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Abstract—In this paper, Burr-X distribution with unified
hybrid censored data is considered. The maximum likelihood
method, the Bayesian and the E-Bayesian (the expectation of the
Bayesian estimate) approaches are studied for the distribution
parameter and the associated reliability function. The Bayesian
and the E-Bayesian estimates are derived under LINEX and
squared error loss (SEL) functions. We apply Markov chain
Monte Carlo (MCMC) techniques to derive the Bayesian and
the E-Bayesian estimates. Also, confidence intervals (CIs) of
the maximum likelihood estimates, as well as credible intervals
(CRIs) of the Bayesian and the E-Bayesian estimates, are
computed. On the other hand, an example of a real data set
is provided for the purpose of illustration. Finally, a numerical
comparison among the proposed methods is performed.

Index Terms—Bayesian estimation, Burr-X distribution, E-
Bayesian estimation, Unified hybrid censoring scheme, Maxi-
mum likelihood estimation, MCMC method.

I. INTRODUCTION

GENERALIZED Type-I and Type-II hybrid censoring
schemes (HCSs) are proposed by [1] to overcome the

drawbacks of Type-I and Type-II HCSs, for more details
about HCSs, one can refer to [2]. The generalized HSCs
are an extension of Type-I and Type-II HCSs, therefore, we
can notice two types of censoring schemes are described
as follows. Generalized Type-I HCS: fix integers r, k ∈
{1, 2, · · · , n} such that k < r < n, and time T ∈ (0,∞).
The experiment is terminated at min{Xr:n, T}, if the k-th
failure occurs before time T . If the k-th failure occurs after
time T , the experiment is terminated at Xk:n.
Generalized Type-II HCS: fix integer r ∈ {1, 2, · · · , n}
and time points T1, T2 ∈ (0,∞) such that T1 < T2. The
experiment is terminated at T1, if the r-th failure occurs
before time T1. If the r-th failure occurs between T1 and
T2, the experiment is terminated at Xr:n. Finally, if the r-th
failure occurs after time T2, the experiment is terminated at
T2.

Unified HCS (UHCS) is defined by [3] as a mixture of
generalized Type-I HCS and generalized Type-II HCS which
can be described as follows. Suppose n identical units are
put on a test and the lifetime of each unit is independent
and identically distributed (i.i.d) random variables. Fix in-
tegers r, k ∈ {1, 2, · · · , n} such that k < r < n, and
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time T1 < T2 ∈ (0,∞). The experiment is terminated at
min{max{Xr:n, T1}, T2}, if the k-th failure occurs before
time T1. If the k-th failure occurs between T1 and T2, the
experiment is terminated at min{Xr:n, T2}. Finally, if the k-
th failure occurs after time T2, the experiment is terminated
at Xk:n. By using this censoring scheme, we guarantee that
the maximum time for the experiment is T2 and at least k
failures are obtained. This scheme has been discussed earlier
in many literatures, see for example, [4], [5], [6] and [7].

A. Burr-X as a lifetime model

Burr-X distribution is suggested by [8] as one of Burr
distributions family. This model has a great importance in
statistics and operations research. It also has applications
in many fields such as health, agriculture and biology. The
probability density function (PDF) of Burr-X distribution is
given by,

f(x;α) = 2αx exp(−x2)(1−exp(−x2))α−1, x > 0, α > 0,
(1)

hence, the cumulative distribution function (CDF) takes the
form

F (x;α) = (1− exp(−x2))α, x > 0, α > 0, (2)

where, α is the shape parameter. The reliability function R(t)
of Burr-X distribution is given by,

R(t) = 1− (1− exp(−t2))α, t > 0. (3)

Many literatures have been written on Burr-X distribution,
see for example, [9], [10] and [11].

The rest of this paper is organized as follows. The
Maximum likelihood function is presented in Section II.
The Bayesian analysis under the SEL and the LINEX loss
functions is described in Section III. In Section IV, The
E-Bayesian estimation under the SEL and the LINEX loss
functions is discussed. The MCMC method is presented in
Section V. In Section VI, we present an illustrative example
of real-life data. Concluding remarks are stated in Section
VII.

