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Abstract—In this work, we will use the finite volume method
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I. INTRODUCTION

THE study of problems in solid mechanics has become
one of the most considered disciplinary subjects in

physics and mathematics. Their models are governed by
partial differential equations (PDEs), where their exact and/
or approximate solutions that are still of great importance,
are unfortunately not very current. They are usually limited
to simple situations.

In our work, we will try to approximate the problem of
Signorini by a sheme based one finite volume method. To
solve this problem, finite element shemes have been mostly
used, see for example [2], [12], [13]. Also, in 2001, R. Herbin
et al. [6] have approximated a class of variational inequalities
by the finite volume method taking as conditions at the
boundary Signorini conditions with the diffusion equation,
taking in consideration recent works (see [3]–[5]).

However, the application of finite volume method to the
Signorini problem is not an easy task due to the contact
conditions on the boundary(see [7], [8]).

In 2015, T. Zhang et al. [9] have done a generalized finite
difference analysis for the Signorini problem where some
ambiguity are removed (see [10], [11]).
Then, in this context we will take the problem of Signorini
analyzed by T. Zhang et al. [9] and we will approximate
it with a finite volume sheme where an analysis for the
numerical scheme is done as well as an error estimate is
given.

Finally numerical test is given to improve the theoretical
study.

II. CONTACT PROBLEM

The Signorini problem which we considered here can be
stated as follows.

Let Ω be a polygonal domain of Rd, d = 2 or 3, so
that the boundary ∂Ω be composed of three non overlapping
portions Γ1,Γ2 and Γ3 which is the candidate for being in
contact with a rigid frictionless obstacle.
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Now we consider the following Signorini problem

− div [a (x)∇u] = f in Ω
u = 0 on Γ1

a(x)∇u.η = 0 on Γ2

u ≥ α
a(x)∇u.η ≥ β

(u− α) (a(x)∇u.η − β) = 0

 on Γ3

(1)

under the following assumptions:
1) Ω is a bounded open polygonal subset of Rd, d = 2

or 3.
2) The boundary ∂Ω of Ω is composed of three non

empty, non intersecting connected sets Γ1,Γ2 and Γ3,
such that Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω.

3) f ∈ L2 (Ω) , η is the unit outward normal to ∂Ω.
4) α ∈ R− and β ∈ R
5) Under the previous assumptions, the following hypoth-

esis on a are given:
• a is a piecewise C1 function from Ω to Rd×d such

that for all x ∈ Ω, a (x) is a symmetric matrix.
• There exists a0 ∈ R∗+ such that a (x) ξ.ξ ≥ a0 for
x ∈ Ω and for all ξ ∈ Rd.

III. PRELIMINARY

To establish the theoretical study, we need to state some
definitions and lemmas.[4 ]-[6 ]

Definition 1: An admissible finite volume mesh of Ω, de-
noted by T is given by a finite family of ”control volumes”,
which are non intersecting open polygonal convex subsets of
Ω, a finite family of non intersecting subsets of Ω contained
in hyperplanes of Rd, denoted by E(these are the sides of the
control volumes), with strictly positive (d− 1) dimensional
measure, and a family of points of Ω denoted by P satisfying
the following properties:

(i) The closure of the union of all the control volumes is
Ω.

(ii) For any K ∈ T , there exists a subset EK of E such
that ∂K = K \K = ∪σ∈EKσ and ∪K∈T EK = E .

(iii) For any (K,L) ∈ T 2 with K 6= L either the (d− 1)
dimensional Lebesgue measure of K ∩ L is 0 or K ∩
L = σ for some σ ∈ E , which will be denoted by
K \ L.

(iv) The family P = (xK)K∈T is such that xK ∈ K (for
all K ∈ T ) and if K and L are two neighbouring
control volumes, it is assumed that xK 6= xL and the
straight line DK,L going xK and xL is assumed to be
orthogonal to K \ L.

(v) For any σ ∈ E such that σ ⊂ ∂Ω, there exists i ∈
{1, 2, 3} such that σ ⊂ Γi.

