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Inferences for Burr-X Model Based on Unified
Hybrid Censored Data

Abdalla Rabie and Junping Li

Abstract—In this paper, Burr-X distribution with unified
hybrid censored data is considered. The maximum likelihood
method, the Bayesian and the E-Bayesian (the expectation of the
Bayesian estimate) approaches are studied for the distribution
parameter and the associated reliability function. The Bayesian
and the E-Bayesian estimates are derived under LINEX and
squared error loss (SEL) functions. We apply Markov chain
Monte Carlo (MCMC) techniques to derive the Bayesian and
the E-Bayesian estimates. Also, confidence intervals (Cls) of
the maximum likelihood estimates, as well as credible intervals
(CRIs) of the Bayesian and the E-Bayesian estimates, are
computed. On the other hand, an example of a real data set
is provided for the purpose of illustration. Finally, a numerical
comparison among the proposed methods is performed.

Index Terms—Bayesian estimation, Burr-X distribution, E-
Bayesian estimation, Unified hybrid censoring scheme, Maxi-
mum likelihood estimation, MCMC method.

I. INTRODUCTION

ENERALIZED Type-I and Type-II hybrid censoring
G schemes (HCSs) are proposed by [1] to overcome the
drawbacks of Type-I and Type-II HCSs, for more details
about HCSs, one can refer to [2]. The generalized HSCs
are an extension of Type-I and Type-II HCSs, therefore, we
can notice two types of censoring schemes are described
as follows. Generalized Type-I HCS: fix integers r, k €
{1,2,--- ,n} such that k < r < n, and time T € (0, o).
The experiment is terminated at min{X,.,,, T}, if the k-th
failure occurs before time T'. If the k-th failure occurs after
time 7', the experiment is terminated at Xj.,.

Generalized Type-II HCS: fix integer » € {1,2,---,n}
and time points 77,75 € (0,00) such that 73 < Ts. The
experiment is terminated at 77, if the r-th failure occurs
before time 7;. If the r-th failure occurs between 77 and
T5, the experiment is terminated at X,.,,. Finally, if the r-th
failure occurs after time 75, the experiment is terminated at
Ts.
Unified HCS (UHCS) is defined by [3] as a mixture of
generalized Type-I HCS and generalized Type-1I HCS which
can be described as follows. Suppose n identical units are
put on a test and the lifetime of each unit is independent
and identically distributed (i.i.d) random variables. Fix in-
tegers r,k € {1,2,---,n} such that k < r < n, and
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time 77 < T» € (0,00). The experiment is terminated at
min{max{X,.,, T1 },To}, if the k-th failure occurs before
time 77. If the k-th failure occurs between T and 715, the
experiment is terminated at min{X...,,, 7> }. Finally, if the k-
th failure occurs after time 75, the experiment is terminated
at Xj.,. By using this censoring scheme, we guarantee that
the maximum time for the experiment is 75 and at least k
failures are obtained. This scheme has been discussed earlier
in many literatures, see for example, [4], [5], [6] and [7].

A. Burr-X as a lifetime model

Burr-X distribution is suggested by [8] as one of Burr
distributions family. This model has a great importance in
statistics and operations research. It also has applications
in many fields such as health, agriculture and biology. The
probability density function (PDF) of Burr-X distribution is
given by,

f(z;a) = 2az exp(—z?)(1—exp(—2?))*" !, 2 >0, a >0,

(1)
hence, the cumulative distribution function (CDF) takes the
form

F(x;a) = (1 —exp(—2?)*, >0, a>0, (2

where, « is the shape parameter. The reliability function R(t)
of Burr-X distribution is given by,

R(t)=1— (1 —exp(—t?))*, t>0. 3)

Many literatures have been written on Burr-X distribution,
see for example, [9], [10] and [11].