II. MAXIMUM LIKELIHOOD FUNCTION

Let X1:n, X2:n, · · · , Xn:n be a random sample of size n,
drawn from Burr-X distribution based on UHCS, in which
we observe one of the following six cases of the censored
data

• Case (1): {0 < Xk:n < Xr:n < T1 < T2}, the
experiment is terminated at T1,

• Case (2) : {0 < Xk:n < T1 < Xr:n < T2}, the
experiment is terminated at Xr:n,

• Case (3): {0 < Xk:n < T1 < T2 < Xr:n}, the
experiment is terminated at T2,
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• Case (4): {0 < T1 < Xk:n < Xr:n < T2}, the
experiment is terminated at Xr:n,

• Case (5): {0 < T1 < Xk:n < T2 < Xr:n}, the
experiment is terminated at T2,

• Case (6): {0 < T1 < T2 < Xk:n < Xr:n}, the
experiment is terminated at Xk:n.

Thus, the likelihood function for the previous cases of UHCS,
can be combined and written as follows.

L(α;x) =
n!

(n−m)!

{
1− F (s)

}n−m m∏
i=1

f(xi:n),

=
n!(2α)m

(n−m)!

{
1−

(
Ws

)α}n−m

×
m∏
i=1

xi:n exp(−x2
i:n)

(
Wxi:n

)α−1
,

(4)

where, Ws = 1− exp(−s2) and Wxi:n = 1− exp(−x2
i:n),

m =


D1, for Case (1),
r, for Cases (2),(4),
D2, for Cases (3),(5),
k, for Case (6),

where, D1 and D2 number of failures occur at times T1 and
T2, respectively,

s =


T1, for Case (1),
xr:n, for Cases (2),(4),
T2, for Cases (3),(5),
xk:n, for Case (6),

The log-likelihood function of Eq. (4), can be written as
follows.

ℓ = lnL(α;x)

= (n−m) ln
{
1−

(
Ws

)α}
+m ln(2α) +

m∑
i=1

ln(xi:n)

−
m∑
i=1

x2
i:n + (α− 1)

m∑
i=1

ln
(
Wxi:n

)
.

(5)
The maximum likelihood estimate (MLE) of the unknown
parameter α is obtained by setting the first partial derivative
of Eq. (5) with respect to α to zero and solving numerically
the following equation.

0 =
∂ℓ

∂α

=
m

α
− (n−m)Wα

s lnWs

1−Wα
s

+

m∑
i=1

ln
(
1− exp(−x2

i:n)
)
,

(6)
Substituting by α̂ the MLE of α in Eq.(3), we obtain ˆR(t)
the MLE of R(t) as follows.

ˆR(t) = 1− (1− exp(−t2))α̂. (7)

III. BAYESIAN ANALYSIS

In this section, we use the Bayesian method for estimating
the parameter α and the reliability function R(t) of Burr-X
model based on UHCS. The Bayesian estimates are obtained
under the SEL and the LINEX loss functions. We assume that

the prior PDF of the parameter α is Gamma(a,b) given as
follows.

π(α|a, b) = ba

Γ(a)
αa−1 exp(−bα), a, b > 0. (8)

From (4) and (8), the posterior PDF of α, can be written as
follows.

π(α|x) = L(α;x)π(α|a, b)∫
α

L(α;x)π(α|a, b)dα

= K−1αm+a−1 exp(−bα)
{
1−Wα

s

}n−m

×
m∏
i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

,

(9)

where, Ws = 1 − exp(−s2), Wxi:n
= 1 − exp(−x2

i:n) and
K is a normalizing constant given by,

K =

∫
α

L(α;x)π(α|a, b)dα.

=

∫ ∞

0

αm+a−1e−bα
{
1−Wα

s

}n−m

×
m∏
i=1

xi:ne
−x2

i:nWα−1
xi:n

dα.

(10)

Under the SEL function, the Bayesian estimates of α and
R(t) are, respectively, given by,

α̂BS = E[α|x]

=

∫ ∞

0

απ(α|x)dα

= K−1

∫ ∞

0

αm+ae−bα
{
1−Wα

s

}n−m

×
m∏
i=1

xi:ne
−x2

i:nWα−1
xi:n

dα,

(11)

and

ˆR(t)BS = E[R(t)|x]

=

∫ ∞

0

R(t)π(α|x)dα

= K−1

∫ ∞

0

{1− (1− exp(−t2))α}αm+a−1e−bα

×
{
1−Wα

s

}n−m
m∏
i=1

xi:ne
−x2

i:nWα−1
xi:n

dα.