(vi) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control
volume such that σ ∈ EK and DK,σ be the straight
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line going through xK and orthogonal to σ; then yσ =
DK,σ ∩ σ.

(vii) For any K ∈ T , the restriction a |Kof the function a
to any given control volume K belongs to C1

(
K
)
.

Furthermore if a is a piecewise C1 function from Ω to
Rd×d, the orthogonality conditions (iv) and (vi) have
to be modified into:

(iv)’ For any K ∈ T 67, let aK denote the mean value of a
on K, that is

aK =

∣∣∣∣ 1

m (K)

∫
K

a (x) dx

∣∣∣∣ (2)

The set T is such that there exists a family of points
P = (xK)K∈T such that xK = ∩σ∈EKDK,σ,a ∈ K.
Where DK,σ,a is the straight line perpendicular to σ with
respect to the scalar product induced by a−1

K such that
DK,σ,a ∩ DL,σ,a 6= ∅ if σ = K \ L. And if σ = K \ L, let
yσ = DK,σ,a ∩ σ (= DL,σ,a ∩ σ) and assume that xK 6= xL.

(vi) For any σ ∈ Eext, let K be the control volume such
that σ ∈ EK and let DK,σ,a be the straight line going
through xK and orthogonal to σ with respect to the
scalar product induced by a−1

K ; then there exists yσ ∈
σ ∩ DK,σ,a; let gσ = g (yσ) .

Notation 2: Let size(T )=sup{diam (K) ,K ∈ T }
For any K ∈ T and σ ∈ E , m (K) is the d-
dimensional Lebesgue measure of K and m (σ) is the
(d− 1)-dimensional Lebesgue measure of σ.
The set of interior( resp. boundary) edges is denoted by
Eint (resp. Eext), that is Eint = {σ ∈ E ;σ ⊂ ∂Ω} .The set
of neighbors of K is denoted by N (K) , that is N (K) ={
L ∈ T ;∃σ ∈ EK : σ = K ∩ L

}
.

If σ = K \ L, we denote by dσ or dK\L the Euclidean
distance between xK and xL.If σ ∈ EK ∩ Eext, we denote
by dσthe Euclidiean distance between xK and yσ. For any
control volume K and any edge σ ∈ EK , we shall denote by
dK,σthe distance between xK and σ.
For any σ ∈ E ; the transmissivity through σ is defined by
τσ = m(σ)

dσ
.

Definition 3: Let Ω be an open bounded polygonal subset
of Rd , d = 2 or 3, and T be an admissible finite volume
mesh in the sense of Definition 1. We define X (T ) as the
set of functions from ΩT = ∪K∈TK ∪ ∪σ⊂Γ3σ to R which
are constant over each control volume of the mech and over
each edge of Eext which is included in Γ3.

Definition 4: Let Ω be an open bounded polygonal subset
of Rd , d = 2 or 3, and T be an admissible finite volume
mesh in the sense of Definition 1. We define the operator γ
from X (T ) to L2 (∂Ω) such that: let u ∈ X (T ) , let uK be
the value of u in the control volume K and uσ be the value
of u in the edge σ, for σ ⊂ Γ3; let us define γ (u) = uσ on σ, if σ ⊂ Γ3

γ (u) = uK on σ, if σ ⊂ Γ2 and σ ∈ EK
γ (u) = 0 on σ, if σ ⊂ Γ1

(3)

Definition 5: Let Ω be an open bounded polygonal subset
of Rd , d = 2 or 3, and T be an admissible finite volume
mesh in the sense of Definition 1. For u ∈ X (T ) the discrete
H1

0 norm is defined by

‖u‖1,T =

(∑
σ∈E

τσ (Dσu)
2

) 1
2

, (4)

with
|Dσu| = |uK − uL| if σ ∈ Eint, σ = K \ L

Dσu = −uK if σ ⊂ Γ1, σ ∈ EK
Dσu = 0 if σ ⊂ Γ2

Dσu = uσ − uK if σ ⊂ Γ3, σ ∈ EK

(5)

Lemma 6: Let Ω be an open bounded polygonal subset of
Rd , d = 2 or 3, T be an admissible finite volume mesh in
the sense of Definition 1, and u ∈ X (T ), then

