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Abstract—The objective of this paper is to generate fractals
for complex valued polynomials using Jungck-SP orbit. We
present an algorithm to generate fractals. With the help of
this algorithm, we generate such beautiful graphics which may
be useful for graphic designers. In this paper, we extend and
improve the corresponding results of Kang et al. (2015) and
Kumari et al. (2017) existing in the literature. One can further
generalize our results and derive a new escape criterion to
generate some more beautiful fractals.

Index Terms—Julia set; Mandelbrot set; Jungck-SP orbit;
Escape criterion; Complex polynomials.

I. INTRODUCTION

Fractal theory is a popular branch of mathematical art.
In mathematical visualization, fractals are the complex ob-
jects that are used to simulate naturally occurring objects.
Mathematicians have been using computer programming to
generate fractals via iterative procedures. Gaston Julia was
the first, who used the iterative process and obtained the
Julia set ( [7], p. 122). After that in 1975, Gaston’s idea
was extended by Benoit Mandelbrot and he introduced the
Mandelbrot set. The geometry of fractals had been studied
for quadratic [2], [7], [18], [25], cubic [1], [4], [5], [18], [24]
and higher degree complex polynomials [35] using Picard
orbit.

In the first decade of 21st century, researchers used Supe-
rior orbits to generate fractals (see, [6], [8], [12]–[19], [22],
[26], [27], [29]–[33], [36], [37] and references therein). In
the sequel, Ashish et al. [3] and M. Kumari et al. [9] obtained
further generalized form of Mandelbrot and Julia sets for four
step feedback processes.

In 2015, Kang et al. [22] established new escape crite-
rion for Mandelbrot and Julia sets under Jungck-Mann and
Jungck-Ishikawa orbits and presented some graphics of Man-
delbrot and Julia sets. Further, they presented the generalized
form of Mandelbrot sets and Julia sets for complex valued
polynomials using Jungck three-step orbit [23]. In 2011,
Chugh and Kumar [19] defined Jungck-SP iterative scheme
and with the help of examples, they proved that the rate of
convergence of Jungck-SP iterative scheme is faster than that
of Jungck-Mann, Jungck-Ishikawa and Jungck-Noor iterative
schemes. Recently, authors used SP orbit in Fractal theory
and generated beautiful fractals (see [10], [11], [20], [21],
[28], [34]).

In this paper, firstly, we recall some basic definitions. In
Section III, we derive escape criterion to generate fractals
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of complex valued polynomials. Moreover, an algorithm to
compute fractals have been presented in Section IV. The
beautiful graphics of Mandlbrot sets and Julia sets have been
generated in Section V. In Section VI, we conclude our
findings.

II. PRELIMINARIES

Definition 2.1: (Orbit) [18] The orbit of a point x0 ∈ R
under a mapping T is defined as a sequence of points

x0, x1 = T (x0), x2 = T 2(x0), ..., xn = Tn(x0), ... .

Definition 2.2: ( [18], p. 225) The Julia set of a function
g is the boundary of the set of points z ∈ C that tends to
infinity under repeated iteration by g(z), i.e., for a function
g, the Julia set is given by

J(g) = ∂{z ∈ C : gn(z)→∞ as n→∞},

where gn(z) is the nth iterate of function g.

Definition 2.3: ( [18], p. 249) The Mandelbrot set M is
the collection of all complex numbers for which the Julia set
is connected, i.e.,

M = {z ∈ C : J(g) is connected}.

Definition 2.4: Let X be a subset of set of complex
numbers and T : X → X be a mapping. For any initial point
z0 ∈ X , consider a sequence {zn} of iterates such that

Szn+1 = (1− αn)Sun + αnTun,

Sun = (1− βn)Svn + βnTvn,

Svn = (1− γn)Szn + γnTzn,

(1)

where αn, βn, γn are sequences of positive numbers in
[0, 1] and Sz = bz. Then, (1) is called Jungck-SP orbit [19]
having five tuples (T, z0, αn, βn, γn).