(12)
Based on the LINEX loss function, the Bayesian estimates
of α and R(t) are, respectively, given by,

α̂BL =
−1

h
lnE[exp(−hα)|x]

=
−1

h
ln

∫ ∞

0

exp(−hα)π(α|x)dα

=
−1

Kh
ln

∫ ∞

0

αm+a−1e−α(b+h)
{
1−Wα

s

}n−m

×
m∏
i=1

xi:ne
−x2

i:nWα−1
xi:n

dα, h ̸= 0,

(13)
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where, h is the shape parameter of the loss function and

ˆR(t)BL =
−1

h
lnE[exp(−hR(t))|x]

=
−1

h
ln

∫ ∞

0

exp(−hR(t))π(α|x)dα

=
−1

Kh
ln

∫ ∞

0

αm+a−1e(h[(1−exp(−t2))α−1]−bα)

×
{
1−Wα

s

}n−m
m∏
i=1

xi:ne
−x2

i:nWα−1
xi:n

dα, h ̸= 0.

(14)

IV. E-BAYESIAN ESTIMATION

Based on [12], the hyper parameters a and b of the prior
PDF should be selected, so that π(α) is a decreasing function
of α. The derivative of π(α) with respect to α is given by,

dπ(α)

dα
=

ba

Γ(a)
αa−2 exp(−bα)

{
(a− 1)− bα

}
,

when 0 < a < 1, b > 0 and dπ(α)
dα < 0, thus π(α)

is a decreasing function of α. We assume that the hyper
parameters a and b are independent with bi-variate PDF as
follows.

π(a, b) = π1(a)π2(b),

then, the E-Bayesian estimate of the parameter α and the
reliability function R(t) (the expectation of the Bayesian
estimate of α and R(t) ) are, respectively, written as follows.

α̂EB = E[α̂B |x] =
∫∫
Q

α̂Bπ(a, b)dadb, (15)

and

ˆR(t)EB = E[ ˆR(t)B|x] =
∫∫
Q

ˆR(t)Bπ(a, b)dadb, (16)

where, Q is the set of all possible values of a and b, α̂B

and ˆR(t)B are the Bayesian estimate of the parameter α and
the reliability function R(t), respectively, under the SEL and
the LINEX loss functions. For more details, one can refer to
[13], [14], [15], [16] and [17].
We consider the following prior PDFs of a and b to clarify
the impact of these prior PDFs on the E-Bayesian estimates.

π1(a, b) =
2a

c
, 0 < a < 1, 0 < b < c,

π2(a, b) =
2b

c2
, 0 < a < 1, 0 < b < c,

π3(a, b) =
3b2

c3
, 0 < a < 1, 0 < b < c,


(17)

where, c > 0 is a given upper bound, to be determined. The
E-Bayesian estimate of α under the SEL function can be
obtained from (11), (15) and (17) as follows.

α̂EBSj =

∫∫
Q

α̂BSπj(a, b)dadb, j = 1, 2, 3, (18)

also, the E-Bayesian estimate of α under the LINEX loss
function can be obtained from (13), (15) and (17) as follows.

α̂EBLj =

∫∫
Q

α̂BLπj(a, b)dadb, j = 1, 2, 3. (19)

the E-Bayesian estimate of the reliability function R(t) under
the SEL function can be obtained from (12), (16) and (17)
as follows.

ˆR(t)EBSj
=

∫∫
Q

ˆR(t)BSπj(a, b)dadb, j = 1, 2, 3,

(20)
the E-Bayesian estimate of the reliability function R(t) under
the LINEX loss function can be obtained from (14),(16) and
(17) as follows.

ˆR(t)EBLj
=

∫∫
Q

ˆR(t)BLπj(a, b)dadb, j = 1, 2, 3.

(21)
It is noted that the Bayesian and E-Bayesian estimates cannot
be obtained analytically, so we use the MCMC method
to derive the these estimates of the parameter α and the
reliability function R(t).

V. MCMC ALGORITHM FOR BAYESIAN ESTIMATION

In this section, we use the MCMC algorithm to derive
the Bayesian and the E-Bayesian estimates of the parameter
α and the reliability function R(t). The full conditional
posterior PDF of the parameter α can be obtained from (9)
as follows.

π∗(α|x) = αm+a−1 exp(−bα)
{
1−Wα

s

}n−m
m∏
i=1

Wα
xi:n

.