The rest of this paper is organized as follows. The
Maximum likelihood function is presented in Section II.
The Bayesian analysis under the SEL and the LINEX loss
functions is described in Section III. In Section IV, The
E-Bayesian estimation under the SEL and the LINEX loss
functions is discussed. The MCMC method is presented in
Section V. In Section VI, we present an illustrative example
of real-life data. Concluding remarks are stated in Section
VIL

II. MAXIMUM LIKELIHOOD FUNCTION

Let X1.p, Xon, -+, Xn:n be a random sample of size n,
drawn from Burr-X distribution based on UHCS, in which
we observe one of the following six cases of the censored
data
e Case (1): {0 < Xpp < Xpn < T1 < Ti}, the
experiment is terminated at 77,

e Case 2) : {0 < Xpup < Th < Xy < Tp}, the
experiment is terminated at X,.,,,

e Case 3): {0 < Xpo < Th < Ty < X}, the
experiment is terminated at 75,
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e Case (4): {0 < 71 < Xk < Xy < Ti}, the
experiment is terminated at X,.,,,
e Case 5): {0 < T1 < Xpp < Tp < Xy}, the
experiment is terminated at 75,
e Case (6): {0 < T < To < Xpip < Xyl the
experiment is terminated at Xjy.,,.
Thus, the likelihood function for the previous cases of UHCS,
can be combined and written as follows.

n—m m

L(a;x):(nf!m)!{l—F(s)} Hf(%n%
n!(2a)™ a n—mZZI
ZM{1_(WS) ! 4)
X Hxi:n eXp(_xz?:n)(WM:n)a_17

where, Wy = 1 — exp(—s?) and W,, =1 —exp(—22,,),

Dy, for Case (1),
T for Cases (2),(4),
Dy, for Cases (3),(5),
k, for Case (6),

where, D1 and Dy number of failures occur at times 77 and
Ts, respectively,

Ty, for Case (1),

s — ZTp.n, for Cases (2),(4),
T, for Cases (3),(5),
Tp.n, for Case (6),

The log-likelihood function of Eq. (4), can be written as
follows.

{=InL(o;x)

=(m-—m)In{1 - (W,

—ixi” (a—1) Zln
5)

The maximum likelihood estimate (MLE) of the unknown
parameter « is obtained by setting the first partial derivative
of Eq. (5) with respect to « to zero and solving numerically
the following equation.

)a} + mn(2a) + Z In(z;.,)

i=1

L n

_ ot
- O
m  (n—m) W InWi U
=5 =W Zlnl—exp )
(6)
Substituting by & the MLE of « in Eq.(3), we obtain R(t)
the MLE of R(t) as follows.
R(t) =1 — (1 — exp(—t?)). (7

III. BAYESIAN ANALYSIS

In this section, we use the Bayesian method for estimating
the parameter « and the reliability function R(t) of Burr-X
model based on UHCS. The Bayesian estimates are obtained
under the SEL and the LINEX loss functions. We assume that

the prior PDF of the parameter o is Gamma(a,b) given as
follows.

ba
n(ala,b) = ——a!

['(a)

From (4) and (8), the posterior PDF of «, can be written as
follows.

exp(—ba), a,b> 0. )

L(a; z)m(ala, b)
Lo x)m(ala, b)da

m(alr) =

lam+a 1 eXp(bez){l N W?}nfm (9)

Il
e M\

X Li:n eXP( )Wq?t, nla
i=1
where, W, = 1 — exp(—s?), W,,, = 1— exp(—z2,) and

K is a normalizing constant given by,

K = | Llo;x)r(ala,b)da.

[0}

o 1 —b n—m
= amtaTle O‘{l*Wf‘}
0
m
X Hmi;ne
i=1

Under the SEL function, the Bayesian estimates of « and
R(t) are, respectively, given by,

(10)

T WO .

Ti:n

OAIBS = E[Oz|l’}

= / ar(a|x)do
0

= Kﬁl/ amtaeTbal] — W;"}n_m
0

m
X | | Tin€
i=1

(1)

“eila W2 lda,

T’I m

and

R(t) s = E[R(t)|z]
- /O R(t)r(alz)da

— K- / {1 - (1 — exp(—12)) jam+a=te=be
x {1- Wso‘}n_m Hmime*Ii"Wg;lda.

=1

(12)
Based on the LINEX loss function, the Bayesian estimates
of o and R(t) are, respectively, given by,

-1
apr, = — In Elexp(—ha)|x]

h
1 o0
= Tln/ exp(—ha)m(alz)da
0
—1 Oomaf —a(b+h anm(13)
:ﬁln/o amtele (+){1 W}

m
2
—x;, a—1
X | I Tipe T W da,

i=1

h#0,
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where, h is the shape parameter of the loss function and

R{t)py = =+ In Blexp(~hR(H)]z]

_ 71 /Ooexp(—hR(t))w(a\x)da
[

omte— 1 h[(1—exp(—t2))* —1]—ba)

:—ln

X

h 0.

