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Abstract—The Riemann problem for conservation laws in
magnetogasdynamics with combustion is considered. We con-
struct uniquely the Riemann solution with the characteristic
analysis method under the modified global entropy conditions
and find that the structure of the Riemann solution is similar
with that of the conventional gas dynamics combustion model
in most cases, while for some cases, there are very different
results from each other.

Index Terms—Riemann problem, Characteristic analysis, Hy-
perbolic conservation laws, Combustion, Magnetogasdynamics.

I. I NTRODUCTION

M AGNETOGASDYNAMICS plays an important role
in studying engineering physics and many other as-

pects ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10]) and is
important for the study of the hyperbolic theory. Since the
governing equations are highly nonlinear and complicated,
the results for Magnetogasdynamics flows are less than the
conventional gas dynamics. When the velocity field and the
magnetic field are everywhere orthogonal, the magnetogas-
dynamics flow is simple but still an important model.

In recent years Magnetogasdynamic flows with combus-
tion have attracted much more attention and there are many
works done in this aspect([11], [12], [13], [14], [15], [16],
[17], [18], etc.). In [13], Helliwell discussed the properties
of one-dimensional deflagration waves in a non-conducting
inviscid gas at rest when ionization of the gas takes place
across a shock wave. The jump relationships across the gas-
ionizing shock wave and magnetogasdynamic combustion
wave are investigated and the Hugoniot curves are analyzed
in the (p, τ) plane. They found that the magnetogasdynamic
combustion wave has similar properties to that in conven-
tional gas dynamics.

In [17], Mareev investigated the above results further
through the investigation of the one-dimensional self-similar
flows caused by piston motion in a hot gas mixture in
which a detonation wave or combustion front is propagated.
The motion is realized in external electric and magnetic
fields which exerts a substantial effect on the flow of the
conductive combustion products. The results are used to
solve the hypersonic gas flows around a thin wedge in an
axial magnetic field.

In the present paper, we are concerned with the one-
dimensional inviscid and perfectly conducting compressible
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fluid with combustion in Lagrangian coordinates


















τt − ux = 0,

ut + (p+ B2

2µ )x = 0,

(E + B2τ
2µ )t + (pu+ B2u

2µ )x = 0,

(1)

with an infinite rate of reaction

q(x, t) =

{

0, if sup
0≤y≤t

T (x, y) > Ti;

q(x, 0), otherwise,
(2)

under the assumptionB = kρ, whereτ > 0, p ≥ 0, u, B ≥ 0
andµ are the specific volume, pressure, velocity, transverse
magnetic field and magnetic permeability, respectively.E =
e+ u2

2 + q is the specific total energy, wheree is the specific
internal energy andq is the chemical binding energy. The
temperatureT satisfies Boyle and Gay-Lussac’s law:pτ =
RT . Ti is the ignition temperature. For polytropic gases, we
know e = e(T ) andE = u2

2 + pτ
γ−1 + q, whereγ > 1 is the

adiabatic exponent. For simplicity, we usually assume thatR

andγ remain unchanged during the reaction. We also assume
that the combustion process is exothermic, i.e., the energy
used up in recombing the atoms to form the new molecules
is smaller for the burnt gas than the binding energy of the
unburnt gas [21].

Although the governing equations of magnetogasdynamics
are more complex than the conventional gas dynamics equa-
tions, many results of the one-dimensional magnetogasdy-
namics flow are similar with the conventional gas dynamics.
However the contact discontinuity is very different from
each other. Unlike the conventional gas dynamics, where the
image of the contact discontinuity in the space(τ, p, u) is a
straight line parallel to theτ -axis and the projection on the
plane (p, u) is a point, the contact discontinuity is a plane
curve in the space(τ, p, u) and the projection on the plane
(p, u) is a straight line parallel to thep-axis which causes
that the Riemann solutions are more complicated and difficult
than that of the conventional gas dynamics.

In [4], Hu and Sheng obtained constructively the unique
solution of the Riemann problem for (1) with the character-
istic analysis method. Notice that the results are of the non-
combustion case for one-dimensional magnetogasdynamics
flow (1).

In the present study, we construct the Riemann solutions
of the Chapman-Jouguet (CJ) model (1) and (2) with the
following initial data

(τ, p, u, q)(x, 0) = (τ±, p±, u±, q±), ± x > 0, (3)

whereτ± > 0, p±, u± are arbitrary constants,

q± =

{

0, if T± > Ti,

0 or q0, if T± ≤ Ti,
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andq0 > 0 is a constant.
The Riemann problem of the conventional gas dynamics

combustion models and the other related problems in partial
differential equations were investigated by many researchers
([19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
etc.). Zhang and Zheng [29] studied the Riemann problem of
the one-dimensional adiabatic, inviscid flow of combustible
ideal gases with an infinite rate of reaction which is described
by



























ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,

q(x, t) =

{

0, if sup
0≤y≤t

T (x, y) > Ti;

q(x, 0), otherwise.