‖u‖L2(Ω) ≤ diam (Ω) ‖u‖1,T . (6)

Lemma 7: Let Ω be an open bounded polygonal subset of
Rd , d = 2 or 3, T be an admissible finite volume mesh in
the sense of Definition 1 and u ∈ X (T ). Let us denote by
uK the value of u in the control volume K and uσ the value
of u in the edge σ, for σ ⊂ Γ3. Let γ (u) ∈ L2 (∂Ω) (see
Definition 4), then there exists C depending only on Ω, such
that

‖γ (u)‖L2(∂Ω) ≤ C
(
‖u‖1,T + ‖u‖L2(Ω)

)
. (7)

IV. FINITE VOLUME SCHEME

In order to obtain the finite volume scheme, we first
integrating the first equation of problem (1) over each control
volume K, then we approximate the normal derivative on
each cell boundary by finite differences and by taking into
account the boundary conditions of problem (1), we obtain
the following scheme∑

σ∈EK

FK,σ = m (K) fK , (8)

where

fK =
1

m (K)

∫
K

f (x) dx, (9)

such that on internal edges

FK,σ = −τσ (uL − uK) if σ ∈ Eint, σ = K \ L (10)

with

τσ =


m (σ)

aK,σaL,σ
aK,σdL,σ+aL,σdK,σ

if yσ 6= xK and yσ 6= xL,
m (σ)

aK,σ
dK,σ

if yσ 6= xK and yσ = xL,

(11)

and on boundary edges:

FK,σ =


−τσ (uσ − uK) if σ ∈ Eext , σ ∈ EK
τσuK , ∀σ ⊂ Γ1, σ ∈ EK
0, ∀σ ⊂ Γ2, σ ∈ EK
−τσ (uσ − uK) , ∀σ ⊂ Γ3, σ ∈ EK

(12)
with

τσ = m (σ)
aK,σ
dK,σ

(13)

uσ ≥ α,∀σ ⊂ Γ3 (14)

−FK,σ ≥ m (σ)β,∀σ ⊂ Γ3 (15)

(uσ − α)

(
FK,σ
m (σ)

+ β

)
= 0,∀σ ⊂ Γ3 (16)
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V. EXISTENCE AND UNIQUENESS OF DISCRETE
SOLUTION

In order to show the existence and uniqueness of U =(
(uK)K∈T , (uσ)σ⊂Γ3

)
where uK and uσ satisfy equations

(8)-(16), we derive an equivalent variational formulation.
Lemma 8: Under assumptions 1-5, let T be an admissible

finite volume mesh in the sense of Definition 1; and let uT ∈
X (T ) defined by uT = uK for x ∈ K, for all K ∈ T and
by uT (x) = uσ for x ∈ σ, for all σ ∈ Eext, σ ⊂ Γ3, then
(uK)K∈T , (uσ)σ⊂Γ3

is solution to problem (8)−(14) if and
only if uT is solution to the following problem: uT ∈ KT = {v ∈ X (T ) , s.t.vσ ≥ α,∀σ ⊂ Γ3} ,

such that
A (uT , v − uT ) ≥ L (v − uT ) ,∀v ∈ KT ,

(17)
where

A (u, v) =
∑

σ=K\L∈Eint

τσ (uK − uL) (vK − vL)

+
∑

σ∈Eext

τσ (Dσu) (Dσv) ∀u, v ∈ KT , (18)

and

L (u) =
∑
σ⊂Γ3

βuσm (σ) +
∑
K∈T

m (K) fKuK ,∀u ∈ KT .

(19)
where τσ is defined in (11).

Proof: Let uT ∈ X (T ) (see Definition 3) defined by
uT = uK for x ∈ K and for all K ∈ T and by uT (x) = uσ
for x ∈ σ, for all σ ∈ Eext, σ ⊂ Γ3.