Tin

{1- Wf‘}n_m Hwi;ne i WO~ Yda,
| (14)

IV. E-BAYESIAN ESTIMATION

Based on [12], the hyper parameters a and b of the prior
PDF should be selected, so that 7(«) is a decreasing function
of a. The derivative of 7(«) with respect to « is given by,

d b*
7;(5) = T a2 exp(—ba){(a —-1) - ba},
when 0 < a < 1, b > 0 and d”ff‘) < 0, thus 7(«)
is a decreasing function of . We assume that the hyper
parameters a and b are independent with bi-variate PDF as
follows.

m(a,b) = mi(a)ma(b),

then, the E-Bayesian estimate of the parameter o and the
reliability function R(¢) (the expectation of the Bayesian
estimate of « and R(¢) ) are, respectively, written as follows.

app = Elaglr] = // apm(a,b)dadb,
Q

B|J: // t)gm(a,b)dadb, (16)

where, O is the set of all possible values of a and b, ap
and R(t) 5 are the Bayesian estimate of the parameter o and
the reliability function R(t), respectively, under the SEL and
the LINEX loss functions. For more details, one can refer to
[13], [14], [15], [16] and [17].

We consider the following prior PDFs of a and b to clarify
the impact of these prior PDFs on the E-Bayesian estimates.

15)

and

th)EB =E[R

2
m1(a,b) = Ca, 0<a<1l,0<b<ec,
2b
7r2(a,b)*62, 0<a<1l,0<b<eg, 17)
3b2
Wg(a,b)_0737 0<a<170<b<6,

where, ¢ > 0 is a given upper bound, to be determined. The
E-Bayesian estimate of a under the SEL function can be
obtained from (11), (15) and (17) as follows.

dEBS]- = // st’/Tj(a, b)dadb,
Q

also, the E-Bayesian estimate of a under the LINEX loss
function can be obtained from (13), (15) and (17) as follows.

GpBL; = // aprmj(a,b)dadb,
Q

J=12,3, (18)

j = 1,2,3. (19)

the E-Bayesian estimate of the reliability function R(t¢) under
the SEL function can be obtained from (12), (16) and (17)
as follows.

() gps, = / / R(t) gg7;(a, b)dadb,
Q
(20)

the E-Bayesian estimate of the reliability function R(t) under
the LINEX loss function can be obtained from (14),(16) and
(17) as follows.

Zt)EBLj = // R(t) g, mj(a, b)dadb,
Q
21

It is noted that the Bayesian and E-Bayesian estimates cannot
be obtained analytically, so we use the MCMC method
to derive the these estimates of the parameter o and the
reliability function R(t).

J=12,3,

j=1,2,3.

V. MCMC ALGORITHM FOR BAYESIAN ESTIMATION

In this section, we use the MCMC algorithm to derive
the Bayesian and the E-Bayesian estimates of the parameter
a and the reliability function R(t). The full conditional
posterior PDF of the parameter o can be obtained from (9)

as follows.
m

™ (alz) = ™ Texp(—ba){1 - W} n mH o
i=1

(22)
It is noted from Eq. (22), that the full conditional posterior
PDF of the parameter o cannot be reduced to a well-known
distribution, so we consider the Metropolis-Hastings algorith-
m, one of the MCMC methods, to generate posterior samples
of the parameter « from the full conditional posterior PDF
then compute Bayesian estimates of the unknown parameter
« and the reliability function R(t). For more details, one can
refer to [18] and [19].
The following steps indicate the Metropolis-Hastings algo-
rithm for simulating the posterior samples, then derive the
Bayesian estimates as follows.

1) Choose initial guess of the parameter o say a(o)(:
AMLE)-

2) At iteration j, generate a¥) from 7*(al/~V|z) and
generate a*) from a normal distribution as a proposal
distribution.

3) Generate a sample u from U(0, 1).

