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Abstract—In this paper, the adaptive stabilization of
fractional-order energy supply-demand system with unknown
parameters is investigated. We assume that the controlled
system is perturbed by external disturbances and model uncer-
tainties, the bounds of both model uncertainties and external
disturbances to be unknown in advance. Moreover, the effects
of dead-zone nonlinear inputs are taken into account. In
order to deal with these unknown parameters, some fractional-
order adaption laws are given. Finally, simulation results are
presented to verify the effectiveness and robustness of the
proposed control strategy.

Index Terms—adaptive stabilization, fractional-order energy
supply-demand system, dead-zone nonlinear input.

I. INTRODUCTION

IN recent years, there has been an increasing attention on
energy issues, it has been known that providing energy

supply-demand security gives the most important necessity
for the energy security and has a vital role for the energy and
economic progress[1]. Hence, stabilizing the energy supply-
demand system to achieve its well development is a major
strategic significance for ensuring energy security.

Recently, studying fractional-order system has become an
active research area. In particular, control and synchroniza-
tion of the fractional order chaotic systems have attracted
much attention from various scientific fields. Some methods
have been proposed to achieve chaos synchronization in
fractional order chaotic systems. Such as nonlinear feedback
control [2], nonlinear state observer control [3], active control
[4], adaptive control [5-7], etc.

However, all control methods in the abovementioned
works are derived based on the ideal assumption of the
control inputs, actually, the dead-zone nonlinearity is often
encountered in various engineering systems, which can cause
unpredictable and undesirable motions in systems. Thus, it
is urgent to consider the effects of the dead-zone inputs.
On the other hand, almost of all control scheme in existing
literature are focus on the stability analysis of fractional-
order systems based on traditional Lyapunov theory, the ap-
plication of fractional-order Lyapunov stability theory is still
an challenging problem and very few articles are dedicated
to this problem.
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Furthermore, in most of the existing research results,
system parameters are assumed to be known in advance
to design the desired controller, while, the stabilization of
fractional-order system with unknown parameters and dead-
zone nonlinear input are not considered simultaneously. As a
matter of fact, there always exist parameter mismatches and
distortions in physical world, so, it is much more attractive
and challenging to realize the stabilization of fractional-order
chaotic system with unknown parameters.

Motivated by the above discussion, the main goal of
this paper is to propose a new adaptive control strategy to
realize the stabilization of fractional-order energy supply-
demand system with unknown parameters and dead-zone
nonlinear inputs, the bounds of both model uncertainties and
external disturbances are unknown in advance. The structure
of this paper is organized as follows. In section 2, relevant
definitions, lemmas are given. Main results are presented in
section 3. Simulation results are shown in section 4. Finally,
conclusion is included in section 5.

II. PRELIMINARIES

The Riemann-Liouville, Caputo definition are main defi-
nitions of fractional calculus.
Definition 1 The α th-order Riemann-Liouville fractional
integration of function f(t) is given by

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)
1−α dτ (1)

where Γ(·) is the Gamma function.
Definition 2 For n − 1 < α ≤ n, n ∈ R, the Riemann-
Liouville fractional derivative of order α of the function f(t)
is defined as

t0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

f(τ)

(t− τ)α−n+1
dτ

=
dn

dtn
In−αf(t) (2)

Definition 3 The α th-order Caputo fractional derivative of
function f(t) is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ, m− 1 < α < m
dm

dtm f(t), α = m
(3)

where m is the smallest integer number, larger than α.
Lemma 1 (see [8, 9]) Consider the autonomous system

Dαx = Ax or Dαx = f(x) (4)

where α ∈ (0, 1] is the fractional order and x =
[x1, x2, ..., xn]

T is the state variable. A ∈ Rn×n is a constant
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matrix. If there is a real symmetric positive definite matrix
P such that the inequation J = xTPDαx ≤ 0 always holds
for any states, then system (4) is asymptotically stable.

For the detailed application of the above lemma in
fractional-order chaotic systems, the reader can refer to Refs.
[8-12].