(4)

In order to guarantee the uniqueness of the solution, they
proposed a set of entropy conditions containing the point-
wise and the global entropy conditions. Under the entropy
conditions, they constructed the Riemann solutions with
the characteristic analysis method and discussed the wave
interactions of the shock wave with the combustion waves.

In [23], we modified the global entropy conditions in [29]
and constructed the unique solution of the generalized Rie-
mann problem for (4) under the modified entropy conditions
with the characteristic method.

In this paper, we construct uniquely the Riemann solutions
of (1), (2) with the initial data (3) under the modified
entropy conditions in [23]. We find that the structures of the
Riemann solutions are similar with that of the conventional
gas dynamic combustion model (4) in most cases. However,
for some cases, our results are very different from (4). For
example, for Case 2. in Section 3, there exists a possible
deflagration wave solution for (1) and (2) while there is no
deflagration wave solution but a possible detonation wave
solution of the corresponding case in the conventional gas
dynamics combustion model in [23] and [29].

The rest of this paper is arranged as follows. In Section II,
we present some preliminaries and study the properties of the
elementary combustion waves. In Section III, we investigate
the Riemann problem of the model (1), (2) with the initial
values (3) under the modified global entropy conditions. A
final conclusion is given in Section IV.

II. PRELIMINARIES AND ELEMENTARY COMBUSTION

WAVE

In this section, we study the elementary wave curves
and give some important properties of the elementary wave
curves for our later discussions.

A. Noncombustion wave curves in the(τ, p) or (u, p) plane

First, we investigate the non-combustion elementary wave
curves for (1). For details we refer readers to [4].

There are three eigenvalues of (1) which areλ− =

−(
p−ep

BBτ
µ

+eτ

ep
)

1
2 , λ0 = 0 and λ+ = (

p−ep
BBτ

µ
+eτ

ep
)

1
2 . If

ep > 0 and eτ + p > 0, they are real and distinct, thus
(2) is a strictly hyperbolic system. It is easily shown that
the characteristic fieldsλ± are genuinely nonlinear and the
characteristic fieldλ0 is linearly degenerate.

Looking for the self-similar solution(τ, p, u)(ξ)(ξ = x
t
),

we know that for any smooth solution it holds that


















ξdτ = −du,

ξdu = d(p+ B2u
2µ ),

ξd(E + B2u
2µ τ) = d(up+ B2u

2µ u).

(5)

For the polytropic gas, the forward or backward rarefac-
tion waves in the(τ, p, u) space passing through the point
Q0(τ0, p0, u0) are given by

−→←−
R :











pτγ = p0τ
γ
0 ,

u = u0 ±
∫ p

p0

√

γpτ+B2τ
µ

γp
dp.

(6)

The Rankine-Hugoniot jump conditions atξ = σ are


















σ[τ ] = −[u],

σ[u] = [p+ B2u
2µ ],

σ[E + B2u
2µ τ ] = [up+ B2u

2µ u],

(7)

where[τ ] = τr − τl, etc.
The contact discontinuity can be expressed as

J : [u] = [p+
B2

2µ
] = σ = 0, (8)

and it is easy to see thatJ is a curve withu = Const.

in the (τ, p, u) space and the projection on the(p, u) plane
is a straight line parallel to thep-axis. Denote the contact

discontinuityJ by
<

J when pl < pr, τl < τr, and
>

J when
pl > pr, τl > τr.

If [q] = 0 in (7), we get the forward or backward
shock waves in the(τ, p, u) space passing through the point
Q0(τ0, p0, u0)



























(p+ θ2p0 + θ2(3B
2

2µ
+

B2

0

2µ
))τ = (p0 + θ2p

+θ2(
3B2

0

2µ
+ B2

2µ
))τ0,

u = u0 ± (p+ B2

2µ
− p0 −

B2

0

2µ
)(− τ−τ0

p+B2

2µ
−p0−

B2
0

2µ

)
1

2 ,

(9)
whereθ2 = γ−1

γ+1 andB0 = k
τ0

. The properties ofR, J and
S can be found in [4].

For convenience and conciseness, we denote the projection

of
−→←−
R (
−→←−
S ) on the(τ, p) plane and(u, p) plane byRu(Su) and

−→←−
R τ (
−→←−
S τ ), respectively.