4) Calculate the acceptance probability

7 (a™|z)
" (al=D|z)

5) If u < r accept a*) as a?), otherwise, ) = al7—1)
6) Compute R(t) as follows.
RUN(t) = 1 — (1 — exp(—t))* (24)
7) Repeat (3 — 6) N times to obtain a/) and RU)(t),
j=M+1,---,N.
8) The Bayesian estimates of the parameter o and the

reliability function R(t) under the SEL function are,
respectively, given by,

r(a?~Ha™) = min [1 (23)

(€))

N

1 .

Ams = 3 o

R s VD DR
j=M+1

(25)
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X 1
R(t)BS = N -—M

ZN: R(j)(t)’

j=M+1

(26)

where, M is an optional burn-in period.

9) The Bayesian estimates of the parameter o and the
reliability function R(¢) under the LINEX loss function
are, respectively, given by,

N
A 1 1
apr =7 In |:NM § :

e—h,a<j>:| , (27)
Jj=M+1
3 al €]
R(t)g, = _Tl In [NlM Z e~ MR (t):|_ (28)
j=M+1

10) Approximate 100(1 — v)% confidence intervals (CIs)
for the MLEs of a and R(t) can be constructed as

follows.

v+ 23 y/Var(@) & R(t) £ 23\ Var(R(t)),

(29)

where, z3 is the 100(1 — 3)% upper percentile of
standard normal variate.
A 100(1 — )% credible intervals (CRIs) of the
Bayesian and the E-Bayesian estimates of « and R(t)
can be constructed from the (3) and (1 — 3) sample
quantiles of the empirical posterior PDF of MCMC
draws, given by,

1)

[z anp-31] & [Buizps Bap- 315 (30)

where, N represents the number of draws.

A. Unified hybrid censored data

In this subsection, we present some simulation results for
different values of n = 20,40, 60 ; r = 15,30, 45 and T} =
0.7,0.9; T, = 0.9,1.5. For a given value of c, values of a
and b were generated from (17) and those of a was generated
from Gamma (a, b). The resulting value of « is used as a
true value to generate a unified hybrid censored sample from
Burr-X distribution by using the inverse function method as
follows.

U:)}i’

where, U is a random number generated from U(0,1). The
MLFEs of the unknown parameter o and the reliability
function R(t) are obtained from (6) and (7), respectively. By
using Metropolis-Hastings sampler, we generate a Markov
chain with 11000 observations of the parameter «, discarding
the first 1000 observations as a “burn-in” period. By using
these values of the parameter «, we compute Bayesian
estimates g and R(t) ;¢ under SEL function from (25)
and (26), respectively, and Bayesian estimates &apr and
R(t) 5, under LINEX loss function are obtained from (27)
and (28), respectively. Also, E-Bayesian estimates dpps
and R(t),pg under SEL function are derived from (18)
and (20), respectively, and E-Bayesian estimates &gpr and
R(t) ; p;, under LINEX loss function are given from (19) and
(21), respectively. The mean squared error (MSE) is used to
compare the estimators of the parameter o and the reliability

X ={-In(1- (31)

function R(f) and, respectively, given as follows.

1000
MSE(6) = 1d55 Z
100
MSE(R(1)) = 1q55 Z 0)*,

where, & and R(t) are the estimates of the parameter o and
the reliability function R(t), respectively. The 95% CIs of
the MLEs of the parameter o and the reliability function
R(t) are computed from (29). Also, the 95% CRIs of the
Bayesian and the E-Bayesian estimates of the parameter o
and the reliability function R(t) are computed from (30).
All numerical results are listed in Tables (I-II). Where, in
Table I, dgpsi, @pps2 and &gpgs stand for the E-Bayesian
estimates of « relative to SEL based on 71 (a,b), m2(a,b)
and 73 (a, b), respectively, Ggpr1, dppre and dgprs denote
the E-Bayesian estimates of « relative to LINEX based on
m1(a,b), m2(a,b) and ms(a,b), respectively. And é&ps and
apy, are the Bayesian estimates of o under SEL and LINEX
loss, respectively. While in Table II, REBSl, REBSg and
RE B2 stand for the E-Bayesian estimates of R(t) relative
to SEL based on 71 (a, b), m2(a, b) and 73(a, b), respectively,
REBLl, REBM and REBL;), are the E-Bayesian estimates
of R(t) relative to LINEX based on i(a,b), m2(a,b)
and ms3(a,b), respectively. And Rps and Rpy denote the
Bayesian estimates of R(¢) under SEL and LINEX loss,
respectively.