III. MAIN RESULTS

In this section, a robust adaptive control law and parameter
adaption laws are proposed to achieve the stabilization of
fractional-order energy supply-demand system considering
dead-zone nonlinear input.

The dynamical model of a fractional-order energy supply-
demand system with model uncertainties and external distur-
bances is presented

Dαx1 = a1x1(1−
x1

M
)− a2(x2 + x3)− d3x4

+∆f1(x) + d1(t) + ϕ1(u1(t))

Dαx2 = −b1x2 − b2x3 + b3x1[N + (x1 − x3)]

+∆f2(x) + d2(t) + ϕ2(u2(t))

Dαx3 = c1x3(c2x3 − c3) + ∆f3(x) + d3(t) + ϕ3(u3(t))

Dαx4 = d1x1 − d2x4 +∆f4(x) + d4(t) + ϕ4(u4(t)) (5)

where α ∈ (0, 1] is fractional order of the system, x =
[x1, x2, x3, x4]

T is the state vector of system, ∆fi(x) is
model uncertainty, di(t) is external disturbance, ϕi(ui(t))
is dead-zone nonlinear input, and satisfying

ϕi(ui(t))=

(ui(t)− u+i)ϕ+i(ui(t)), ui(t) > u+i

0, u−i ≤ ui(t) ≤ u+i

(ui(t)− u−i)ϕ−i(ui(t)), ui(t) < u−i

(6)

where i = 1, 2, 3, 4. ϕ+i(·) and ϕ−i(·) are nonlinear contin-
uous functions of ui(t), and u+i, u−i are given constants.
Besides, the nonlinear input ϕi(ui(t)) outside of the dead-
band has gain reduction tolerance ρ+i, ρ−i, they satisfy the
following inequalities{
(ui(t)−u+i)ϕi(ui(t))≥ρ+i(ui(t)−u+i)

2,ui(t)>u+i

(ui(t)−u−i)ϕi(ui(t))≥ρ−i(ui(t)−u−i)
2,ui(t)<u−i

(7)

where ρ+i, ρ−i are nonzero positive constants.
Our goal in this paper is to design a robust controller to

realize the adaptive stabilization of system (5) with unknown
parameters and dead-zone nonlinear inputs. Before we intro-
duce the control method, two assumptions are first given.
Assumption 1 We assume that the parameters a1, a2, b1, b2,
b3, c1, c2, c3, d1, d2, d3, M and N to be unknown in advance.
Letting θ1 = [a1, a1/M, a2, d3]

T , θ2 = [b1, b2, b3N, b3]
T ,

θ3 = [c1c2, c1c3]
T , θ4 = [d1, d2]

T as the vector of unknown
parameters for the first, second, third and fourth equation of
the system (5), respectively.
Assumption 2 In general, it is assumed that the model un-
certainties ∆fi(x) ∈ R and external disturbances di(t) ∈ R
are bounded by

|∆fi(x)| ≤ βi, |di(t)| ≤ γi, i = 1, 2, 3, 4 (8)

where βi and γi are unknown positive constants.
Next, we will design an adaptive controller to achieve

the stabilization for fractional-order energy supply-demand
system.

Theorem 1 Consider the fractional-order energy supply-
demand system (5), if the controller is designed as

ui(t) =

 −δiξisgn(xi) + u−i, xi > 0
0, xi = 0
−δiξisgn(xi) + u+i, xi < 0

(9)

where i = 1, 2, 3, 4. sgn(·) is the sign function, δi = ρ−1
i ,

ρi = min{ρ−i, ρ+i}, and ξi = |θ̂i|T |fi(x)|+ β̂i+ γ̂i+ki, in
which, θ̂i, β̂i and γ̂i are estimation of θi, βi and γi, respec-
tively, ki > 0 is a constant gain. f1(x) = [x1,−x2

1,−(x2 +
x3),−x4]

T , f2(x) = [−x2,−x3, x1, x1(x1−x3)]
T , f3(x) =

[x2
3,−x3]

T , f4(x) = [x1,−x4]
T .