Let us assume that (uK)K∈T , (uσ)σ⊂Γ3
satisfy (8)−(14)

and assume that fK = 0, let us show that uT satisfies
problem (15), uT is clearly in KT . Let v ∈ KT , multiplying
(8) by (vK − uK) and summing over K leads to∑

K∈T

∑
σ∈EK

FK,σ (vK − uK) = 0. (20)

Which gives

A (uT , v − uT ) =
∑

σ∈Eext,σ⊂Γ3

τσ (DσuT ) (vσ − uσ) .

(21)
Let us show that∑

σ∈Eext,σ⊂Γ3

τσ (DσuT ) (vσ − uσ) ≥ L (v − uT ) (22)

Let σ ∈ Eext, σ ⊂ Γ3 and K ∈ T such that σ ∈ EK , then

−FK,σ (vσ − uσ) = (−FK,σ −m (σ)β) (vσ − α)

+ (−FK,σ −m (σ)β) (α− uσ) (23)
+m (σ)β (vσ − uσ) . (24)

Using equation (16), we obtain

(−FK,σ −m (σ)β) (α− uσ) = 0 (25)

and
(−FK,σ −m (σ)β) (vσ − α) ≥ 0. (26)

Thus, ∀σ ∈ Eext, σ ⊂ Γ3, we have

τσ (DσuT ) (vσ − uσ) ≥ m (σ)β (vσ − uσ) . (27)

It follows that uT satisfy problem (17).

Now assume that uT ∈ X (T ) satisfies problem (17), then
(uK)K∈T , (uσ)σ⊂Γ3

is a solution to problem (8)-(16).
Indeed, let K0 ∈ T and let us prove that∑

σ∈EK0

FK
0
,σ = 0,

where FK
0
,σ is defined by (11)-(12).

For that, let v = uT ± w, v ∈ KT with w ∈ X (T ), such
that {

wK0
= 1

wK = 0
∀K ∈ T ,K 6= K0

and wσ = 0,∀σ ∈ Eext, σ ⊂ Γ3.
One may take v = uT + w (respectively v = uT − w) in
(17), to get A (uT , w) ≥ 0 (respectively A (uT , w) ≤ 0).
Thus, A (uT , w) = 0
In other terms we obtain

A (uT , w) =
∑
σ∈EK0

FK0 ,σ
= 0.

Also, since uT ∈ KT it is clear that uT satisfies equations
(8)-(14).

Now, let us check that uT satisfies equation (15).
Let σ0 ∈ Eext ∩ EK , σ0 ⊂ Γ3 and let v = uT + w, v ∈ KT
with w ∈ X (T ) such that wK = 0,∀K ∈ T and{

wσ0
= 1

wσ = 0
,∀σ0 ⊂ Γ3, σ 6= σ0.

Substituting v in (17) yields that

τσ0
(uσ0

− uK) ≥ βm (σ0) .

Let Γα = {σ ∈ Eext, σ ⊂ Γ3 s.t uα ≥ α}, σ0 ∈ Γα and let
v = uτ − µw, v ∈ KT with w ∈ X (T ), such that wK =
0, ∀K ∈ T and{

wσ0
= 1

wσ = 0
,∀σ ∈ Eext, σ ⊂ Γ3, σ, 6= σ0

and µ = uτ0 − α.
By taking v in (17), we obtain

τσ0
(uσ0

− uK) ≥ βm (σ0) .

Which proves that

τσ0
(uσ0

− uK) = βm (σ0) .

We will use Lemma 3 in the following result.
Proposition 9 (Existence, Uniqueness and stability):

Under assumptions 1-5, let T be an admissible finite
volume mesh in the sense of Definition 1; there exists a
unique solution (uK)K∈T , (uσ)σ⊂Γ3

to problem (8)-(16).
We may then define uT ∈ X (T ) by uT = uK for x ∈ K,
for all K ∈ T and by uT (x) = uσ for x ∈ σ, for all
σ ∈ Eext, σ ⊂ Γ3. There exists c > 0 only depending on Ω,
f and β, such that

‖uT ‖1,T ≤ c and ‖uT ‖L2(Ω) ≤ c (28)

where ‖.‖1,T is defined in Definition 5.
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Proof: Step 1 (existence and uniqueness)
The bilinear form A defined by (18) and the linear form L
defined by (19) are continuous on the Hilbert space X (T ).
Furthermore A (uT , uT ) = ‖uT ‖21,T ,∀uT ∈ X (T ).
By Stampacchia’s theorem there exists a unique solution uT
to problem (17).