(22)
It is noted from Eq. (22), that the full conditional posterior
PDF of the parameter α cannot be reduced to a well-known
distribution, so we consider the Metropolis-Hastings algorith-
m, one of the MCMC methods, to generate posterior samples
of the parameter α from the full conditional posterior PDF
then compute Bayesian estimates of the unknown parameter
α and the reliability function R(t). For more details, one can
refer to [18] and [19].
The following steps indicate the Metropolis-Hastings algo-
rithm for simulating the posterior samples, then derive the
Bayesian estimates as follows.

1) Choose initial guess of the parameter α say α(0)(=
α̂MLE).

2) At iteration j, generate α(j) from π∗(α(j−1)|x) and
generate α(∗) from a normal distribution as a proposal
distribution.

3) Generate a sample u from U(0, 1).
4) Calculate the acceptance probability

r(αj−1|α(∗)) = min
[
1,

π∗(α(∗)|x)
π∗(α(j−1)|x)

]
(23)

5) If u < r accept α(∗) as α(j), otherwise, α(j) = α(j−1)

6) Compute R(t) as follows.

R(j)(t) = 1− (1− exp(−t2))α
(j)

. (24)

7) Repeat (3 − 6) N times to obtain α(j) and R(j)(t),
j = M + 1, · · · , N.

8) The Bayesian estimates of the parameter α and the
reliability function R(t) under the SEL function are,
respectively, given by,

α̂BS =
1

N −M

N∑
j=M+1

α(j). (25)
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ˆR(t)BS =
1

N −M

N∑
j=M+1

R(j)(t), (26)

where, M is an optional burn-in period.
9) The Bayesian estimates of the parameter α and the

reliability function R(t) under the LINEX loss function
are, respectively, given by,

α̂BL = −1
h ln

[
1

N−M

N∑
j=M+1

e−hα(j)

]
, (27)

ˆR(t)BL = −1
h ln

[
1

N−M

N∑
j=M+1

e−hR(j)(t)

]
. (28)

10) Approximate 100(1 − γ)% confidence intervals (CIs)
for the MLEs of α and R(t) can be constructed as
follows.

α̂± z γ
2

√
V ar(α̂)& ˆR(t)± z γ

2

√
V ar( ˆR(t)),

(29)
where, z γ

2
is the 100(1 − γ

2 )% upper percentile of
standard normal variate.

11) A 100(1 − γ)% credible intervals (CRIs) of the
Bayesian and the E-Bayesian estimates of α and R(t)
can be constructed from the (γ2 ) and (1 − γ

2 ) sample
quantiles of the empirical posterior PDF of MCMC
draws, given by,[

αN[ γ2 ]
, αN[1− γ

2 ]

]
&
[
RN[ γ2 ]

, RN[1− γ
2 ]

]
, (30)

where, N represents the number of draws.

A. Unified hybrid censored data

In this subsection, we present some simulation results for
different values of n = 20, 40, 60 ; r = 15, 30, 45 and T1 =
0.7, 0.9; T2 = 0.9, 1.5. For a given value of c, values of a
and b were generated from (17) and those of α was generated
from Gamma (a, b). The resulting value of α is used as a
true value to generate a unified hybrid censored sample from
Burr-X distribution by using the inverse function method as
follows.

X = {− ln(1− U
1
α )} 1

2 , (31)

where, U is a random number generated from U(0,1). The
MLEs of the unknown parameter α and the reliability
function R(t) are obtained from (6) and (7), respectively. By
using Metropolis-Hastings sampler, we generate a Markov
chain with 11000 observations of the parameter α, discarding
the first 1000 observations as a ”burn-in” period. By using
these values of the parameter α, we compute Bayesian
estimates α̂BS and ˆR(t)BS under SEL function from (25)
and (26), respectively, and Bayesian estimates α̂BL and
ˆR(t)BL under LINEX loss function are obtained from (27)

and (28), respectively. Also, E-Bayesian estimates α̂EBS

and ˆR(t)EBS under SEL function are derived from (18)
and (20), respectively, and E-Bayesian estimates α̂EBL and
ˆR(t)EBL under LINEX loss function are given from (19) and

(21), respectively. The mean squared error (MSE) is used to
compare the estimators of the parameter α and the reliability

function R(t) and, respectively, given as follows.