The parametric update laws are selected as

Dαθ̂1 = f1(x)x1 = [x2
1,−x3

1,−x1(x2 + x3),−x1x4]
T

Dαθ̂2 = f2(x)x2 = [−x2
2,−x2x3, x1x2, x1x2(x1 − x3)]

T

Dαθ̂3 = f3(x)x3 = [x3
3,−x2

3]
T

Dαθ̂4 = f4(x)x4 = [x1x4,−x2
4]

T (10)

besides, β̂i and γ̂i are updated by

Dαβ̂i = µi|xi|
Dαγ̂i = ηi|xi| (11)

in which, µi and ηi are positive constants.
Then the adaptive stabilization of fractional-order energy

supply-demand system (5) can be achieved.
Proof According to Lemma 1, we denote a new state variable
as XT = [xT , θ̃T , β̃T , γ̃T ], which is a row vector, where

xT = [x1, x2, x3, x4]

θ̃T = [θ̃T1 , θ̃
T
2 , θ̃

T
3 , θ̃

T
4 ], θ̃Ti = θ̂Ti − θTi

β̃T = [β̃1, β̃2, β̃3, β̃4], β̃i = β̂i − βi

γ̃T = [γ̃1, γ̃2, γ̃3, γ̃4], γ̃i = γ̂i − γi (12)

Choose a real symmetric positive finite matrix P in the
form of

P=diag

(
I4, I4, I4, I2, I2,

1

µ1
,
1

µ2
,
1

µ3
,
1

µ4
,
1

η1
,
1

η2
,
1

η3
,
1

η4

)
(13)

where I is unit matrix, and its subscript represents dimension,
then we can construct a function to prove the stability of the
closed-loop system, written as

J = XTPDαX (14)

that is

J = x1D
αx1 + x2D

αx2 + x3D
αx3 + x4D

αx4

+θ̃T1 D
αθ̃1 + θ̃T2 D

αθ̃2 + θ̃T3 D
αθ̃3 + θ̃T4 D

αθ̃4

+
1

µ1
β̃1D

αβ̃1 +
1

µ2
β̃2D

αβ̃2 +
1

µ3
β̃3D

αβ̃3 +
1

µ4
β̃4D

αβ̃4

+
1

η1
γ̃1D

αγ̃1 +
1

η2
γ̃2D

αγ̃2 +
1

η3
γ̃3D

αγ̃3 +
1

η4
γ̃4D

αγ̃4

(15)

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_16

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Inserting (5) into (15), it yields

J = x1

[
a1x1(1− x1/M)− a2(x2 + x3)− d3x4 +∆f1(x)

+d1(t) + ϕ1(u1)
]
+ x2

[
− b1x2 − b2x3 + b3x1

(
N

+(x1 − x3)
)
+∆f2(x) + d2(t) + ϕ2(u2)

]
+x3

[
c1x3(c2x3 − c3) + ∆f3(x) + d3(t) + ϕ3(u3)

]
+x4

[
d1x1 − d2x4 +∆f4(x) + d4(t) + ϕ4(u4)

]
+

4∑
i=1

(
(θ̂i − θi)

TDαθ̂i +
1

µi
(β̂i − βi)D

αβ̂i

+
1

ηi
(γ̂i − γi)D

αγ̂i

)
(16)

According to (10) and (11), we know that

θT1 D
αθ̂1 = a1x

2
1 −

a1
M

x3
1 − a2x1(x2 + x3)− d3x1x4

θT2 D
αθ̂2 = −b1x

2
2 − b2x2x3 + b3Nx1x2 + b3x1x2(x1 − x3)

θT3 D
αθ̂3 = c1c2x

3
3 − c1c3x

2
3

θT4 D
αθ̂4 = d1x1x4 − d2x

2
4 (17)

and
1

µi
βiD

αβ̂i = βi|xi|

1

ηi
γiD

αγ̂i = γi|xi| (18)

then substituting (17) and (18) into (16), it yields

J = x1∆f1(x) + x1d1(t) + x1ϕ1(u1) + x2∆f2(x)

+x2d2(t) + x2ϕ2(u2) + x3∆f3(x) + x3d3(t)