Hence by lemma 3, there exists a unique solution
(uK)K∈T , (uσ)σ⊂Γ3

to problem (8)-(16).
Step 2 (stability)

Now, we will prove (28). Let uT be a solution to (17). By
taking v = 0 we get

‖uT ‖21,T ≤ L (uT ) . (29)

Also, from (19) and using the triangular inequality, we obtain

|L (uT )| ≤

∣∣∣∣∣∣
∑

σ∈Eext,σ⊂Γ3

βuσm (σ)

∣∣∣∣∣∣+

∣∣∣∣∣∑
K∈T

m (K) fKuK

∣∣∣∣∣ .
(30)

Using the Cauchy-Schwartz inequality, it yields that∣∣∣∣∣∣
∑

σ∈Eext,σ⊂Γ3

βuσm (σ)

∣∣∣∣∣∣ ≤ |β|
 ∑
σ∈Eext,σ⊂Γ3

u2
σm (σ)

 1
2

×

 ∑
σ∈Eext,σ⊂Γ3

m (σ)

 1
2

(31)

and ∣∣∣∣∣∑
K∈T

m (K) fKuK

∣∣∣∣∣ ≤
(∑
K∈T

m (K)u2
K

) 1
2

×

(∑
K∈T

m (K) f2
K

) 1
2

. (32)

Then, we have∣∣∣∣∣∣
∑

σ∈Eext,σ⊂Γ3

βuσm (σ)

∣∣∣∣∣∣ ≤ |β|√m (Γ3) ‖γ (uT )‖L2(Γ3)

(33)
and ∣∣∣∣∣∑

K∈T
m (K) fKuK

∣∣∣∣∣ ≤ ‖u‖L2(Ω) ‖f‖L2(Ω) . (34)

Using the trace and Poincaré Inequalities [1], [6], this yields
we obtain

|L (uT )| ≤ c ‖uT ‖1,T . (35)

By the discrete Poincaré Inequality the second inequality
follows immediately, see Lemma 1.

VI. ERROR ESTIMATE

To establish the error estimate we refer to [5], [6], [14],
[15].

Theorem 10: Under assumptions 1-5, let T be an admissi-
ble mesh as defined in Definition 1, let Ω be an open bounded
polygonal subset of Rd, d = 2 or 3.
Let λ = minx∈Kminσ∈EK

dK,σ
diam(K) and uT ∈ X(T ) be

defined by uT (x) = uK for a.e x ∈ K, for all K ∈ T
and by uT (x) = uσ for a.e x ∈ σ, for all σ ∈ Eext, σ ⊂ Γ3

where
(
(uK)K∈T , (uσ)σ⊂Γ3

)
is the solution to (8)-(16).

Assume that the unique variational solution of problem
(1) satisfies u ∈ H2 (Ω) . For each K ∈ T , let eK =
u (xK) − uK and for each σ ∈ Eext such that σ ⊂ Γ3

let eσ = u (yσ) − uσ and let eT ∈ X(T ) be defined by
eT (x) = eK for x ∈ K, for all K ∈ T and by eT (x) = eσ
for x ∈ σ, for all σ ∈ Eext, σ ⊂ Γ3.
Then, there exists C ∈ R+ depending only on
u, β, λ, λ1, λ2, f and Ω such that

‖eT ‖1,T ≤ C size (T ) (36)

and
‖eT ‖L2(Ω) ≤ C size (T ) . (37)

where ‖.‖1,T is the discrete H2 norm defined in preliminary
E, size (T ) = supK∈T diam(K) and λ1, λ2 ∈ R+ satisfy

λ1 (size (T ))
2 ≤ m(K) ≤ λ2 (size (T ))

2

λ1size (T ) ≤ m(σ) ≤ λ2size (T )

λ1size (T ) ≤ dσ ≤ λ2size (T ) .