B. Combustion wave curves in the(τ, p) plane

Here we discuss the combustion wave curves in the(τ, p)
plane.

If [q] 6= 0 in (7), from the explicit expression (9) of the
shock wave curve in the(τ, p) plane, fixing the value on the
front side of the discontinuity to(τ0, p0, q0) while allowing
(τ, p, 0) on the back side vary, we obtain that

pτ
γ−1 + B2τ

2µ −
p0τ0
γ−1 − q0 −

B2
0τ0
2µ

+ 1
2 (p0 +

B2
0

2µ + p− B2

2µ )(τ − τ0) = 0,
(10)
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and by a direct computation it follows that

Du(0) : (τ − θ2τ0)(p+ θ2(p0 +
B2

0

2µ + 3B2

2µ ))

= (1− θ4)τ0p0 +
θ2τ0
µ

[B2
0(3− θ2) +B2(1− 3θ2)]

+2θ2q0.
(11)

Du(0) is called the combustion wave curve in the(τ, p)
plane.

Lemma 2.1The combustion wave curveDu(0) is convex
and monotonically decreasing. Furthermore, it is a branch of
a hyperbola withτ = θ2τ0 and p = −θ2(p0 +

B2
0

2µ ) as its

asymptotes (τ > θ2τ0, p > −θ2(p0 +
B2

0

2µ )) and the state
(τ0, p0) is located below this curve.

Proof. Differentiating along the curveDu(0) with respect
to τ , it yields that

dp

dτ
=
−p− θ2p0 −

θ2k2

2µ
(τ−τ0)(τ

2+ττ0−2τ
2
0 )

τ3τ2
0

τ − θ2τ0
< 0,

thusDu(0) is monotonically decreasing.

For the convexity, in the same way with the proof of
Lemma 3.4. in [4], we know thatd

2p
dτ2 > 0 and Du(0) is

convex. �

Draw two straight lines from the point(τ0, p0) which are
tangent to the curve. Similar with that of the conventional
gas dynamics combustion model ([29]), we call the tangent
points C with τ < τ0 and D with τ > τ0 Chapman-
Jouguet detonation (CJDT ) and Chapman-Jouguet defla-
gration (CJDF), respectively. From the RH condition (7),

we haveσ = ±

√

−
[p+B2

2µ
]

[τ ] and it follows that we should

disregard the curve between the pointsA and B where
(p+ B2

2µ − p0−
B2

0

2µ )(τ − τ0) > 0. We call the curve between
A and C weak detonation (WDT ) and the curve above
C strong detonation (SDT ), the curve betweenB and D

weak deflagration (WDF ) and the curve belowD strong
deflagration (SDF ), respectively (see Fig. 2.1.).

From the known Jouguet’s rule ([29]), we know that there
are at most three different kinds of wave series that can be
linked to the state(−) ≡ (τ−, p−, u−, q−):

(i) Su(−) or Ru(−) (containing no combustion waves),

(ii) (i) + WDF (i) or (i) + CJDF (i) + R(CJDF (i))
(containing noDT waves),

(iii) SDT (−) or CJDT (−)+R(CJDT (−)) (containing
no DF waves),

where i ≡ i(−) ≡ (ui, pi, τi, q) is the state atS(−)
with the ignition temperatureTi, and the symbol +” means
followed by”. Notice that we let the temperature behind
the shock wave which is the known pre-compressive shock
wave connecting the state(−) and the ignition point(i)
be the ignition pointTi, thus we just need to construct the
deflagration wave curve which is the successor to the pre-
compressive shock wave from the point(i).

p

τ

SDT

CJDT

WDT

A

B
WDF

CJDF
SDF

(τ0, p0)

Fig. 2.1. The combustion wave curve in the(τ, p).

C

D -

6

In the (τ, p)-plane we have the following expressions:

Ru(−) : pτ
γ = p−τ

γ
−, (0 < p < p−),

Su(−) : (τ − θ2τ−)(p+ θ2(p− +
B2

−

2µ + 3B2

2µ ))

= (1− θ4)τ−p− + θ2τ−
µ

[B2
−(3− θ2) +B2(1− 3θ2)],

(p > p−),

SDT (−) : (τ − θ2τ−)(p+ θ2(p− +
B2

−

2µ + 3B2

2µ ))

= (1− θ4)τ−p− + θ2τ−
µ

[B2
−(3− θ2) +B2(1− 3θ2)]

+2θ2q0, (p > pC),

WDF (i) : (τ − θ2τi)(p+ θ2(pi +
B2

i

2µ + 3B2

2µ ))

= (1− θ4)τipi +
θ2τi
µ

[B2
i (3− θ2) +B2(1 − 3θ2)]

+2θ2q0, ((pD)i < p < pi),

R(CJDT (−)) : pτγ = pCτ
γ
C , (p < pC),

R(CJDF (−)) : pτγ = (pD)i(τD)γi , (p < (pD)i).
(12)

Denote W (−) := WS(−) ∪ WD(−), where WS(−)
denotes(WS(−), q− = 0) or (WS(−), q− > 0) or both
of them, andWD(−) denotesWDT (−) ∪ WDF (−), here
WDT (−) := SDT (−) ∪ CJDT (−) ∪ R(CJDT (−)) and
WDF (−) := WDF (i) ∪ CJDF (i) ∪R(CJDT (i)).

