, t) = 1
2

n∑
i=1

cikie
ki(x+1

4
k2
i t)

c0+
n∑

i=1

cie
ki(x+1

4
k2
i
t)
.

Then, we can obtain that multi-solitary solution of the HCBB
equation can be expressed by

u(x, t) = 1
2

n∑
i=1

cikie
ki(x+1

4
k2
i t)

c0+
n∑

i=1

cie
ki(x+1

4
k2
i
t)
,

v(x, t) = 2−β
2

{ n∑
i=1

cik
2
i e

ki(x+1
4
k2
i t)

c0+
n∑

i=1
cie

ki(x+1
4
k2
i
t)

−

[ n∑
i=1

cikie
ki(x+1

4
k2
i t)

c0+
n∑

i=1

cie
ki(x+1

4
k2
i
t)

]2}
.

(22)

Taking n = 3, β = 1, c0 = 1, ci = 1, ki = i(i = 1, 2, 3) in
(22), we can show the picture of multi-solitary wave solution
in Fig. 1.
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(a) u(x, t)

(b) v(x, t)

Fig. 1. Multi-solitary wave solutions of the HCBB equation.

Case 2 (Trigonometric function series solutions). We apply
the traveling wave transformation ω(x, t) = ω(ξ) = ω(k(x+
ct)) to Eq. (16), which will yield

cω′ − 1
4k

2ω′′′ = 0. (23)

Obviously, (23) admits two trigonometric function solutions

ω1(ξ) = c1 + c2 sin k(x− 1
4k

2t),
ω2(ξ) = d1 + d2 cos l(x− 1

4 l
2t).

(24)

where c1, c2, k, d1, d2, l are arbitrary constants and the trav-
eling wave velocity c = − 1

4k
2 (or − 1

4 l
2). Similarly, by

the superposition principle, Eq. (16) admits the following
trigonometric function series solution

ω(x, t) = c0 +
n∑
i=1

ci sin ki(x− 1
4k

2
i t)

+
n∑
i=1

di cos li(x− 1
4 l

2
i t).

(25)

where c0, ci, di, ki, li(i = 1, 2, · · · , n) are arbitrary con-
stants. From (25) and the Bäcklund transformation (12),
the solution of Eq. (4) consisting of trigonometric functions

series can be expressed as

u(x, t) = 1
2

n∑
i=1

ciki cos ki(x− 1
4k

2
i t)−

n∑
i=1

dili sin li(x− 1
4 l

2
i t)

c0+
n∑

i=1

ci sin ki(x− 1
4k

2
i t)+

n∑
i=1

di cos li(x− 1
4 l

2
i t)
.

Then, we can obtain that trigonometric functions series of
the HCBB equation can be expressed by

u(x, t) =

1
2

n∑
i=1

ciki cos ki(x− 1
4k

2
i t)−

n∑
i=1

dili sin li(x− 1
4 l

2
i t)

c0+
n∑

i=1

ci sin ki(x− 1
4k

2
i t)+

n∑
i=1

di cos li(x− 1
4 l

2
i t)
,

v(x, t) =

2−β
2

{
−

n∑
i=1

cik
2
i sin ki(x− 1

4k
2
i t)+

n∑
i=1

dil
2
i cos li(x− 1

4 l
2
i t)

c0+
n∑

i=1
ci sin ki(x− 1

4k
2
i t)+

n∑
i=1

di cos li(x− 1
4 l

2
i t)

+

[ n∑
i=1

ciki cos ki(x− 1
4k

2
i t)−

n∑
i=1

dili sin li(x− 1
4 l

2
i t)

c0+
n∑

i=1

ci sin ki(x− 1
4k

2
i t)+

n∑
i=1

di cos li(x− 1
4 l

2
i t)

]2}
.

(26)

Taking n = 1, β = 1, c0 = 2, c1 = k1 = 2, d1 = l1 = 1
in (26), we can show the picture of trigonometric function
series solutions in Fig. 2.