VI. APPLICATION OF BURR-X MODEL

In this section, we present an illustrative example of

real-life data to clarify the performance of the proposed
methods in the application. These data were obtained in the
Semiconductor Electronics Division of the National Institute
of Standards and Technology Electronics and Electrical
Engineering Laboratory and taken from [20]. This data
set represents minority electron mobility for Ga;_, Al As
semi-conductor. One data set at the mole fraction of 0.25
is considered here. This data set was used by [21], who
proved that Burr-X distribution gives a good fit for this data
set. The data set contains 21 observations as listed below.
Data Set (belongs to mole fraction 0.25): 3.051,
2.779, 2.6044, 2.371, 2.214,2.045, 1.715, 1.525, 1.296,
1.154, 1.0164, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449,
0.8881,1.115, 1.397,1.506, and 1.528.
We assume that values of data set are failure lifetime
observations following Burr-X distribution. By applying
UHCS on this uncensored data considering n = 21, r = 18,
k = 15, « = 1.6526 and R(t = 1.2), we observe the
following cases:

e When 77 = 1.5 and 175 = 2, we observe that k
number of failures occur after 77, hence the experiment
is terminated at random time 7% = min{X,.,,To} =
min{2.371,2} = 2.

e When 77 = 2 and 1o, = 2.5, we ob-
serve that k£ number of failures occur before
Ti, hence the experiment is terminated at ran-

dom time T* = min{maz{X,,,T1},To} =
min{max{2.371,2},2.5} = min{2.371,2.5} =
2.371.
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e When 77 = 25 and 1T, = 3, we ob-
serve that k£ number of failures occur before
Ty, hence the experiment is terminated at ran-

dom time T™*

TABLE I: Average estimates, MSE and 95% CIs and CRIs of MLEs, Bayesian and E-Bayesian estimates for o under

min{maz{X,.,,T1},To}

LINEX and SEL functions when « = 1.15,a = 0.8,b =0.7,h = 1.5,c = 1.

min{max{2.371,2.5},3} = min{2.5,3} = 2.5.
With respect to the real data set, all estimates are derived
based on SEL and LINEX loss functions by the same
previous methods and listed in Tables (III-IV).

(n, 1k)

(T1,T%) | Criteria

aMLE |

Squared Error Loss

LINEX Loss

l

aBS

AXEBS1

GEBSs2 GEBS3 |

ABL

AFEBL1

XEBL2

GEBL3]

\ I
\ I
\ I
\ I
I I

I
(20,15,10) (0.7,0.9) Mean

MSE
Lower
Upper
Length

1.42127
0.2888
0.404682
2.43786
2.03318

1.40206
0.11275
0.9277
1.8764
0.9488

1.25625 1.09922
0.0508 0.03283
0.871 0.697
1.8391 1.8155
0.9681 1.1185

1.15418
0.03337
0.3315
1.8669
1.5354

1.35505
0.07775
0.4675
1.8408
1.3733

1.21812
0.03425
0.6195
1.8168
1.1973

1.0697
0.02993
0.2582
1.8812
1.623

1.12176
0.02637
0.3908
1.8527
1.4619

\ I
\ I
\ I
\ I
I I

! (0.9,1.5)

Mean
MSE
Lower
Upper
Length

0.78429

0.15808
0.442441

1.12614
0.683698

1.34879
0.04588
1.0217
1.6759
0.6542

1.20852
0.00853
0.9989
1.658
0.6591

1.05745

0.01248
0.7811
1.6359

0.8548

1.11032

0.00589
0.3992
1.7157
1.3164

1.32846
0.03751
0.5397
1.6809
1.1412

1.19213
0.00638
0.7434
1.6408
0.8974

1.04485
0.01463
0.3651
1.7246
1.3594

1.09645
0.00678
0.5034
1.6895
1.1861

! (40, 30, 20)H

(0.7,0.9)