Lemma 2.2 The combustion wave curveWDF (−) in the
(τ, p) plane is located above both the segment(−)(i) and
the rarefaction wave curveRu(−).

Proof. The proof is similar with Lemma 1. in [29] and
here we omit it for simplicity. �

C. Combustion wave curves in the(u, p) plane

We investigate the explicit expressions and the important
properties of the combustion wave curves in the(u, p) plane.
We construct the backward combustion wave curve

←−
W (−)

from the state(−) = (τ−, p−, u−, q−).
If q− = 0, the backward wave curve is

←−
WS(−) :=

←−
S τ (−) ∪

←−
R τ (−),

which is the noncombustion wave curve from the state(−)
(see Fig. 2.2. left). From Lemma 3.5. and Lemma 3.6.
in [4],

←−
S τ (−) and

←−
R τ (−) are convex and monotonically

decreasing.
If q− > 0, the backward wave curve is composed of three

branches: one is the backward noncombustion wave curve
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(
←−
WS(−), q− > 0) (see Fig. 2.2. right) which is the same

as
←−
W τ (−), q− = 0 except that along the curve it holds that

q− > 0 and its top end is the ignition point(ui, pi), where

ui = u− −

√

(pi +
B2

i

2µ
− p− −

B2
−

2µ
)(τ− − τi),

from now on
←−
WS(−) denotes (

←−
WS(−), q− > 0) or

(
←−
WS(−), q− = 0) or both of them; the other two are the

combustionDF andDT wave curves. Next we discuss the
combustion wave curves in the(u, p) plane.

-

6

u

p

(−)

←−
S (−)

←−
R (−)

←−
WS(−), q− = 0

Fig. 2.2. The backward noncombustion wave curve
←−
WS(−) in the (u, p) plane.

-

6

u

p

(−)

←−
S (−)

←−
R(−)

←−
WS(−), q− > 0

From the explicit expressions (9), for the backward wave
←−
S τ (Q0τ ) we get

u = u0 −

√

(p+
B2

2µ
− p0 −

B2
0

2µ
)(τ0 − τ), u < u0,

on the other hand, we know that

τ =
(1−θ4)τ0p0+

θ2τ0
µ

[B2
0(3−θ

2)+B2(1−3θ2)]+2θ2q0

p+θ2(p0+
B2

0
2µ

+ 3B2

2µ
)

+θ2τ0,

(13)

and

τ − τ0 =
(1− θ2)τ0(p0 − p) + θ2τ0

µ
(B2

0 − B2) + 2θ2q0

p+ θ2(p0 +
B2

0

2µ + 3B2

2µ )
,

thus we obtain the backward combustion wave curve
←−
Dτ (0)

in the (u, p) plane

u = u0 −

√

√

√

√

µ(p)

p+ θ2(p0 +
B2

0

2µ + 3B2

2µ )
, (14)

where

µ(p) = (p+ B2

2µ − p0 −
B2

0

2µ )[(1− θ2)τ0(p− p0)

+ θ2τ0
µ

(B2 −B2
0)− 2θ2q0].

(15)

Lemma 2.3 The combustion wave curve
←−
Dτ (0) is convex

and monotonically decreasing.
Proof. Since

−
u− u0

p− p0
= −

√

τ − τ0

p+ B2

2µ − p0 −
B2

0

2µ

, (16)

it follows that τ0−τ

p+B2

2µ
−p0−

B2
0

2µ

> 0, we know

p+
B2

2µ
> p0 +

B2
0

2µ
, τ < τ0,

or

p+
B2

2µ
< p0 +

B2
0

2µ
, τ > τ0.

From (9) we obtain

(u− u0)
2 = (p+

B2

2µ
− p0 −

B2
0

2µ
)(τ0 − τ).

Differentiating along the curve with respect top, it yields
that

2(u− u0)
du
dp = (p+ B2

2µ − p0 −
B2

0

2µ )(−
dτ
dp )

+(τ0 − τ)(1 − k2

µ
1
τ3 )

dτ
dp .

