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The Riemann Problem for the Simplified
Combustion Model in Magnetogasdynamics

Yujin Liu and Wenhua Sun

Abstract—The Riemann problem for conservation laws in fluid with combustion in Lagrangian coordinates
magnetogasdynamics with combustion is considered. We con-

struct uniquely the Riemann solution with the characteristic Tt — Uy =0,

analysis method under the modified global entropy conditions B2

and find that the structure of the Riemann solution is similar ur+ (p+ 5;)e =0, (1)
with that of the conventional gas dynamics combustion model B2r B2y

in most cases, while for some cases, there are very different (B + W)t + (pu+ W)w =0,

results from each other.

. - _ with an infinite rate of reaction
Index Terms—Riemann problem, Characteristic analysis, Hy-

perbolic conservation laws, Combustion, Magnetogasdynamics. 0, if sup T(x,y) > T;;
(J(IC, t) = ()Sygt. (2)
q(z,0), otherwise,

under the assumptioB = kp, wherer > 0,p > 0,u, B >0
and .. are the specific volume, pressure, velocity, transverse

AGNETOGASDYNAMICS plays an important role magr;etic field and mggnetic permeability, r.espectivﬁlﬁ_

I\/I in studying engineering physics and many other a§-+ 5 1 ¢ is the specific total energy, wheras the specific
pects ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10]) and is internal energy a_nq] is the chemical binding energy. The
important for the study of the hyperbolic theory. Since thi€mperaturel” satisfies Boyle and Gay-Lussac’s lapn =
governing equations are highly nonlinear and complicatef! - 7i i the ignition temperature. For polytropic gases, we
the results for Magnetogasdynamics flows are less than #@We = e(T) andE = 4 + 5 + ¢, wherey > 1 is the
conventional gas dynamics. When the velocity field and ttféliabatic exponent. For simplicity, we usually assume that
magnetic field are everywhere orthogonal, the magnetog@8§d~y remain unchanged during the reaction. We also assume
dynamics flow is simple but still an important model. that the combustion process is exothermic, i.e., the energy

In recent years Magnetogasdynamic flows with combu_@-sed up in recombing the atoms to forr_n the new molecules
tion have attracted much more attention and there are mapysmaller for the burnt gas than the binding energy of the
works done in this aspect([11], [12], [13], [14], [15], [16],unPumnt gas [21]. _ _
[17], [18], etc.). In [13], Helliwell discussed the properties Although the governing equatlons.of magnetogasd_ynamms
of one-dimensional deflagration waves in a non-conductif§e More complex than the conventional gas dynamics equa-
inviscid gas at rest when ionization of the gas takes plal8NS, many results of the one-dimensional magnetogasdy-
across a shock wave. The jump relationships across the g@Mics flow are similar with the conventional gas dynamics.
ionizing shock wave and magnetogasdynamic combustibigwever the c_ontact dlsconn_nmty is very dlf_“ferent from
wave are investigated and the Hugoniot curves are analy£&fh other. Unlike the conventional gas dynamics, where the
in the (p, 7) plane. They found that the magnetogasdynanii@ge of the contact discontinuity in the spaeep, u) is a
combustion wave has similar properties to that in convefifaight line parallel to the-axis and the projection on the
tional gas dynamics. plane (_p,u) is a point, the contact dls_con_tlnwty is a plane

In [17], Mareev investigated the above results furth&Hrve in the spacér,p,u) and the projection on the plane
through the investigation of the one-dimensional self-simil4f» %) iS @ straight line parallel to the-axis which causes
flows caused by piston motion in a hot gas mixture i at the Riemann solutions are more complicated and difficult

which a detonation wave or combustion front is propagatdd@n that of the conventional gas dynamics. ,
The motion is realized in external electric and magnetic !" [4], Hu and Sheng obtained constructively the unique
fields which exerts a substantial effect on the flow of thgPlution of the Riemann problem for (1) with the character-

conductive combustion products. The results are used '$§C analysis method. Notice that the results are of the non-
solve the hypersonic gas flows around a thin wedge in gAmbustion case for one-dimensional magnetogasdynamics

axial magnetic field. flow (1). . .
In the present paper, we are concerned with the one_In the present study, we construct the Riemann solutions

dimensional inviscid and perfectly conducting compressibf the Chapman-Jouguet (CJ) model (1) and (2) with the
following initial data
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andgp > 0 is a constant. Looking for the self-similar solutioir, p,u)(£)(§ = %),
The Riemann problem of the conventional gas dynamieg know that for any smooth solution it holds that

combustion models and the other related problems in partial dr — —d

differential equations were investigated by many researchers §dr = —du,

etc.). Zhang and Zheng [29] studied the Riemann problem of N B2

the one-dimensional adiabatic, inviscid flow of combustible (L + WT) = d( 2p u).