Mean
MSE
Lower
Upper
Length

0.99085
0.15602
0.198635
1.78307
1.58443

1.40502
0.07055
0.9971
1.813
0.8159

1.2589
0.01629
0.9614
1.7864
0.8251

1.10153
0.00574
0.7603
1.7575
0.9971

1.15661
0.00378
0.3801
1.823
1.4429

1.37389
0.05481
0.5213
1.792
1.2707

1.23377

0.01084
0.7054
1.7621
1.0567

1.08219

0.00758
0.3292
1.8352
1.5059

1.13532
0.00348
0.4675
1.8031
1.3356

\ I
\ I
\ I
\ I
I I

(0.9,1.5)

Mean
MSE
Lower
Upper
Length

0.88756
0.0902
0.567599
1.20752
0.639921

1.33505

0.04139
0.9737
1.6964

0.7227

1.19621
0.00787
0.9458
1.675
0.7292

1.04668

0.01507
0.7435
1.6489

0.9054

1.09902
0.00744
0.3754
1.718
1.3426

1.31043
0.03176
0.5115
1.6865
1.175

1.17632

0.00561
0.6993
1.6533
0.954

1.03137
0.01791
0.3347
1.728
1.3933

1.08217

0.00881
0.4685
1.6959
1.2274

‘[ (60, 45, 30)H

(0.7,0.9)

Mean
MSE
Lower
Upper
Length

0.96224
0.1472
0.22904
1.69543
1.46638

1.33124
0.06276
1.034
1.6284
0.5944

1.19279
0.02585
1.0141
1.6128
0.5987

1.04369
0.02969
0.7893
1.5963
0.8070

1.09587
0.0232
0.4055
1.6819
1.2765

1.31346
0.05369
0.546
1.6458
1.0998

1.17846
0.0227
0.7559
1.601
0.8451

1.03268
0.03072
0.3755
1.6899
1.3144

1.08375
0.0230
0.5140
1.6535
1.1395

(0.9,1.5)

Mean
MSE
Lower
Upper
Length

1.18969
0.06007
0.659684
1.7197
1.06001

1.31624
0.05703
1.0255
1.6069
0.5814

1.1524
0.00647
0.9781
1.5613
0.5832

1.00835

0.02501
0.7607
1.5441

0.7835

1.05876

0.01378
0.3906
1.6261
1.2356

1.29909
0.04873
0.5413
1.6257
1.0844

1.16553

0.02175
0.7503
1.5807
0.8304

0.99818
0.02755
0.3629
1.6335
1.2706

1.04757
0.01543
0.4966
1.5986
1.102

(Advance online publication: 20 November 2019)



TAENG International Journal of Applied Mathematics, 49:4, IJAM 49 4 23

TABLE II: Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian estimates for R(t = 1.2)
under LINEX and SEL functions when o = 1.15,a =0.8,b =0.7,h = 1.5, ¢ = 1.

(n, 1k) (T1,T2) |Criteria| Ry Squared Error Loss LINEX Loss

: Rps Rppsi Reppses Repsi| Rpr Repri Repra Reprs
(20, 15, 10)H (0.7,0.9) Mean 0.313721 0.31267 0.28015 0.24513 0.25739 0.31112 0.2789 0.24418 0.25634
MSE 0.009544 0.00365 0.00144 0.00147 0.00118 0.00344 0.00136 0.00147 0.00115
Lower 0.125406 0.2288 0.2272 0.1738 0.0872 0.1192 0.1712 0.0848 0.1165

Upper 0.50203 0.3965 0.3951 0.3865 0.4030 0.3956 0.3867 0.4036 0.3961

. Length 0.37662 0.1677 0.1679 0.2127 03158 0.2765 0.2155 0.3188 0.2796

‘ ::(0.9,1.5) Mean 0.19039 0.30474 0.27305 0.23891 0.25086 0.30402 0.27247 0.23847 0.25037
\ MSE 0.007003 0.00162 0.00021 0.00094 0.00042 0.00156 0.0002 0.00096 0.00043
\ Lower 0.11791 0.2440 0.2433 0.1861 0.0963 0.1290 0.1848 0.0951 0.1277
‘ | Upper 0.26286 0.3655 0.3648 0.3599 0.3815 0.3727 0.3602 0.3819 0.3730
x Length 0.14495 0.1215 0.1215 0.1738 0.2852 0.2437 0.1754 0.2868  0.2453
I