Proof: Let uT ∈ X(T ) be defined in Ω by uT (x) = uK
for x ∈ K, for all K ∈ T and by uT (x) = uσ for x ∈ σ
for all σ ∈ Eext, σ ⊂ Γ3, where

(
(uK)K∈T , (uσ)σ⊂Γ3

)
is

the solution to (8)-(16).
So for any K ∈ T , we define the exact diffusion flux by
FK,σ, where FK,σ = −

∫
σ
a (x)∇u (x) ηK,σdγ (x), and

suppose that for all K ∈ T ,
∑
K∈T m (K) fK = 0, then

we have ∑
σ∈EK

FK,σ = 0. (38)

Let F ∗K,σ be defined by

F ∗K,σ =


−τσ (u (xL)− u (xK)) if σ ∈ Eint, σ = K \ L
τσu (xK) , ∀σ ⊂ Γ1, σ ∈ EK
0, ∀σ ⊂ Γ2, σ ∈ EK
−τσ (u (yσ)− u (xK)) ∀σ ⊂ Γ3, σ ∈ EK

Therefore, the consistency error on the diffusion flux may be
defined as

RK,σ =
1

m (σ)

(
FK,σ − F ∗K,σ

)
. (39)

Assuming that the unique variational solution u to problem
(1) belongs to H2 (Ω) and thanks to the regularity of u, there
exists C1 ∈ R+, depending only on

∥∥D2u
∥∥
L2(Ω)

, λ and λ2,
such that

m (σ) dσ |RK,σ|2 ≤ C1 (size (T ))
2
,∀K ∈ T ,∀σ ∈ EK .

(40)
Subtracting (8) from the equation (38), using (39) and the
regularity of u, it yields that∑

σ∈EK

(
F ∗K,σ − FK,σ

)
= −

∑
σ∈EK

m (σ)RK,σ. (41)

Let HK,σ = F ∗K,σ − FK,σ such that

HK,σ =


−τσ (eL − eK) if σ ∈ Eint, σ = K \ L
τσeK ∀σ ⊂ Γ1, σ ∈ EK
= 0 ∀σ ⊂ Γ2, σ ∈ EK
−τσ (eσ − eK) ∀σ ⊂ Γ3, σ ∈ EK .
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Multiplying (41) by eK , summing for K ∈ T , and thanks
to the conservativity of HK,σ i.e. HK,σ = −HL,σ for any
σ ∈ Eint such that σ = K \ L , then

‖eT ‖21,T = −
∑

σ∈Eext,σ⊂Γ3

HK,σeσ−
∑
K∈T

∑
σ∈EK

m (σ)RK,σeσ,

(42)
where ‖eT ‖1,T is defined by (4)-(5).
Reordering the terms in (42) and using the property of
conservativity of HK,σ, one has for any σ ∈ Eint such that
σ = K \ L

‖eT ‖21,T ≤
∑
K∈T

∑
σ∈Eext,σ⊂Γ3

(−HK,σ −m (σ)RK,σ) eσ +∑
σ∈E

m (σ) |RK,σ| |DσeT | .

Now, using the fact that

(−HK,σ −m (σ)RK,σ) eσ =
(
FK,σ − FK,σ

)
eσ

and using the last equation in (1) and (16), we obtain

(−HK,σ −m (σ)RK,σ)eσ (43)
= (FK,σ +m (σ)β) (u (yσ)− α)

+ (FK,σ +m (σ)β) (α− uσ)

+

∫
σ

(a (x)∇u (x) ηK,σdγ (x)− β) (u (yσ)− α)

+

∫
σ

(a (x)∇u (x) ηK,σdγ (x)− β) (α− uσ)

(44)

Introducing the Signorini conditions stated in (1),(14)-(16),
the previous equation becomes

(−HK,σ −m (σ)RK,σ) eσ

≤
∫
σ

(a (x)∇u (x) ηK,σdγ (x)− β) (u (yσ)− α) .

If u 6= α on σ, for a given edge σ, then
a (x)∇u (x) ηK,σdγ (x) = 0 on σ, so

(−HK,σ −m (σ)RK,σ) eσ ≤ 0.