ideal gases with an infinite rate of reaction which is described

For the polytropic gas, the forward or backward rarefac-

b
Y tion waves in the(r, p,u) space passing through the point
ut +pz =0, Qo(70,po, uo) are given by
T — Uy =0, N
E; + (Up)x =0, (4) <:> pT’Y = PoTy »
0, if sup T'(z,y) >1T; : 2 (6)
q(z,t) = 0<y<t R U= un + fp \/“/pTJrBT dp
q(z,0), otherwise. 0= Jpo :

In order to guarantee the uniqueness of the solution, they! "€ Rankine-Hugoniot jump conditions &t= o are
proposed a set of entropy conditions containing the point-
wise and the global entropy conditions. Under the entropy ,
conditions, they constructed the Riemann solutions with olu] = [p+ 51, @)

the characteristic analysis method and discussed the wave o[E + B2y 7] = [up + BQuu]
interactions of the shock wave with the combustion waves. 2 2w
In [23], we modified the global entropy conditions in [291Where — 7. — 7, etc,

and constructed the unique solution of the generalized Rie-
mann problem for (4) under the modified entropy conditions
with the characteristic method. B?

In this paper, we construct uniquely the Riemann solutions Jo ll=lp+ ﬂ] =o=0, (8)
of (1), (2) with the initial data (3) under the modified and it is easy to see thak is a curve withu — Const.
entropy conditions in [23]. We find that the structures of the
Riemann solutions are similar with that of the conventiond the (. p, u) space and the projection on tiie, u) plane
gas dynamic combustion model (4) in most cases. Howev'sra straight line paraIIeI to the-axis. Denote the contact
for some cases, our results are very different from (4). F@iscontinuity J by J whenp;, < pr, 7 < 77, and J when
example, for Case 2. in Section 3, there exists a possible> pr, 71 > 7.
deflagration wave solution for (1) and (2) while there is no If [¢] = 0 in (7), we get the forward or backward
deflagration wave solution but a possible detonation wagBock waves in thér, p, u) space passing through the point
solution of the corresponding case in the conventional g&% (7o, po, o)
dynamics combustion model in [23] and [29]. ap? | B2

The rest of this paper is arranged as follows. In Section If, (» + 0%po + 92(W + ﬁ))T = (po+60°p
we present some preliminaries and study the properties of the 3B2 | p2
elementary combustion waves. In Section Ill, we investiga +0 (W + E))Tm
the Riemann problem of the model (1), (2) with the initial B B2 —r
values (3) under the modified global entropy conditions. A = 0 b+ 20~ Po— ﬁ)(_erBi,pZ Bj)
final conclusion is given in Section IV. 2 2

The contact discontinuity can be expressed as

MlH

where§? = 7+1 and By = O. The properties of?, J and
Il. PRELIMINARIES AND ELEMENTARY COMBUSTION S can be found in [4]. _ o
WAVE I@)rgonvemence and conciseness, we denote the projection

%
In this section, we study the elementary wave curvéd Rﬁ ) onthe(r, p) plane andu, p) plane byR,,(S.) and
and give some important properties of the elementary wa\}e (S ,), respectively.
curves for our later discussions.