(17)

From Lemma 2.1.,dpdτ < 0, it turns out thatdudp < 0, thus
←−
Dτ (0) is monotonically decreasing curve.

For the convexity, in the same way with the proof of
Lemma 3.5. in [4], it yields thatd

2u
dp2 > 0 and

←−
Dτ (0) is

convex. �

Theorem 2.1 The combustion wave curve
←−
Dτ (0) loses

meaning when0 < p − p0 < γ−1
τ0

q0, and u = u0 when
p = p0 or p = p0 + γ−1

τ0
q0. Moreover,u → +∞ when

p→ −θ2(p0 +
B2

0

2µ ) and u→ −∞ whenp→ +∞.

Theorem 2.2 In the (τ, p) plane, along the curveDu(0)
we know that p−p0

τ−τ0
has its maximum and minimum at

CJDT and CJDF point, respectively. It follows that the
counterpart in the(u, p) plane p−p0

u−u0
has respectively its

maximum and minimum at
←−−−−
CJDT and

←−−−−
CJDF point due

to (16). Furthermore, each of the two curves is monotonic
alongSDT (or

←−−−
SDT ), WDT (or

←−−−
WDT ), WDF (or

←−−−−
WDF ),

SDF (or
←−−−
SDF ), respectively.

We depict the backward combustion wave curve
←−
Dτ (0)

as in Fig. 2.3. Now denote the backwardDF andDT wave
curve by

←−
WDF (−) and

←−
WDT (−), respectively, where

←−
WDF (−) :=

←−−−−
WDF (is) ∪

←−−−−
CJDF (is) ∪

←−
R (
←−−−−
CJDF (is)),

←−
WDT (−) :=

←−−−
SDT (−) ∪

←−−−−
CJDT (−) ∪

←−
R (
←−−−−
CJDT (−)).

-

6

u

p

(0)

SDT

CJDT

WDT

WDF

CJDF
SDF

Fig. 2.3. The backward combustion wave curve in the(u, p) plane.

Since the combustion wave curves are exactly similar with
that of the conventional gas dynamics, we obtain similar
results of the properties for the combustion wave curves
←−
WDF (−) and

←−
WDT (−) with Lemma 2. in [29] in the same

way. Here we just list the results.

Lemma 2.4 The combustion wave curves
←−
WDF (−) and

←−
WDT (−) in the (u, p) plane are located above the noncom-
bustion wave solution

←−
WS(−).

Denote the backward wave curve
←−
W (−) (see Fig. 2.4.)

which can be linked to the state(−) = (τ−, p−, u−, q−),
then

←−
W (−) :=

←−
WS(−) ∪

←−
WD(−),
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←−
WS(−) := (

←−
WS(−), q

− = 0) or (
←−
WS(−), q

− > 0),

←−
WD(−) :=

←−
WDF (−) ∪

←−
WDT (−).

6

-

(i)

(−)←−
WS(−), q− > 0

←−
WDF (−)

u

p

6

- u

p

(−)

←−
WDT (−)

Fig. 2.4. The backward combustion wave curve
←−
W (−).

Similarly, we can construct the forward combustion wave
curve

−→
W (+) which can be linked to the state(+) =

(τ+, p+, u+, q+).

III. SOLUTIONS OF THERIEMANN PROBLEM (1) AND (2)
WITH THE INITIAL DATA (3)

We shall study the Riemann problem of the CJ model (1)
and (2) with the initial values (3). Whenq− = q+ = 0 which
means the gas on both sides are burnt, no combustion wave
will occur. For this case, the Riemann solutions have been
constructed in [4], for simplicity we omit them.

Whenq− andq+ are not both zero, there may exist more
than one intersection points of

←−
W (−) and

−→
W (+). Each

intersection point corresponds to a unique Riemann solution.
When the intersection point is unique, the solution is also
unique, otherwise, in order to obtain the unique solution
we select it under the followingmodified global entropy
conditions (MGEC) ([23]):

we select the unique solution from the nine intersection
points (at most) of the forward wave curves connecting
(+) and the backward wave curves connecting(−) in the
following order:

A. the solution with the propagating speed of combustion
wave as low as possible;

B. the solution with the parameterβ as small as possible,
whereβ is defined as oscillation frequency ofT (ξ) between
the set{ξ ∈ R1 : T (ξ) ≤ Ti} and the set{ξ ∈ R1 : T (ξ) >
Ti};

C. the solution containing as many combustion wave as
possible.

For simplicity, we just consider the Riemann problem (1),
(2) and (3) in the following three cases. For the other cases,
we can obtain the results similarly.