+x3ϕ3(u3) + x4∆f4(x) + x4d4(t) + x4ϕ4(u4)

+

4∑
i=1

(
θ̂Ti D

αθ̂i +
1

µi
β̂iD

αβ̂i +
1

ηi
γ̂iD

αγ̂i

)
−

4∑
i=1

(
βi|xi|+ γi|xi|

)
(19)

knowing from (8), that is

J ≤ β1|x1|+ γ1|x1|+ x1ϕ1(u1) + β2|x2|
+γ2|x2|+ x2ϕ2(u2) + β3|x3|+ γ3|x3|
+x3ϕ3(u3) + β4|x4|+ γ4|x4|+ x4ϕ4(u4)

+
4∑

i=1

(
θ̂Ti D

αθ̂i +
1

µi
β̂iD

αβ̂i +
1

ηi
γ̂iD

αγ̂i

)
−

4∑
i=1

(
βi|xi|+ γi|xi|

)
= x1ϕ1(u1) + x2ϕ2(u2) + x3ϕ3(u3) + x4ϕ4(u4)

+
4∑

i=1

(
θ̂Ti D

αθ̂i +
1

µi
β̂iD

αβ̂i +
1

ηi
γ̂iD

αγ̂i

)
≤ x1ϕ1(u1) + x2ϕ2(u2) + x3ϕ3(u3) + x4ϕ4(u4)

+

4∑
i=1

(
|θ̂i|T |Dαθ̂i|+

1

µi
|β̂i||Dαβ̂i|+

1

ηi
|γ̂i||Dαγ̂i|

)
= x1ϕ1(u1) + x2ϕ2(u2) + x3ϕ3(u3) + x4ϕ4(u4)

+|â1||x2
1|+ |â1/M̂ ||x3

1|+ |â2||x1(x2 + x3)|
+|d̂3||x1x4|+ |b̂1||x2

2|+ |b̂2||x2x3|+ |b̂3N̂ ||x1x2|

+|b̂3||x1x2(x1 − x3)|+ |ĉ1ĉ2||x3
3|+ |ĉ1ĉ3||x2

3|
+|d̂1||x1x4|+ |d̂2||x2

4|+ |β̂1||x1|+ |γ̂1||x1|
+|β̂2||x2|+ |γ̂2||x2|+ |β̂3||x3|+ |γ̂3||x3|
+|β̂4||x4|+ |γ̂4||x4|

= x1ϕ1(u1) + x2ϕ2(u2) + x3ϕ3(u3) + x4ϕ4(u4)

+|θ̂1|T |f1(x)||x1|+ |θ̂2|T |f2(x)||x2|
+|θ̂3|T |f3(x)||x3|+ |θ̂4|T |f4(x)||x4|
+|β̂1||x1|+ |γ̂1||x1|+ |β̂2||x2|+ |γ̂2||x2|
+|β̂3||x3|+ |γ̂3||x3|+ |β̂4||x4|+ |γ̂4||x4| (20)

When xi > 0, by surveying (6), (7) and (9), it is apparent
that ui(t) < u−i

(ui(t)− u−i)ϕ(ui(t)) = −δiξisgn(xi)ϕ(ui(t))

≥ ρ−iδ
2
i ξ

2
i sgn

2(xi)

≥ ρiδ
2
i ξ

2
i sgn

2(xi) (21)

since δi = ρ−1
i , ξi > 0, according to above inequality, we

have

−sgn(xi)ϕi(ui(t)) ≥ ξisgn
2(xi) (22)

multiply both sides of inequality (22) by |xi|, and according
to sgn2(xi) = 1, |xi|sgn(xi) = xi, we have

xiϕi(ui(t)) ≤ −ξi|xi| (23)

when xi < 0, through similar derivation, the inequality (23)
still holds. Substituting the inequality (23) into (20), it yields

J ≤ −ξ1|x1| − ξ2|x2| − ξ3|x3| − ξ4|x4|
+|θ̂1|T |f1(x)||x1|+ |θ̂2|T |f2(x)||x2|
+|θ̂3|T |f3(x)||x3|+ |θ̂4|T |f4(x)||x4|+ |β̂1||x1|
+|γ̂1||x1|+ |β̂2||x2|+ |γ̂2||x2|+ |β̂3||x3|
+|γ̂3||x3|+ |β̂4||x4|+ |γ̂4||x4|