B. Combustion wave curves in tlie p) plane

A. Noncombustion wave curves in thep) or (u.p) plane oo e discuss the combustion wave curves in(the)

First, we investigate the non-combustion elementary waptane.

curves for (1). For details we refer readers to [4]. If [¢q] # 0 in (7), from the explicit expression (9) of the
Ther%Bare three eigenvalues of (1) WhICh are = shock wave curve in thér, p) plane, fixing the value on the
(= eu”ref)%, Mo = 0and ), = (2= e 27F *e*)l_ i front side of the discontinuity td7, po, go) While allowing

€p

e, > 0 ande, +p > 0, they are real and distinct, thus(7;?;0) on the back side vary, we obtain that

(2) is a strictty _hyperbolic system._ It is easi_ly shown that pr 4 B _ pomy _ Bin
the characteristic fieldd. are genuinely nonlinear and the y—1 2u 5—1 2u (10)
characteristic field\ is linearly degenerate. +3(po + +p - —)(T — 1) =0,
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and by a direct computation it follows that

Du(0): (7 —62mo)(p+62(po + 52 + 3E2))

= (1= 0%)mopo + L2 [B3(3 — 02) + B2(1 — 30%)]
+QHQQQ.

(11)
D, (0) is called the combustion wave curve in tle p)
plane.

Lemma 2.1 The combustion wave curv@, (0) is convex Fig. 2.1. The combustion wave curve in e, p).
and monotonically decreasing. Furthermore, it i§ a branch of
. B, - . .
a hyperbola withr = 6, andp = —0%(po + 32) as its  In the (r, p)-plane we have the following expressions:

asymptotes € > 6%ry, p > —0%(po + %‘?)) and the state
(10, po) Is located below this curve.

B2 an2
Proof. Differentiating along the curvé,, (0) with respect ~ Su(=) : (T — 0> )(p+0°(p- + 5 + %))

Ru(=):pm" =p_7’, (0<p<p-),

to 7, it yields that =(1- 94)7'_]7_ n 92;7 [B% (3 92) + 32(1 _ 392)]7
(p>p-),
2 o @ (Tf‘ro)(‘rZJr‘r‘ronTg) 2 o,
dp P Ppo-5 0 SDT(~): (1 — 627_)(p + 6%(p— + 5= + 3%

dr T — 02719 92
=(1-0)7p- + —=[B2(3 - 6%) + B*(1 - 36%)]

2
thus D,,(0) is monotonically decreasing. +20%0, (p > po),

For the convexity, in the same way with the proof of WDF(i): (7 — 0%7:)(p + 0% (pi + ’23—; + %))
Lemma 3.4. in [4], we know thaft > 0 and D,(0) is (1= Y + %[35(3 0%) 4 B2(1 — 30%)]

convex. M
+260%q0, ((pp)i <P < pi)s

Draw two straight lines from the poirft, po) which are R(CJIDT(-)) : pr¥ = pctd, (p <pc),
tangent to the curve. Similar with that of the conventional p - 7pp(_)) . prv = _ v < .
gas dynamics combustion model ([29]), we call the tangent ( (=) pm o))y (P < (D)) (12)
points C with 7 < 79 and D with 7 > 75 Chapman-  penote W(=) = Ws(=) U Wp(—), where Wg(—)
Jouguet detonation({JDT) and Chapman-Jouguet deﬂadenotes(WS(—), q- =0) or (Ws(—), g— > 0) or both
gration (CJDF), respectively. From the RH condition (7)of them, andWp(—) denotesWpr(—) U Wpp(—), here
P+ 570 and it follows that we should Vo7 (=) = SDT(—)U CJDT(-) U R(CJDT(~)) and

we haves = £/ —=r= Wpor(—) := WDF(i) UCJDF(i) U R(CJDT(i))
disregard the curve between the poiMsand B where b o ' ' o

(p+ ’23—: —po — ’23—5)(7 —170) > 0. We call the curve between
A and C weak detonation Iy DT") and the curve above(
C strong detonationqDT), the curve betweerB and D
weak deflagrationlf’ DF') and the curve belowD strong  proof The proof is similar with Lemma 1. in [29] and
deflagration § DF), respectively (see Fig. 2.1.). here we omit it for simplicity. M

From the known Jouguet’s rule ([29]), we know that there
are at most three different kinds of wave series that can be

linked to the statd—) = (7, p—,u—,q-): C. Combustion wave curves in tie, p) plane

(') Su(—) or Ru(—) (containing no combustion waves), We investigate the explicit expressions and the important
(i) (i) + WDF(i) or (i) + CJDF(i) + R(CJDF(i)) properties of the combustion wave curves in thep) plane.

Lemma 2.2 The combustion wave curi@pr(—) in the
7,p) plane is located above both the segmén}(i) and
the rarefaction wave curvg, (—).