MSE(α̂) = 1
1000

1000∑
j=1

(α̂j − α)2

MSE( ˆR(t)) = 1
1000

1000∑
j=1

( ˆR(t)j −R(t))2,

where, α̂ and ˆR(t) are the estimates of the parameter α and
the reliability function R(t), respectively. The 95% CIs of
the MLEs of the parameter α and the reliability function
R(t) are computed from (29). Also, the 95% CRIs of the
Bayesian and the E-Bayesian estimates of the parameter α
and the reliability function R(t) are computed from (30).
All numerical results are listed in Tables (I-II). Where, in
Table I, α̂EBS1, α̂EBS2 and α̂EBS3 stand for the E-Bayesian
estimates of α relative to SEL based on π1(a, b), π2(a, b)
and π3(a, b), respectively, α̂EBL1, α̂EBL2 and α̂EBL3 denote
the E-Bayesian estimates of α relative to LINEX based on
π1(a, b), π2(a, b) and π3(a, b), respectively. And α̂BS and
α̂BL are the Bayesian estimates of α under SEL and LINEX
loss, respectively. While in Table II, R̂EBS1, R̂EBS3 and
R̂EBS2 stand for the E-Bayesian estimates of R(t) relative
to SEL based on π1(a, b), π2(a, b) and π3(a, b), respectively,
R̂EBL1, R̂EBL2 and R̂EBL3 are the E-Bayesian estimates
of R(t) relative to LINEX based on π1(a, b), π2(a, b)
and π3(a, b), respectively. And R̂BS and R̂BL denote the
Bayesian estimates of R(t) under SEL and LINEX loss,
respectively.

VI. APPLICATION OF BURR-X MODEL

In this section, we present an illustrative example of
real-life data to clarify the performance of the proposed
methods in the application. These data were obtained in the
Semiconductor Electronics Division of the National Institute
of Standards and Technology Electronics and Electrical
Engineering Laboratory and taken from [20]. This data
set represents minority electron mobility for Ga1−xAlxAs
semi-conductor. One data set at the mole fraction of 0.25
is considered here. This data set was used by [21], who
proved that Burr-X distribution gives a good fit for this data
set. The data set contains 21 observations as listed below.
Data Set (belongs to mole fraction 0.25): 3.051,
2.779, 2.6044, 2.371, 2.214,2.045, 1.715, 1.525, 1.296,
1.154, 1.0164, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449,
0.8881,1.115, 1.397,1.506, and 1.528.
We assume that values of data set are failure lifetime
observations following Burr-X distribution. By applying
UHCS on this uncensored data considering n = 21, r = 18,
k = 15, α = 1.6526 and R(t = 1.2), we observe the
following cases:

• When T1 = 1.5 and T2 = 2, we observe that k
number of failures occur after T1, hence the experiment
is terminated at random time T ∗ = min{Xr:n, T2} =
min{2.371, 2} = 2.

• When T1 = 2 and T2 = 2.5, we ob-
serve that k number of failures occur before
T1, hence the experiment is terminated at ran-
dom time T ∗ = min{max{Xr:n, T1}, T2} =
min{max{2.371, 2}, 2.5} = min{2.371, 2.5} =
2.371.
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• When T1 = 2.5 and T2 = 3, we ob-
serve that k number of failures occur before
T1, hence the experiment is terminated at ran-
dom time T ∗ = min{max{Xr:n, T1}, T2} =

min{max{2.371, 2.5}, 3} = min{2.5, 3} = 2.5.
With respect to the real data set, all estimates are derived
based on SEL and LINEX loss functions by the same
previous methods and listed in Tables (III-IV).

TABLE I: Average estimates, MSE and 95% CIs and CRIs of MLEs, Bayesian and E-Bayesian estimates for α under
LINEX and SEL functions when α = 1.15, a = 0.8, b = 0.7, h = 1.5, c = 1.