Case 1.q− > 0, q+ = 0. In this case, the gas is unburnt on
the left side, the gas is burnt on the right side, i.e.,

←−
W (−) =

←−
WS(−) ∪

←−
WDF (−) ∪

←−
WDT (−),

−→
W (+) =

−→
WS(+). When

there exists only one intersection point of
←−
W (−) and

−→
W (+),

we obtain the unique solution is a detonation wave solution
←−−
DT +

−→
R or

−→
S if p−τ

γ
− = p+τ

γ
+, or

←−−
DT + J +

−→
R or

−→
S

if p−τ
γ
− 6= p+τ

γ
+ based on the arguments in [4]. In what

follows we suppose that there are three intersection points
of
←−
W (+) and

−→
WS(+). We only present the case in Fig. 3.1.

-

6

u

(−)

Fig. 3.1.q− > 0, q+ = 0 and there are three interaction points.

p

(+)

∗S

∗DF

←−
W (−)

−→
WS(+)

From Lemma 2.2. and Lemma 2.6., we know the prop-
agating speed of the deflagration wave is less than that of
the detonation wave. Therefore due to the global entropy
conditionA the intersection point of

−→
WS(+) and

←−
WDT (−)

should be discarded. We denote the intersection point of
−→
WS(+) and

←−
WS(−) by ∗S and the intersection point of

−→
WS(+) and

←−
WDF (−) by ∗DF . We denote the temperature at

the point∗S, ∗DF on
−→
WS(+) by TS , TDF , respectively. The

temperature at∗DF on
←−
WDF (−) is greater thanTi according

to the assumption that the combustion process is exothermic
(Fig. 3.2).
Subcase 1.1.p−τ

γ
− = p+τ

γ
+.

We select the point∗S or ∗DF and obtain the possible
solution is

←−
R or

←−
S +
−→
R or

−→
S or

←−−
DF +

−→
R or

−→
S . Now we

construct the unique Riemann solution under the modified
global entropy conditions as follows.

a) WhenT+ > Ti, thenβ(∗S) = 1, β(∗DF ) = 1, from the
condition C, we select∗DF and obtain a combustion wave
solution

←−−
DF +

−→
R or

−→
S (Fig. 3.2. (ii)).

b) WhenT+ ≤ Ti, thenβ(∗S) = 0, β(∗DF ) = 2, from
the conditionB, we select∗S and obtain a noncombustion
wave solution

←−
R or

←−
S +

−→
R or

−→
S (Fig. 3.2. (i)).

- x
< Ti

←−
R or

←−
S −→

R or
−→
S

T+

(i) noncombustion wave

< Ti

6
t

- x
< Ti

= Ti

> Ti

−→
R or

←−
S

←−−
DF

(ii) combustion waveDF

Fig. 3.2. Solutions in Subcase 1.1.

S

T+

6
t

Subcase 1.2.p−τ
γ
− 6= p+τ

γ
+.

From the conditionA, we discard the possible detonation
DT wave solution and find that the possible Riemann
solution is

←−
R or

←−
S + J +

−→
R or

−→
S or

←−−
DF + J +

−→
R or

−→
S .

According to the modified global entropy conditions we
obtain the unique Riemann solution as follows (Fig. 3.3.).

- x
< Ti

←−
R or

←−
S −→

S or
−→
RTS

T+

(i) noncombustion wave

< Ti

6
J

t

- x
< Ti

= Ti

> Ti TDF

−→
S or

−→
R

←−−
DF

(ii) combustion waveDF

Fig. 3.3. Solutions in Subcase 1.2.

S

T+

6
Jt

a) When T+ > Ti, TDF > Ti, then β(∗S) = 1,
β(∗DF ) = 1, from the conditionC, we select∗DF and obtain
a combustion wave solution containing aDF (Fig. 3.3. (ii)).

b) WhenT+ > Ti, TDF ≤ Ti(⇒ TS ≤ Ti), thenβ(∗S) =
1, β(∗DF ) = 3, from the conditionB, we select∗S and
obtain a noncombustion wave solution (Fig. 3.3. (i)).
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c) When T+ ≤ Ti, TS ≤ Ti, then β(∗S) = 0,
β(∗DF ) = 2, from the conditionB, we select∗S and obtain
a noncombustion wave solution (Fig. 3.3. (i)).

d) WhenT+ ≤ Ti, TS > Ti(⇒ TDF > Ti), thenβ(∗S) =
2, β(∗DF ) = 2, from the conditionC, we select∗DF and
obtain a combustion wave solution containing aDF (Fig.
3.3. (ii)).

Case 2.q− > 0, q+ = 0 and there are two intersection
points of

←−
W (+) and

−→
WS(+).