(containing noDT" waves), We construct the backward combustion wave cuié—)
(i) SDT(-) or CJDT(—)+ R(CJDT(-)) (containing from the state(—) = (7—,p—,u_,q_).

no DF waves), If g =0, the backward wave curve is
wherei = i(—) = (ui,pi,Ti,q) IS the state atS(—) ﬁ/s(_) g (_)U§ ()

with the ignition temperatur&;, and the symbol +" means

followed by”. Notice that we let the temperature behinwvhich is the noncombustion wave curve from the siat¢

the shock wave which is the known pre-compressive shotdee Fig. 2.2. left), From Lemma 3.5. and Lemma 3.6.
wave connecting the state-) and the ignition point(i) in [4], S.(—) and R (—) are convex and monotonically
be the ignition pointT;, thus we just need to construct thedecreasing.

deflagration wave curve which is the successor to the predf ¢_ > 0, the backward wave curve is composed of three
compressive shock wave from the po{i}. branches: one is the backward noncombustion wave curve
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(Ws(—),q_ > 0) (see Fig. 2.2. right) which is the sameFrom (9) we obtain

as
g— > 0 and its top end is the ignition poirtt;, p;), where

from now on fﬁ_/s(—) denotes(fﬁ_/s(—),q_ > 0) or

(WS(—),q_ = 0) or both of them; the other two are the

-(=),q— = 0 except that along the curve it holds that B2

(=) = (p+ 2=~ o~ By )

0 2M 0 2/J 0 .
Differentiating along the curve with respect o it yields
that

B2

u 2 T
2(u — uo) G (;{”r S —po— 20)(—55) 17)
+(ro — 1) (1 = 5) .

combustionDF and DT wave curves. Next we discuss the From Lemma 2.1.§—f < 0, it turns out thatg—g < 0, thus

combustion wave curves in the, p) plane.
p p
=5 (=)

Ws(o)al

Fig. 2.2. The backward noncombustion wave CUW%‘(*) in the (u, p) plane.

57(0) is monotonically decreasing curve.

For the convexity, in the same way with the proof of
Lemma 3.5. in [4], it yields that % > 0 and D (0) is
convex. W

Theorem 2.1 The combustion wave curvET(O) loses
meaning wher) < p —po < “=qo, andu = ug when
p=1poOrp=po+ 77—_01(10. Moreover,u — ~+oo when

p— —0%(po + g—s) and u — —oo whenp — +o0.

Theorem 2.2In the (7,p) plane, along the curvé®,,(0)

From the explicit expressions (9), for the backward wavge know that 2=£2 has its maximum and minimum at

gr (QOT) we get

B? B?

Uuo\/(erZPoQ—;)(ToT), u < ug,

on the other hand, we know that

o (1—94)7'01)0-"-92};0 [B2(3—0%)+B?(1-36%)]+20%qo
p+02(po-+ o8 + 352 (13)
-‘1-927'0,
and
2
o (1= 6%)70(po — p) + 5 (BF — B) + 20°q0
—T0 = )

3B2
21 )

B2
p+02(po + 3L+

thus we obtain the backward combustion wave Clﬁ/ﬁ(())
in the (u, p) plane

w(p)

U= Uy — PR (14)
p+02(po+ 52 + 22)
where
_ B? B3 2
u(p) = (p+ 3, —po — 32)[(1 = 0%)70(p — po) (15)

+E1 (B2 — B3) — 20%).

Lemma 2.3 The combustion wave curvET(O) is convex
and monotonically decreasing.

Proof. Since
U — Up T —1T0
_ o - — — B (16)
0 Pt 35, —Po— 3,

it follows that ;07*7 > 0, we know

B B3
pt3, —Po— 3,

B B2
p+o—>po+ 5, T <1y,
21 2
or 5 5
B” By
p+ <po+ , T >To.
21 2

CJDT and CJDIEO point, respectively. It follows that the
counterpart in the(u,p) plane 5:—’;?) has respectively its
maximum and minimum aCJDT and CJDF point due

to (16). Furthermore, each of the two curves is monotonic
alongSDT(or SDT), W DT (or W DT), W DF(or W DF),
SDF(or SDF), respectively.