(n, r, k) (T1, T2) Criteria α̂MLE Squared Error Loss LINEX Loss
α̂BS α̂EBS1 α̂EBS2 α̂EBS3 α̂BL α̂EBL1 α̂EBL2 α̂EBL3

(20, 15, 10) (0.7, 0.9) Mean 1.42127 1.40206 1.25625 1.09922 1.15418 1.35505 1.21812 1.0697 1.12176

MSE 0.2888 0.11275 0.0508 0.03283 0.03337 0.07775 0.03425 0.02993 0.02637

Lower 0.404682 0.9277 0.871 0.697 0.3315 0.4675 0.6195 0.2582 0.3908

Upper 2.43786 1.8764 1.8391 1.8155 1.8669 1.8408 1.8168 1.8812 1.8527

Length 2.03318 0.9488 0.9681 1.1185 1.5354 1.3733 1.1973 1.623 1.4619

(0.9, 1.5) Mean 0.78429 1.34879 1.20852 1.05745 1.11032 1.32846 1.19213 1.04485 1.09645

MSE 0.15808 0.04588 0.00853 0.01248 0.00589 0.03751 0.00638 0.01463 0.00678

Lower 0.442441 1.0217 0.9989 0.7811 0.3992 0.5397 0.7434 0.3651 0.5034

Upper 1.12614 1.6759 1.658 1.6359 1.7157 1.6809 1.6408 1.7246 1.6895

Length 0.683698 0.6542 0.6591 0.8548 1.3164 1.1412 0.8974 1.3594 1.1861

(40, 30, 20) (0.7, 0.9) Mean 0.99085 1.40502 1.2589 1.10153 1.15661 1.37389 1.23377 1.08219 1.13532

MSE 0.15602 0.07055 0.01629 0.00574 0.00378 0.05481 0.01084 0.00758 0.00348

Lower 0.198635 0.9971 0.9614 0.7603 0.3801 0.5213 0.7054 0.3292 0.4675

Upper 1.78307 1.813 1.7864 1.7575 1.823 1.792 1.7621 1.8352 1.8031

Length 1.58443 0.8159 0.8251 0.9971 1.4429 1.2707 1.0567 1.5059 1.3356

(0.9, 1.5) Mean 0.88756 1.33505 1.19621 1.04668 1.09902 1.31043 1.17632 1.03137 1.08217

MSE 0.0902 0.04139 0.00787 0.01507 0.00744 0.03176 0.00561 0.01791 0.00881

Lower 0.567599 0.9737 0.9458 0.7435 0.3754 0.5115 0.6993 0.3347 0.4685

Upper 1.20752 1.6964 1.675 1.6489 1.718 1.6865 1.6533 1.728 1.6959

Length 0.639921 0.7227 0.7292 0.9054 1.3426 1.175 0.954 1.3933 1.2274

(60, 45, 30) (0.7, 0.9) Mean 0.96224 1.33124 1.19279 1.04369 1.09587 1.31346 1.17846 1.03268 1.08375

MSE 0.1472 0.06276 0.02585 0.02969 0.0232 0.05369 0.0227 0.03072 0.0230

Lower 0.22904 1.034 1.0141 0.7893 0.4055 0.546 0.7559 0.3755 0.5140

Upper 1.69543 1.6284 1.6128 1.5963 1.6819 1.6458 1.601 1.6899 1.6535

Length 1.46638 0.5944 0.5987 0.8070 1.2765 1.0998 0.8451 1.3144 1.1395

(0.9, 1.5) Mean 1.18969 1.31624 1.1524 1.00835 1.05876 1.29909 1.16553 0.99818 1.04757

MSE 0.06007 0.05703 0.00647 0.02501 0.01378 0.04873 0.02175 0.02755 0.01543

Lower 0.659684 1.0255 0.9781 0.7607 0.3906 0.5413 0.7503 0.3629 0.4966

Upper 1.7197 1.6069 1.5613 1.5441 1.6261 1.6257 1.5807 1.6335 1.5986

Length 1.06001 0.5814 0.5832 0.7835 1.2356 1.0844 0.8304 1.2706 1.102
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TABLE II: Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian estimates for R(t = 1.2)
under LINEX and SEL functions when α = 1.15, a = 0.8, b = 0.7, h = 1.5, c = 1.

(n, r, k) (T1, T2) Criteria R̂MLE Squared Error Loss LINEX Loss
R̂BS R̂EBS1 R̂EBS2 R̂EBS3 R̂BL R̂EBL1 R̂EBL2 R̂EBL3

(20, 15, 10) (0.7, 0.9) Mean 0.313721 0.31267 0.28015 0.24513 0.25739 0.31112 0.2789 0.24418 0.25634
MSE 0.009544 0.00365 0.00144 0.00147 0.00118 0.00344 0.00136 0.00147 0.00115

Lower 0.125406 0.2288 0.2272 0.1738 0.0872 0.1192 0.1712 0.0848 0.1165
Upper 0.50203 0.3965 0.3951 0.3865 0.4030 0.3956 0.3867 0.4036 0.3961
Length 0.37662 0.1677 0.1679 0.2127 0.3158 0.2765 0.2155 0.3188 0.2796