Remark 2.5: The Jungck-SP orbit reduces to :

1. The Jungck Thaiwan orbit when γn = 0, i.e.

Szn+1 = (1− αn)Sun + αnT (un)

Sun = (1− βn)Szn + βnT (zn)

2. The Jungck Mann orbit [22] when γn = βn = 0, i.e.

Szn+1 = (1− αn)Szn + αnT (zn)

3. The Jungck Picard orbit when γn = βn = 0 and αn = 1,
i.e.

Szn+1 = T (zn)
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III. MAIN RESULTS

The escape criterion plays a vital role in the generation of
fractals. In this section, we derive escape criterion to generate
fractals for nth degree complex polynomials in Jungck-SP
orbit. Throughout this paper, we assume that z0 = z, u0 =
u, v0 = v and αn = α, βn = β, γn = γ. The Jungck-SP
iteration scheme (1) can be written in the following manner:

Szn+1 = (1− α)Sun + αQc(un),

Sun = (1− β)Svn + βQc(vn),

Svn = (1− γ)Szn + γQc(zn),

where n = 0, 1, 2, ... ; 0 ≤ α, β, γ ≤ 1 and Qc(zn) is the
nth degree complex polynomial for n = 2, 3, ... .

A. Escape Criterion for Quadratic Polynomials:

Let Pb,c(z) = z2 − bz + c be a quadratic complex
polynomial. We choose Qc(z) = z2 + c and Sz = bz where
b, c ∈ C.

Theorem 3.1: Suppose |z| ≥ |c| > 2(1 + |b|)/α, |z| ≥
|c| > 2(1 + |b|)/β and |z| ≥ |c| > 2(1 + |b|)/γ , where
0 ≤ α, β, γ ≤ 1 and c ∈ C.
Define

Sz1 = (1− α)Su+ αQc(u)

Sz2 = (1− α)Su1 + αQc(u1)

· · ·

· · ·

· · ·

Szn = (1− α)Sun−1 + αQc(un−1),

where Qc(z) is a quadratic polynomial in terms of α and
n = 1, 2, 3, ..., then |zn| → ∞ as n→∞.

Proof: Consider

|Sv| = |(1− γ)Sz + γQc(z)|, where Qc(z) = z2 + c

|bv| = |(1− γ)bz + γ(z2 + c)|
≥ |γz2| − |(1− γ)bz| − |γc|
≥ |γz2| − |bz|+ |γbz| − |γz|, (∵ |z| ≥ |c|
≥ |γz2| − |bz| − |γz|, (∵ |b| ≥ 0)

⇒ |bv| ≥ |γz2| − |b||z| − |z|, (∵ γ < 1)

= |γz2| − |z|(|b|+ 1)

= |z|{γ|z| − (|b|+ 1)}.

Thus,

|b||v| ≥ |z|{γ|z| − (|b|+ 1)}

|v| ≥ |z|(1 + 1/|b|){γ|z|/(|b|+ 1)− 1}

≥ |z|{γ|z|/(|b|+ 1)− 1},

i.e.,
|v| ≥ |z|{γ|z|/(|b|+ 1)− 1}. (2)

Also,
|Su| = |(1− β)Sv + βQc(v)|

|bu| = |(1− β)bv + β(v2 + c)|

≥ |(1− β)b{|z|(γ|z|/(|b|+ 1)− 1)}

+β[{|z|(γ|z|/(|b|+ 1)− 1)}2 + c]|.

Since |z| > 2(1+ |b|)/γ, we have |z|(γ|z|/(|b|+1)−1) > 1.
This gives

|bu| ≥ |(1− β)b|z|+ β(|z|2 + c)|
≥ β|z|2 − |(1− β)bz| − β|z|, (∵ |z| ≥ |c|
≥ β|z|2 − |bz|+ βb|z| − β|z|
≥ β|z|2 − |bz| − |z|, (∵ β < 1)

= β|z|2 − |z|(|b|+ 1)

⇒ |b||u| ≥ |z|{β|z| − (1 + |b|)},
i.e.,

|u| ≥ |z|{β|z|/(|b|+ 1)− 1}. (3)

Now, for Szn = (1− α)un−1 + αQc(un−1), we have

|Sz1| = |(1− α)Su+ αQc(u)|
|bz1| = |(1− α)bu+ α(u2 + c)|.