We depict the backward combustion wave cuﬁe(o)
as in Fig. 2.3. Now denote the backwabd' and DT wave
curve byWDF(—) and W/DT(—), respectively, where

W pr(—) = WDF(i,) UCJDF(i,) U R(CIDF(iy)),
W (=) := SDT(—) U CJTDT(~) U R(CIDT(-)).

p,

Fig. 2.3. The backward combustion wave curve in the p) plane.

Since the combustion wave curves are exactly similar with
that of the conventional gas dynamics, we obtain similar
results of the properties for the combustion wave curves

pr(—)andWpp(—) with Lemma 2. in [29] in the same
way. Here we just list the results.

Lemma 2.4 The combustion wave curvé?/DF(—) and
WDT(—) in the (u, p) plane are located above the noncom-
bustion wave solutioiV ¢ (—).

Denote the backward wave cur\%(—) (see Fig. 2.4.)
which can be linked to the state-) = (7—,p—,u_,q-),

then
W(=) = Ws(—)UWn(-),

(Advance online publication: 20 November 2019)
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Ws(-‘r)

Wo(=) = Wpr(=) UV pr(-). o )

u

Fig. 3.1.¢q~ > 0, ¢ = 0 and there are three interaction points.

From Lemma 2.2. and Lemma 2.6., we know the prop-
agating speed of the deflagration wave is less than that of
the detonation wave. Therefore due to the global entropy

“ “ condition A the intersection point oV s(+) and W pr(—)
Fig. 2.4. The backward combustion wave culié(—). should be discarded. We denote the intersection point of
(+) and Ws(*) by x5 and the intersection point of
(+) andW pr(—) by *pr. We denote the temperature at
the pointxg, xpr 0N Wg(+) by Ts, Tpr, respectively. The
temperature atpr onWpr(—) is greater thaff; according
to the assumption that the combustion process is exothermic
(Fig. 3.2).
Subcase 1.1p_77 =p,7].
We select the<_pointss or xpr and obtain the possible
We shall study the Riemann problem of the CJ model (gplution SR or S+ R or 8 or DF+ R or 5. Now we
and (2) with the initial values (3). Whep. = ¢, = 0 which construct the unique Riemann solution under the modified
means the gas on both sides are burnt, no combustion wéi@Pal entropy conditions as follows.
will occur. For this case, the Riemann solutions have beend) WhenT™* > T, thenB(xs) = 1, B(+pr) = 1, from the
constructed in [4], for simplicity we omit them. cond_ition C, we select*DF_ and ob'_[gin a combustion wave
Wheng_ andq, are not both zero, there may exist mor&oiution DF t or 5 (Fig. 3.2. (ii)).
than one intersection points (W(—) and W(+). Each b) WhenT™ < T;, then f(xs) = 0, S(xpr) = 2, from
intersection point corresponds to a unique Riemann solutidh€ conditionB, we selectts and obtain a noncombustion
When the intersection point is unique, the solution is als§aV® solutionR or 5 + K or 5 (Fig. 3.2. (i)).
unique, otherwise, in order to obtain the unique solution

- . 1%

S|m|I§>rIy, we can construct the forward combustion Wawﬁ;s

curve W(+) which can be linked to the state+) = 5
(T+,p+,’lL+,q+>-

Ill. SOLUTIONS OF THERIEMANN PROBLEM (1) AND (2)
WITH THE INITIAL DATA (3)

we select it under the followingnodified global entropy ,? ‘ -
conditions (MGEC) ([23]): Tﬁ or & Fod ! DK Ror's
we select the unique solution from the nine intersection See .
points (at most) of the forward wave curves connecting - 7 <7 T+
(+) and the backward wave curves connecting) in the (i) noncombustion wave * ) _ -
(i) combustion waveDF

following order:

A. the solution with the propagating speed of combustion
wave as low as possible; Subcase 1.2p_77 # p,7].

B. the solution with the parametéras small as possible, From the conditiorA, we discard the possible detonation
wheref is defined as oscillation frequency B{¢) between DT wave solution and find that the possible Riemann
the set{¢ € R' : T(¢) < T} and the sef{¢ € R : T(¢) > solution isR or S +J+ K or S of DF+.J + & or
T}, According to the modified global entropy conditions we

C. the solution containing as many combustion wave abtain the unique Riemann solution as follows (Fig. 3.3.).
possible.

For simplicity, we just consider the Riemann problem (1), ¢ J .
(2) and (3) in the following three cases. For the other case% oS - 2 orT%T

. - T
we can obtain the results similarly. N
< T; T+
.