(0.9, 1.5) Mean 0.19039 0.30474 0.27305 0.23891 0.25086 0.30402 0.27247 0.23847 0.25037
MSE 0.007003 0.00162 0.00021 0.00094 0.00042 0.00156 0.0002 0.00096 0.00043

Lower 0.11791 0.2440 0.2433 0.1861 0.0963 0.1290 0.1848 0.0951 0.1277
Upper 0.26286 0.3655 0.3648 0.3599 0.3815 0.3727 0.3602 0.3819 0.3730
Length 0.14495 0.1215 0.1215 0.1738 0.2852 0.2437 0.1754 0.2868 0.2453

(40, 30, 20) (0.7, 0.9) Mean 0.23142 0.31487 0.28212 0.24686 0.2592 0.31379 0.28125 0.24619 0.25847
MSE 0.00667 0.00245 0.00037 0.00053 0.00019 0.00234 0.00034 0.00055 0.0002

Lower 0.07053 0.2404 0.2393 0.1838 0.0942 0.1271 0.1818 0.0923 0.1252
Upper 0.39232 0.3893 0.3883 0.3804 0.3996 0.3913 0.3807 0.4000 0.3918
Length 0.32179 0.1489 0.1490 0.1966 0.3054 0.2642 0.1989 0.3077 0.2666

(0.9, 1.5) Mean 0.21275 0.30197 0.27057 0.23674 0.24858 0.30109 0.26986 0.2362 0.24798
MSE 0.00395 0.00145 0.00021 0.00108 0.00052 0.00138 0.0002 0.00111 0.00053

Lower 0.14412 0.2349 0.2340 0.1795 0.0923 0.1243 0.1779 0.0909 0.1227
Upper 0.28138 0.3690 0.3681 0.3616 0.3812 0.3729 0.3619 0.3816 0.3733
Length 0.13725 0.1341 0.1341 0.1821 0.2888 0.2487 0.1840 0.2907 0.2506

(60, 45, 30) (0.7, 0.9) Mean 0.22599 0.30093 0.26964 0.23593 0.24773 0.30032 0.26914 0.23555 0.24731
MSE 0.00634 0.00217 0.00083 0.00162 0.00108 0.00211 0.00082 0.00163 0.00109

Lower 0.07668 0.2459 0.2453 0.1871 0.0970 0.1297 0.1859 0.0960 0.1285
Upper 0.37529 0.3559 0.3553 0.3522 0.3748 0.3658 0.3524 0.3751 0.3661
Length 0.29861 0.1100 0.1100 0.1651 0.2778 0.2361 0.1665 0.2792 0.2375

(0.9, 1.5) Mean 0.27347 0.29813 0.26249 0.22968 0.24116 0.29753 0.26664 0.22931 0.24076
MSE 0.00252 0.00197 0.00026 0.0016 0.00088 0.00192 0.00081 0.00162 0.0009

Lower 0.16424 0.2441 0.2377 0.1814 0.0940 0.1287 0.1844 0.0930 0.1246
Upper 0.38271 0.3521 0.3470 0.3436 0.3654 0.3622 0.3488 0.3656 0.3569
Length 0.218472 0.1080 0.1093 0.1622 0.2713 0.2335 0.1644 0.2727 0.2323

TABLE III: For real data set : Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian
estimates for α under LINEX and SEL functions when α = 1.66, a = 0.8, b = 1.4, h = 1.5, c = 2

(n, r, k) (T1, T2) Criteria α̂MLE Squared Error Loss LINEX Loss
α̂BS α̂EBS1 α̂EBS2 α̂EBS3 α̂BL α̂EBL1 α̂EBL2 α̂EBL3

(21, 18, 15) (2, 2.5) Mean 2.21753 2.45016 2.19534 1.92092 2.01697 2.26428 2.04457 1.80418 1.88877
MSE 0.87139 0.62438 0.28662 0.0681 0.12745 0.36518 0.14792 0.0208 0.05235

Lower 0.576875 1.421 1.1725 1.0514 0.4597 0.6827 0.7441 0.1725 0.3821
Upper 3.85818 3.4793 3.356 3.3393 3.3822 3.3512 3.345 3.4358 3.3954
Length 3.28131 2.0584 2.1835 2.288 2.9225 2.6685 2.6009 3.2633 3.0133