Just as the above case, we denote the intersection point of
−→
WS(+) and

←−
WDT (−) by ∗DT and the temperature at the

point ∗DT on
−→
WS(+) by TDT (Fig. 3.4).

-

6

u

p

Fig. 3.4.q− > 0, q+ = 0 and there are two intersection points.

p

p

p

p

p

(+)

(−)

∗S = ∗DF = (i)
−→
WS(+) ←−

WDF (−)

←−
WDT (−)

←−
WS(−)

∗DT

Subcase 2.1.p−τ
γ
− = p+τ

γ
+.

In this case, we select the point∗S or ∗DT and obtain the
possible solutions

←−
S +

−→
R or

−→
S or

←−−
DT +

−→
R or

−→
S . Now

we select the unique Riemann solution as follows.
a) WhenT+ > Ti, thenβ(∗S) = 1, β(∗DT ) = 1, from the

condition C, we select∗DT and obtain a combustion wave
solution

←−−
DT +

−→
R or

−→
S (Fig. 3.5. (i)).

b) WhenT+ ≤ Ti, thenβ(∗S) = 0, β(∗DT ) = 2, from
the conditionB, we select∗S and obtain a noncombustion
wave solution

←−
S +

−→
R or

−→
S (Fig. 3.5. (ii)).

- x
< Ti

> Ti

−→
R

(i) combustion waveDT

Fig. 3.5. Solutions in Subcase 2.1.

←−−
DT

T+

6
t

- x
< Ti

←−
S −→

R

< Ti

T+

(ii) noncombustion wave

6
t

Subcase 2.2.p−τ
γ
− 6= p+τ

γ
+.

In this case, we know that there are two possibilities: one
is that there exists only one intersection point of

←−
W (−)

and
−→
W (+) and we obtain the unique Riemann solution is

←−−
DT +

>

J +
−→
R or

−→
S , the other one is that there are three

possible solutions which are the noncombution wave solution
←−
S or

←−
R+J+

−→
R or

−→
S , or theDF combustion wave solution

←−−
DF + J +

−→
R or

−→
S , or theDT combustion wave solution

←−−
DT +

<

J +
−→
R or

−→
S . Similarly, according to the modified

global entropy conditions we obtain the unique solution as
follows (Fig. 3.6.). From the global entropy conditionA, we
discard theDT combustion wave solution.

a) When T+ > Ti, TDF > Ti, then β(∗S) = 1,
β(∗DF ) = 1, from the conditionC, we select∗DF and obtain
a combustion wave solution containing aDF (Fig. 3.6. (ii)).

b) WhenT+ > Ti, TDF ≤ Ti(⇒ TS ≤ Ti), thenβ(∗S) =
1, β(∗DF ) = 3, from the conditionB, we select∗S and
obtain a noncombustion wave solution (Fig. 3.6. (i)).

c) When T+ ≤ Ti, TS ≤ Ti, then β(∗S) = 0,

β(∗DF ) = 2, from the conditionB, we select∗S and obtain
a noncombustion wave solution (Fig. 3.6. (i)).

d) WhenT+ ≤ Ti, TS > Ti(⇒ TDF > Ti), thenβ(∗S) =
2, β(∗DF ) = 2, from the conditionC, we select∗DF and
obtain a combustion wave solution containing aDF (Fig.
3.6. (ii)).

- x
< Ti

←−
S or

←−
R

−→
R or

−→
STS

T+

(i) noncombustion wave

< Ti

6
J

t

- x
< Ti

= Ti

> Ti TDF

−→
R or

−→
S

←−−
DF

(ii) combustion waveDF

Fig. 3.6. Solutions in Subcase 2.2.

S

T+

6
Jt

Theorem 3.1 In this case, for the combustion model
(1) and (2) in magnetogasdynamics, there exists a possible
deflagration wave solution for our Riemann problem which
is different from the conventional gas dynamics in [23] and
[29] where there is no deflagration wave solution but only a
possible detonation wave solution of the corresponding case.

Case 3.q− > 0, q+ > 0 and the gas on the both sides
are unburnt. In this case ,we know that

←−
W (−) =

←−
WS(−) ∪←−

WDF (−) ∪
←−
WDT (−),

−→
W (+) =

−→
WS(+) ∪

−→
WDF (+) ∪

−→
WDT (+).