1
(40, 30, 20)H (0.7,0.9) Mean 0.23142 0.31487 0.28212 0.24686 0.2592 0.31379 0.28125 0.24619 0.25847
! MSE  0.00667 0.00245 0.00037 0.00053 0.00019 0.00234 0.00034 0.00055 0.0002
Lower 0.07053 0.2404 0.2393 0.1838 0.0942 0.1271 0.1818 0.0923  0.1252
Upper 0.39232 0.3893 0.3883 0.3804 0.3996 0.3913 0.3807 0.4000 0.3918
. Length 0.32179 0.1489 0.1490 0.1966 0.3054 0.2642 0.1989 0.3077 0.2666

! (0.9,1.5) Mean 021275 0.30197 0.27057 0.23674 0.24858 0.30109 0.26986 0.2362 0.24798
y MSE  0.00395 0.00145 0.00021 0.00108 0.00052 0.00138 0.0002 0.00111 0.00053
Lower 0.14412 0.2349 0.2340 0.1795 0.0923 0.1243 0.1779 0.0909  0.1227
Upper 0.28138 0.3690 0.3681 0.3616 0.3812 0.3729 0.3619 0.3816 0.3733
Length 0.13725 0.1341 0.1341  0.1821 0.2888 0.2487 0.1840 0.2907  0.2506

(0.7,0.9) Mean 0.22599 0.30093 0.26964 0.23593 0.24773 0.30032 0.26914 0.23555 0.24731
: MSE 0.00634 0.00217 0.00083 0.00162 0.00108 0.00211 0.00082 0.00163 0.00109
\ Lower 0.07668 0.2459 0.2453 0.1871 0.0970 0.1297 0.1859 0.0960  0.1285
‘ Upper 0.37529 0.3559 0.3553 0.3522 0.3748 0.3658 0.3524 0.3751 0.3661

\ . Length 0.29861 0.1100 0.1100 0.1651 0.2778 0.2361 0.1665 0.2792  0.2375

I T

‘ | (0.9,1.5) Mean 0.27347 0.29813 0.26249 0.22968 0.24116 0.29753 0.26664 0.22931 0.24076
‘ MSE  0.00252 0.00197 0.00026 0.0016 0.00088 0.00192 0.00081 0.00162 0.0009
\ | Lower 0.16424 0.2441 0.2377 0.1814 0.0940 0.1287 0.1844 0.0930 0.1246
‘ | Upper 0.38271 0.3521 03470 0.3436 0.3654 0.3622 0.3488 0.3656 0.3569
x Length 0.218472 0.1080 0.1093 0.1622 0.2713 0.2335 0.1644 0.2727 0.2323

!
!
|
! 1
|
r

|
!
!
! 1
|
I

!

! 1
! 1
! 1
1 Il
I T
1

(60, 45, 30)

11

TABLE III: For real data set : Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian
estimates for o under LINEX and SEL functions when o = 1.66,a =0.8,b=1.4,h = 1.5, ¢ =2

(n, 1k) [(Th, T2) | Criteria | AMLE | Squared Error Loss | LINEX Loss |
Gps  AGpps1 OpBS2 AEpss| Gpr  Agpr1 QB2 AEBL3]

(2,2.5) Mean 221753 245016 2.19534 1.92092 2.01697 2.26428 2.04457 1.80418 1.88877

MSE 0.87139 0.62438 0.28662 0.0681 0.12745 0.36518 0.14792 0.0208 0.05235

Lower 0.576875 1.421 1.1725 1.0514 0.4597 0.6827 0.7441 0.1725 0.3821

Upper 3.85818 3.4793 3356 3.3393 3.3822 33512 3345 34358 3.3954

. Length 3.28131 2.0584 2.1835 2.288 2.9225 2.6685 2.6009 3.2633 3.0133
T

‘ ., (2.5,3) Mean 2.15877 2.44508 2.19079 1.91694 2.01279 2.26161 2.04193 1.80164 1.88619
‘ MSE  0.7657 0.61638 0.28177 0.06604 0.12449 0.362 0.14592 0.0201 0.0512
‘ ; Lower 0.58324 1422 1.1772 1.0528 0.4615 0.6844 0.7493 0.1777 0.3873
‘ | Upper 3.7343  3.4681 3.346 3.3288 3.3724 3.3412 3.3346 3.4256 3.385
\ Length 3.15106 2.0461 2.1688 2276 29108 2.6567 2.5853 3.2478 29977