= −
(
|θ̂1|T |f1(x)|+ β̂1 + γ̂1 + k1

)
|x1|

−
(
|θ̂2|T |f2(x)|+ β̂2 + γ̂2 + k2

)
|x2|

−
(
|θ̂3|T |f3(x)|+ β̂3 + γ̂3 + k3

)
|x3|

−
(
|θ̂4|T |f4(x)|+ β̂4 + γ̂4 + k4

)
|x4|

+|θ̂1|T |f1(x)||x1|+ |θ̂2|T |f2(x)||x2|
+|θ̂3|T |f3(x)||x3|+ |θ̂4|T |f4(x)||x4|+ |β̂1||x1|
+|γ̂1||x1|+ |β̂2||x2|+ |γ̂2||x2|+ |β̂3||x3|
+|γ̂3||x3|+ |β̂4||x4|+ |γ̂4||x4|

= −k1|x1| − k2|x2| − k3|x3| − k4|x4|
≤ −k||x|| < 0 (24)

where k = min{k1, k2, k3, k4} > 0, according to Lemma 1,
system (5) is asymptotically stable. Consequently, the adap-
tive stabilization of fractional-order energy supply-demand
system with unknown parameters and dead-zone nonlinear
inputs is achieved. Therefore, the proof is completed.

IV. SIMULATION RESULTS

To validate the efficiency and feasibility of the proposed
control strategy, an example is given. For the controlled
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system (5), the following model uncertainties and external
disturbances are considered in this simulation.

∆f1(x) + d1(t) = 0.01sin(2x1) + 0.02cos(2t)

∆f2(x) + d2(t) = 0.02sin(3x2)− 0.02cos(3t)

∆f3(x) + d3(t) = −0.01cos(4x3)− 0.025sin(4t)

∆f4(x) + d4(t) = 0.025sin(3x4) + 0.015sin(4t) (25)

Letting α = 0.95, the initial values are set as x(0) =
[0.2,−0.1, 0.1,−0.2]T , the positive constants k1 = k2 =
k3 = k4 = 10, µ1 = µ2 = µ3 = µ4 = 2, η1 = η2 = η3 =
η4 = 4, all initial values of estimate parameters are set as
0.1, the dead-zone nonlinear inputs are selected as follows

ϕi(ui(t))=

(ui(t)−1.5)(1−0.5cos(ui(t))), ui(t)>1.5
0, −0.5≤ui(t)≤1.5

(ui(t)+0.5)(0.7−0.5sin(ui(t))),ui(t)<−0.5
(26)

correspondingly, parameters ρ+i = 0.5, ρ−i = 0.2, ρi =
min{ρ−i, ρ+i} = 0.2, δi = 5, i = 1, 2, 3, 4, according to
(9), the appropriate controller can be designed. We can get
the state trajectories of the controlled system, given in Fig.1
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Fig. 1: State trajectories of system (5) with controller activated

From Fig. 1, it can be seen that all state trajectories of
the controlled system (5) converge to zero asymptotically.
The time response of estimate parameters vectors θ̂i, i =
1, 2, 3, 4 are displayed in Fig.2, respectively. It is clear that
all unknown parameters are successfully identified.
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â2

â1
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Fig. 2: Time response of estimate parameters in system (5)

Furthermore, the estimation about system uncertainties are
shown in Fig.3. From Fig.3, it is obviously that all bounds
of uncertainties are confirmed.
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Fig. 3: Estimation of system uncertainties in system (5)

V. CONCLUSION

This paper researched the problem of stabilizing uncertain
fractional-order energy supply-demand system with dead-
zone input nonlinearity. It is assumed that the system pa-
rameters and the bounds of uncertainties are fully unknown
in advance. A new stability theory is applied to prove the
asymptotic stability of fractional-order system. Simulation
results verified the proposed control method is effective and
feasible.
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