And if u = α on a subset of σ whose measure is non
zero, then by the regularity of u, there exists C2 > 0 only
depending on D2u, u and β such that∑

K∈T

∑
σ∈Eext,σ⊂Γ3

(−HK,σ −m (σ)RK,σ) eσ

≤ C2m (Γ3) (size (T ))
2
. (45)

Using Cauchy-Schwartz inequality and last inequality we get
the following estimate

‖eT ‖21,T ≤

(∑
σ∈E

m (σ) dσ |RK,σ|2
) 1

2

×

(∑
σ∈E

m (σ)

dσ
|DσeT |2

) 1
2

+ C3 (size (T ))
2

(46)

Using (40), there exists C4 > 0 only depending on
u, λ, λ1, λ2 and Ω, such that

‖eT ‖21,T ≤ C4size (T ) ‖eT ‖1,T + C3 (size (T ))
2
.

By Young’s inequality, there exists C > 0 depending only
on u, β, λ, λ1, λ2 and Ω such that

‖eT ‖1,T ≤ Csize (T ) . (47)

The second inequality follows immediately from Lemma 1.

VII. NUMERICAL TEST

In order to satisfy theoretical study, we consider the
following problem:



−div [a (x)∇u] = f in Ω,
u = 0 on Γ1,
a (x)∇u.η = 0 on Γ2,
u ≥ α
a (x)∇u.η ≥ β
(u− α) (a (x)∇u.η − β) = 0

 on Γ3.

(48)

with Ω = ]0, xm[ × ]0, ym[ , the boundary ∂Ω of Ω is
composed of three non empty, non intersecting connected
sets Γ1, Γ2 and Γ3, such that [4]:

Γ1 =
{

(x, y) ∈ Ω s.t. x = 0
}
,

Γ2 =
{

(x, y) ∈ Ω s.t. x = xm
}
∪
{

(x, y) ∈ Ω s.t. y = ym
}
,

Γ3 =
{

(x, y) ∈ Ω s.t. y = 0
}
,

α, β ∈ R, f ∈ L2 (Ω) , η is the unit normal vector to ∂Ω
outward to Ω.

Hence for some α, β < 0, u satisfies problem (48), with
f ∈ C

(
Ω
)
.

The function f and the matrix a(x) are chosen such that
problem (48) has a solution u which satisfies:

1) u ∈ C2
(
Ω
)
,

2) u (x, 0) ≥ α, a (x)∇u (x, 0) .η = β, ∀x ∈
[
0, xm2

]
,

3) u (x, 0) = α, a (x)∇u (x, 0) .η ≥ β, ∀x ∈
[
xm
2 , xm

]
,

4) a (x)∇u (x, y) .η = 0, ∀x ∈ Γ2.

Let T be an admissible mesh, in the sense of Definition1;
we choose xK at the center of the control volume K ∈ T
and assume that each cell K is a rectangle.

The finite volume scheme of problem (48) is given as
follow: ∑

σ∈EK

FK,σ = m (K) fK , ∀K ∈ T ,

where FK,σ and fK are defined by (9)− (16) .

The continous problem which we wish to solve is non
linear because of the signorini conditions. Thanks to the
monotony algorithm proposed in [3]-[6],[16], we calcu-
late the solution U =

(
(uK)K∈T , (uσ)σ⊂Γ3

)
of problem

(48) ,(9)− (16) .
We give below graphical representation of u, of the trace of
u on Γ3.
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Figure 1: z = u (x, y) ;∀ (x, y) ∈ Ω.

Figure 2: z = u (x, 0) ;∀x ∈ [0, xm].

Figure1 represent a configuration of the deformed solid, and
Figure2 shows the deplacement along the x-axis (deformation
in the contact zone).

VIII. CONCLUSION

By starting with the model for a deformed elastic solid
with a unilateral contact of a rigid body, an approximate
numerical scheme by the finite volume method has been
proposed.

Then, the analysis of the approximate scheme have been
proved as well as an estimate of order 1 for the discrete H1

0

norm (resp. L2 norm) of the error on the solution is done.
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