(21, 18, 15)'
"
"
]

|
|
|
| 1
L
r
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TABLE IV: For real data set : Average estimates, MSE and 95%CIs and CRIs of MLEs, Bayesian and E-Bayesian
estimates for R(t = 1.2) under LINEX and SEL functions, & = 1.66,a =0.8,b = 1.4,h = 1.5, ¢ = 2.

(n, k) | (T1, T2) |Criteria| RyrE Squared Error Loss LINEX Loss

Rps Rppsi Repse Rppsa| Rpr  Repr1 Repra Repra

(2,2.5) Mean 0.472972 0.51653 0.46281 0.40496 0.42521 0.51237 0.45947 0.4024 0.42239
MSE 0.025538 0.01504 0.00475 0.00012 0.00098 0.01404 0.0043 0.00007 0.00081

(21, 18, 15)

T
"

|

: ; Lower 0.168667 0.3706 0.3662 0.2829 0.1421 0.1943 0.2756 0.1353  0.1871
‘ | Upper 0.77727 0.6625 0.6585 0.6428 0.6679 0.6562 0.6433 0.6695 0.6576
\ ) Length 0.60861 0.2919 0.2923 03599 0.5258 0.4619 03677 0.5342 0.4705
: :: (2.5,3) Mean 046478 0.51586 0.46221 0.40443 0.42465 0.51173 0.4589 0.4019 0.42186
‘ ; MSE 0.02316 0.01488 0.00467 0.00011 0.00095 0.01389 0.00423 0.00006 0.00078
‘ B Lower 0.169633 0.3706 0.3663 0.2829 0.1421 0.1943  0.2757 0.1355 0.1872
‘ | Upper 0.75993 0.6611 0.6572 0.6415 0.6667 0.655 0.6421 0.6683  0.6565
\ Length 0.59030 0.2905 0.291  0.3587 0.5246 0.4607 0.3664 0.5329  0.4692

1l
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VII. CONCLUDING REMARKS

In this paper, we used the maximum likelihood method,
as well as the Bayesian and the E-Bayesian approaches, for
estimating the unknown parameter and the reliability function
of Burr-X distribution based on UHCS. The Bayesian and E-
Bayesian estimates are derived under the SEL and the LINEX
loss functions. The MCMC algorithm is applied to obtain
the Bayesian and the E-Bayesian estimates as they cannot
be obtained analytically. Also, we constructed the CIs of
MLEs and the CRIs of the Bayesian and the E-Bayesian
estimates. Furthermore, an illustrative example is presented
to investigate the performance of the proposed methods in
the application. Based on the results obtained in Tables (I-1I),
we observe the following.

o The Bayesian estimator is better than MLE in terms of
MSE.

o The E-Bayesian estimator is the best when compared
with the Bayesian and the MLE:s in the sense of having
a smaller MSE.

o The MSE of all estimates decreases when the sample
size n and time points 73, 75 increase.

e Also, the length of CIs and CRIs decreases when
n,r, Ty and T, increase.

o The E-Bayesian estimator is more efficient than the
Bayesian and MLEs, as it has a smaller MSE.

o Based on the results obtained in Tables (III-IV), we
observe that all the previous results are realized for the
Bayesian, the E-Bayesian estimates and MLEs, that is
the proposed methods behave well for a practical real
data set.

o Moreover, the E-Bayesian estimator is the most efficient
compared with the Bayesian estimator and MLE in the
application.

¢ On the other hand, the length of CIs and CRIs decreases
when n,r,T7 and T, get larger.

o From Tables (I-IV), we can state that the E-Bayesian
method is easy to apply and more efficient than both
Bayesian and maximum likelihood methods.

o Also, a large sample size n gives better estimates with
a smaller MSE.

o Furthermore, the E-Bayesian method can be applied to
any censoring scheme as performed in [11], [16] and
[17] with the same efficient behavior.
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