(2.5, 3) Mean 2.15877 2.44508 2.19079 1.91694 2.01279 2.26161 2.04193 1.80164 1.88619
MSE 0.7657 0.61638 0.28177 0.06604 0.12449 0.362 0.14592 0.0201 0.0512

Lower 0.58324 1.422 1.1772 1.0528 0.4615 0.6844 0.7493 0.1777 0.3873
Upper 3.7343 3.4681 3.346 3.3288 3.3724 3.3412 3.3346 3.4256 3.385
Length 3.15106 2.0461 2.1688 2.276 2.9108 2.6567 2.5853 3.2478 2.9977

TABLE IV: For real data set : Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian
estimates for R(t = 1.2) under LINEX and SEL functions, α = 1.66, a = 0.8, b = 1.4, h = 1.5, c = 2.

(n, r, k) (T1, T2) Criteria R̂MLE Squared Error Loss LINEX Loss
R̂BS R̂EBS1 R̂EBS2 R̂EBS3 R̂BL R̂EBL1 R̂EBL2 R̂EBL3

(21, 18, 15) (2, 2.5) Mean 0.472972 0.51653 0.46281 0.40496 0.42521 0.51237 0.45947 0.4024 0.42239
MSE 0.025538 0.01504 0.00475 0.00012 0.00098 0.01404 0.0043 0.00007 0.00081

Lower 0.168667 0.3706 0.3662 0.2829 0.1421 0.1943 0.2756 0.1353 0.1871
Upper 0.77727 0.6625 0.6585 0.6428 0.6679 0.6562 0.6433 0.6695 0.6576
Length 0.60861 0.2919 0.2923 0.3599 0.5258 0.4619 0.3677 0.5342 0.4705

(2.5, 3) Mean 0.46478 0.51586 0.46221 0.40443 0.42465 0.51173 0.4589 0.4019 0.42186
MSE 0.02316 0.01488 0.00467 0.00011 0.00095 0.01389 0.00423 0.00006 0.00078

Lower 0.169633 0.3706 0.3663 0.2829 0.1421 0.1943 0.2757 0.1355 0.1872
Upper 0.75993 0.6611 0.6572 0.6415 0.6667 0.655 0.6421 0.6683 0.6565
Length 0.59030 0.2905 0.291 0.3587 0.5246 0.4607 0.3664 0.5329 0.4692
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VII. CONCLUDING REMARKS

In this paper, we used the maximum likelihood method,
as well as the Bayesian and the E-Bayesian approaches, for
estimating the unknown parameter and the reliability function
of Burr-X distribution based on UHCS. The Bayesian and E-
Bayesian estimates are derived under the SEL and the LINEX
loss functions. The MCMC algorithm is applied to obtain
the Bayesian and the E-Bayesian estimates as they cannot
be obtained analytically. Also, we constructed the CIs of
MLEs and the CRIs of the Bayesian and the E-Bayesian
estimates. Furthermore, an illustrative example is presented
to investigate the performance of the proposed methods in
the application. Based on the results obtained in Tables (I-II),
we observe the following.

• The Bayesian estimator is better than MLE in terms of
MSE.

• The E-Bayesian estimator is the best when compared
with the Bayesian and the MLEs in the sense of having
a smaller MSE.

• The MSE of all estimates decreases when the sample
size n and time points T1, T2 increase.

• Also, the length of CIs and CRIs decreases when
n, r, T1 and T2 increase.

• The E-Bayesian estimator is more efficient than the
Bayesian and MLEs, as it has a smaller MSE.

• Based on the results obtained in Tables (III-IV), we
observe that all the previous results are realized for the
Bayesian, the E-Bayesian estimates and MLEs, that is
the proposed methods behave well for a practical real
data set.

• Moreover, the E-Bayesian estimator is the most efficient
compared with the Bayesian estimator and MLE in the
application.

• On the other hand, the length of CIs and CRIs decreases
when n, r, T1 and T2 get larger.

• From Tables (I-IV), we can state that the E-Bayesian
method is easy to apply and more efficient than both
Bayesian and maximum likelihood methods.

• Also, a large sample size n gives better estimates with
a smaller MSE.

• Furthermore, the E-Bayesian method can be applied to
any censoring scheme as performed in [11], [16] and
[17] with the same efficient behavior.
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