Case 14~ > 0, ¢™ = 0. In this case, the gas is unburnt on ) bust } '
the left side, the gas is burnt on the right side, ﬁ.@—) = () noneombustion wave (i) combustion waveDF
W B W - W B — _ — Fig. 3.3. Solutions in Subcase 1.2.

s(=)UWpr(=) UWpr(=), W(+) = Ws(+). When
there exists only one intersection pointﬁ(—) andW(+), a When Tt > T;, Tpr > T;, then B(xs) = 1,
we obtain the unique solution is a detonation wave so|utigf(x ) = 1, from the conditiorC, we select  » and obtain

T+ Ror Sifp_1) =py7], or DT +J+ R or a combustion wave solution containing®’ (Fig. 3.3. (ii)).
if p_77 # py7] based on the arguments in [4]. In what b) WhenT* > T;, Tpr < Ti(= Ts < T;), thenB(xs) =
follows we suppose that there are three intersection pointsg(xpr) = 3, from the conditionB, we selectxs and
of W(H andWs(+). We only present the case in Fig. 3.1obtain a noncombustion wave solution (Fig. 3.3. (i)).

Fig. 3.2. Solutions in Subcase 1.1.

(Advance online publication: 20 November 2019)
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c) When T+t < T;, Ts < T; then B(xs) = 0, PB(xpr)= 2, from the conditionB, we selectxs and obtain
B(xpr) =2, from the conditiorB, we select<s and obtain a noncombustion wave solution (Fig. 3.6. (i)).
a noncombustion wave solution (Fig. 3.3. (i)). d) WhenT* < T;,Ts > T;(= Tpr > T;), thenB(xg) =

d) WhenT* < T}, Ts > T;(= Tpr > T;), thenB(xs) = 2, B(*xpr) = 2, from the conditionC, we select«pr and
2, B(xpr) = 2, from the conditionC, we select«pr and obtain a combustion wave solution containingDa” (Fig.
obtain a combustion wave solution containingDd” (Fig. 3.6. (ii)).

3.3. (ii)).
! J t

Case 2.q~ > 0, qj> = 0 and there are two intersection T?‘”{E Ror's T
points ofW(Jr) andWg(+). 5

Just as the above case, we denote the intersection point of < 7i™\ T :
e W 4 4 * - 4
Ws(+) and _PT(f) by xpr and the temperature at the (i) noncombustion wave (i) combustion waveDF
point *pr ON WS(+) by Tpr (Fig. 3.4). Fig. 3.6. Solutions in Subcase 2.2.

Theorem 3.1In this case, for the combustion model
(1) and (2) in magnetogasdynamics, there exists a possible
deflagration wave solution for our Riemann problem which
is different from the conventional gas dynamics in [23] and
[29] where there is no deflagration wave solution but only a
possible detonation wave solution of the corresponding case.

u Case 3.~ > 0, ¢* > 0 and the gas on the both sides
Fig. 3.4.q~ > 0, ¢ = 0 and there are two intersection points. are unburnt. In this case ,we know t (_) — S(—) U
(VT/ W = =
Sub o lp T Wpr(=) UWpr(=), W(+) = Ws(+) UWpr(+) U
upbcase Z.1lp_7° =p, 7). WDT(“F)-

In this case, we<_select the poing or «pr and obtain the
possible solutions5 + 7 or 'S or DT + & or 5. Now solution is a detonation wave solutidnT + DT if p 7 —

we select the unique Riemann solution as follows. . .
g p7l, or DT+ J+DTif p 77 + p.7] based again on the

WhenT* > T;, th =1 =1,f h . . .
3) When™ > 15 t enf(xs) ’@(*DT) , from the results in [4]. Otherwise, there are two possible supcases: one
condition C, we selectxpr and obtain a combustion wave.,

solution DT + B or S (Fig. 3.5. (i)) is that there is an intersection pointfzi_fs(—) andW/S(Jr),
b) WhenT+ < T;, then 5'(*;)': 0' Blxpr) = 2, from tﬂ)e other is that there is no intersection poin%fg(—) and

the conditionl%_,we electxg and obtain a noncombustionWS(Jr)' . . .
wave solutions + R or §> (Fig. 3.5. (ii)). Case 3.1In the former subcase (Fig. 3.7.), we discuss it in

the following two subcases.