(a) u(x, t)

(b) v(x, t)

Fig. 2. Trigonometric function series solutions of the HCBB equation.
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Case 3 (Rational series solution). In order to obtain the
rational series solution of the HCBB equation, we still
consider the linear PDE (16). Suppose that the solution of
(16) can be expressed as the rational series form

ω(x, t) =
n∑
i=0

ki(x)t
i. (27)

Substituting (27) into (16) and setting the coefficient of ti to
zero, we obtain the recursive ODEs for ki(x) as follows

k1 − 1
4
d3k0
dx3 = 0,

2k2 − 1
4
d3k1
dx3 = 0,

3k3 − 1
4
d3k2
dx3 = 0,

...
nkn − 1

4
d3kn−1

dx3 = 0,

− 1
4
d3kn
dx3 = 0.

(28)

Solving the recursive ODEs, we obtain

ki(x) =
1

4ii!

3(n−i)+2∑
j=0

cj(3n+2−j)!
(3n+2−3i−j)!x

3n+2−3i−j ,

(i = 0, 1, · · · , n).
(29)

From (29), the rational series solution of (16) can be ex-
pressed as

ω(x, t) =
n∑
i=0

(
N−3i∑
j=0

cj(N−j)!
4ii!(N−3i−j)!x

N−3i−j

)
ti. (30)

where N = 3n+2. From (30) and the Bäcklund transforma-
tion (12), rational series solution of Eq. (4) can be expressed
as

u(x, t) = 1
2

n∑
i=0

(
N−3i−1∑

j=0

cj(N−j)!

4ii!(N−3i−j−1)!
xN−3i−j−1

)
ti

n∑
i=0

(
N−3i∑
j=0

cj(N−j)!

4ii!(N−3i−j)!
xN−3i−j

)
ti

.

Then, we can obtain that rational series solutions of the
HCBB equation can be expressed by

u(x, t) =

1
2

n∑
i=0

(
N−3i−1∑

j=0

cj(N−j)!

4ii!(N−3i−j−1)!
xN−3i−j−1

)
ti

n∑
i=0

(
N−3i∑
j=0

cj(N−j)!

4ii!(N−3i−j)!
xN−3i−j

)
ti

,

v(x, t) =

2−β
2

{ n∑
i=0

(
N−3i−2∑

j=0

cj(N−j)!

4ii!(N−3i−j−2)!
xN−3i−j−2

)
ti

n∑
i=0

(
N−3i∑
j=0

cj(N−j)!

4ii!(N−3i−j)!
xN−3i−j

)
ti

−

[ n∑
i=0

(
N−3i−1∑

j=0

cj(N−j)!

4ii!(N−3i−j−1)!
xN−3i−j−1

)
ti

n∑
i=0

(
N−3i∑
j=0

cj(N−j)!

4ii!(N−3i−j)!
xN−3i−j

)
ti

]2}
.

(31)

where ci(i = 1, 2, · · · , N) are arbitrary constants.
Taking n = 2, β = 1, ci = 1(i = 0, 1, 2, · · · , 8) in (31),

we can show the picture of rational series solutions in Fig.
3.

Case 4 (Mixed solutions). We note that linear combi-
nations of (21), (25) and (30) will yield the solutions of
(16) by the superposition principle. Then, by Bäcklund

(a) u(x, t)

(b) v(x, t)

Fig. 3. Rational series solutions of the HCBB equation.

transformation (12), the mixed exact solutions of the HCBB
equation can be expressed in the following form

u(x, t) = 1
2

∂
∂x (l1Û1+l2Û2+l3Û3)

l0+l1Û1+l2Û2+l3Û3
,

v(x, t) = 2−β
2

{
∂2

∂x2 (l1Û1+l2Û2+l3Û3)

l0+l1Û1+l2Û2+l3Û3

−
[

∂
∂x (l1Û1+l2Û2+l3Û3)

l0+l1Û1+l2Û2+l3Û3

]2}
.

(32)

where li(i = 0, 1, 2, 3) are arbitrary constants and Ûi(i =
1, 2, 3) present the solutions (24), (29) and (35), respectively.

IV. DISCUSSION

In this work, we first established a suitable transformation
which converts the HCBB equation into a simple STO
equation. By the Bäcklund transformation and various series
solutions of the linear PDE, we obtain abundant exact
solutions of the HCBB equation, including multi-solitary
wave solution, trigonometric function series solution, rational
series solution and solution consisting of the three types of
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solutions. Furthermore, more exact solutions can be obtained
by repeatedly using the self-transformation of solutions.
These results are important and may have significant impact
on future research. It is also worth noting that this method can
be applied to other nonlinear evolution equations, especially
those with high-order nonlinear terms.
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