If the intersection point of
←−
W (−) and

−→
W (+) is unique, the

solution is a detonation wave solution
←−−
DT +

−−→
DT if p−τ

γ
− =

p+τ
γ
+, or

←−−
DT +J+

−−→
DT if p−τ

γ
− 6= p+τ

γ
+ based again on the

results in [4]. Otherwise, there are two possible subcases: one
is that there is an intersection point of

←−
WS(−) and

−→
WS(+),

the other is that there is no intersection point of
←−
WS(−) and

−→
WS(+).
Case 3.1.In the former subcase (Fig. 3.7.), we discuss it in
the following two subcases.

-

6
p

u

−→
W (+)←−

W (−)

Fig. 3.7. There is an intersection point of
←−
WS(−) and

−→
WS(+).

1
23

4⊖ ⊕

Subcase 3.1.1.p−τ
γ
− = p+τ

γ
+.

From the conditionA, we just need to consider the
intersection points 1, 2, 3, 4. We should select the unique
solution from the four possible solutions (Fig. 3.8.).

- -

- -

←−
S or ←−R

−→
S or −→R

←−−
DF

S

−→
S or −→R

←−
S or ←−R

−−→
DF

S S

←−−
DF

−−→
DF

S

< Ti

< Ti

< Ti < Ti

= Ti

> Ti

< Ti

< Ti

> Ti = Ti

< Ti < Ti

= Ti

> Ti
= Ti

< Ti

(i) solution corresponds to point 1 (ii) solution corresponds to point 2

(iii) solution corresponds to point 3 (iv) solution corresponds to point 4

Fig. 3.8. The possible solutions in Subcase 3.1.1.

x x

x x

6 6

6 6

t t

t t
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It is obvious thatβ = 0 for (i), and it holds thatβ = 2
for (ii), (iii) and (iv). From the conditionB, we select the
intersection point 1 and obtain the unique noncombustion
wave solution

←−
R or

←−
S +

−→
R or

−→
S .

Subcase 3.1.2.p−τ
γ
− 6= p+τ

γ
+. In a similar way as the above

discussions in Subcase 3.1.1., we obtain that the unique
Riemann solution is still the noncombustion wave solution
←−
R or

←−
S + J +

−→
R or

−→
S . The only difference is that here

the contact discontinuity appears.
Case 3.2.In the latter subcase, there are only two possi-
bilities:

←−
W (−) intersects

−→
WDT (+) only or

−→
W (+) intersects

←−
WDT (−) only. We just need to consider the former. If the
intersection point is unique, the solution is

←−−
DT +

−−→
DT if

p−τ
γ
− = p+τ

γ
+, or

←−−
DT+J+

−−→
DT if p−τ

γ
− 6= p+τ

γ
+, otherwise,

there are at most three intersection points (Fig. 3.9.).

6
p

u
⊖

Fig. 3.9.
←−
W (−) intersects

−→
WDT (+) only.

-
←−
WDF (−)

←−
WDT (−)

←−
WS(−)

⊕

−→
WDT (+)

∗S
∗DF

Subcase 3.2.1.p−τ
γ
− 6= p+τ

γ
+.

In this subcase (Fig. 3.10.), from the conditionA, the
intersection point of

←−
WDT (−) and

−→
WDT (+) should be

discarded. We denote the intersection point of
−→
WDT (+)

and
←−
WS(−) by ∗S and denote the intersection point of

−→
WDT (+) and

←−
WDF (−) by ∗DF , respectively. We denote

the temperature at the point∗S, ∗DF on
−→
WDT (+) by TS ,

TDF , respectively.

-

J

x
< Ti

= Ti

> Ti TDF

< Ti

combustion wave solution

←−−
DF

−−→
DT

Fig. 3.10. Solutions in Subcase 3.2.1.

S

6
t

-

J

x
< Ti

< Ti TS

< Ti

←−
S or ←−R

−−→
DT

combustion wave solution

6
t

Since TS > Ti we haveTDF > Ti, then β(∗S) = 2,
β(∗DF ) = 2. From the conditionC, we select∗DF and
obtain a combustion wave solution

←−−
DF +

−−→
DT .

Subcase 3.2.2.p−τ
γ
− = p+τ

γ
+. In a similar way as the above

discussions in Subcase 3.2.1., we obtain that the unique
Riemann solution is still the combustion wave solution

←−−
DF

+
−−→
DT . The only difference is that there exists the contact

discontinuity in Subcase 3.2.1..

IV. CONCLUSION

In this work, we find that there exists a unique piecewise
smooth solution of the Riemann problem (1) (2) with the
initial data (3) under the modified global entropy conditions
(MGEC).

Since the reaction rate in our model is infinite which is an
idealized hypothesis, while our model is still very important
in application, we will investigate the initial value problem

for the self-similar Zeldovich-von Neumann-Döring (ZND)
model in magnetogasdynamic combustion with finite reaction
rate in our coming works.
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