If the intersection point oﬁ/(—) andW/(Jr) iS unique, the

t

t —
f 2 s 7
E—v ST <T;
T; T+
i - - @ W)
>~ T (i) noncombustion wave {/T/(,)

(i) combustion waveDT
Fig. 3.5. Solutions in Subcase 2.1.

Subcase 2.2p_77 # p,7].

In this case, we know that there are two possibijlities: one
is thg there exists only one intersection point 16f(—) Subcase 3.1.1p_77 = p,7].
and W(+4) and we obtain the unique Riemann solution is From the conditionA, we just need to consider the

ﬁ i j i ﬁ or g the other one is that there are threjantersection points 1, 2, 3, 4. We should select the unique
&)ssit&e solutions which are the noncombution wave solutiéﬂlutlorl from the four possible solutions (Fig. 3.8.).
%r R+J+ﬁ or ? or theDF' combustion wave solution

F+J+ ﬁ or ? or the DT combustion wave solution T o

<
ﬁT +J+ ﬁ or ? Similarly, according to the modified <T S_=n > 1
global entropy conditions we obtain the unique solution as x <7 T <T;
follows (Fig. 3.6.). From the global entropy conditidn we
discard theDT combustion wave solution.
a) WhenT* > T;,, Tpr > T;, then B(xs) = 1, t . BF DF
;]

B(*pr) = 1, from the conditiorC, we select p» and obtain T Sorg
a combustion wave solution containing& (Fig. 3.6. (ii)). >T, Lo
b) WhenT™ > T}, Tpr < T;(= Ts < T;), thenfB(xg) = < <T
7 1 X

1, B(xpr) = 3, from the conditionB, we selectxs and
obtain a noncombustion wave solution (Fig. 3.6. (i)).
c) When T+ < Ty, Ts < T; then B(xg) = 0,

) ) . : ) u —
Fig. 3.7. There is an intersection point le_fs(f) and W (+).

or ®

orﬁf 57 | Sor®

X

(i) solution corresponds to point 1 (i) solution corresponds to point 2

(iii) solution corresponds to point 3  (iv) solution corresponds to point 4
Fig. 3.8. The possible solutions in Subcase 3.1.1.

(Advance online publication: 20 November 2019)



TAENG International Journal of Applied Mathematics, 49:4, [JAM 49 4 18

It is obvious thats = 0 for (i), and it holds that3 = 2

for the self-similar Zeldovich-von Neumann-Doring (ZND)

for (i), (iii) and (iv). From the conditionB, we select the model in magnetogasdynamic combustion with finite reaction
intersection point 1 and obtain the unique noncombustioate in our coming works.

wave solutionR or S + R or
Subcase 3.1.20_7" # py7]. In a similar way as the above

discussions in Subcase 3.1.1., we obtain that the unique ) )
The authors declare that there are no conflicts of interest

regarding the publication of this paper.

giemagn solution is still the noncombustion wave solution
Ror S+J+ R or ? The only difference is that here
the contact discontinuity appears.
Case 3.2.In the latter subcase, there are only two possi-
bilities: W(—) intersectsﬁ)/DT(Jr) only or W(+) intersects [y
pr(—) only. We just need to consider the former, If the
intersection point is unique, the solution E + D7 if 2
p_1! =pyT], 0" T+J+ﬁ if p_77 # py7], otherwise,

there are at most three intersection points (Fig. 3.9.). )

. [4]
V—[}DT("F)
P [5]
[6]
le Wl{(_ ) )

Fig. 3.9.{/17(7) intersectsWDT(+) only.

Subcase 3.2.1p_7" # p, 7).

In this subcase (Fig. 3.10.), from_the conditidn the
intersection point of W pr(—) and Wpr(+)
discarded. We denote the intersection point1®fpr(+)
a_r;d ﬁ/s(—) b%/*s and denote the intersection point o
Wpr(+) and Wpp(—) by *DF, respectively. We denote
the temperature at the point, *DF on Wpr(+) by Ts,
Tpr, respectively.

9]

combustion wave solution

- X
combustion wave solution
Fig. 3.10. Solutions in Subcase 3.2.1.
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