Using (3), we have

|bz1| ≥ |(1− α)b|z|+ α(|z|2 + c)|
≥ α|z|2 − |(1− α)bz| − |αz|
≥ α|z|2 − |bz| − |z|, (∵ α < 1)

= |z|{α|z| − (1 + |b|)},
i.e., |z1| ≥ |z|(α|z|/(1 + |b|)− 1).

Since |z| ≥ |c| > 2(1 + |b|)/α, |z| ≥ |c| > 2(1 + |b|)/β and
|z| ≥ |c| > 2(1+ |b|)/γ exist. Therefore, we have α|z|/(1+
|b|)− 1 > 1. Hence, there exists δ > 0 such that α|z|/(1 +
|b|)− 1 > δ + 1 > 1. Consequently, we have

|z1| > (1 + δ)|z|.

In particular, |zn| > |z|. So, repeating the same argument n
times, we obtain,

|zn| > (1 + δ)n|z|.

Thus, the orbit of z tends to infinity as n tends to infinity.
Hence, the result.

B. Escape Criterion for Cubic Polynomials:

Now, we prove the following theorem for a cubic complex
polynomial Pb,c(z) = z3− bz+ c, which is equivalent to all
other cubic polynomials. We consider Qc(z) = z3 + c and
Sz = bz where b, c ∈ C.

Theorem 3.2: Suppose that |z| ≥ |c| > (2(1 + |b|)/α)1/2,
|z| ≥ |c| > (2(1 + |b|)/β)1/2 and |z| ≥ |c| > (2(1 +
|b|)/γ)1/2 where 0 < α, β, γ ≤ 1 and b, c are complex
numbers. Define

Sz1 = (1− α)Su+ αQc(u)

Sz2 = (1− α)Su1 + αQc(u1)

· · ·

· · ·
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· · ·

Szn = (1− α)Sun−1 + αQc(un−1);n = 1, 2, 3, ... ,

where Qc(u) is a cubic polynomial in terms of α, then
zn →∞ as n→∞.

Proof: Consider

|Sv| = |(1− γ)Sz + γQc(z)|, where Qc(z) = z3 + c

|bv| = |(1− γ)bz + γ(z3 + c)|
≥ |γz3| − |(1− γ)bz| − |γc|
≥ |γz3| − |bz|+ |γbz| − |γz|, (∵ |z| ≥ |c|
≥ |γz3| − |bz| − |γz|, (∵ |b| ≥ 0)

⇒ |bv| ≥ |γz3| − |b||z| − |z|, (∵ γ < 1)

= |γz3| − |z|(|b|+ 1)

= |z|{γ|z2| − (|b|+ 1)}.

Thus,

|b||v| ≥ |z|{γ|z2| − (|b|+ 1)}

|v| ≥ |z|(1 + 1/|b|){γ|z2|/(|b|+ 1)− 1}

≥ |z|{γ|z2|/(|b|+ 1)− 1},

i.e.,
|v| ≥ |z|{γ|z2|/(|b|+ 1)− 1}. (4)

Now, take

|Su| = |(1− β)Sv + βQc(v)|

|bu| = |(1− β)bv + β(v3 + c)|

≥ |(1− β)b{|z|(γ|z2|/(|b|+ 1)− 1)}

+β[{|z|(γ|z2|/(|b|+ 1)− 1)}2 + c]|.

Since |z| > (2(1+|b|)/γ)1/2, we have (γ|z2|/(|b|+1)−1) >
1. This gives

|bu| ≥ |(1− β)b|z|+ β(|z|3 + c)|
≥ β|z|3 − |(1− β)bz| − β|z|, (∵ |z| ≥ |c|
≥ β|z|3 − |bz|+ βb|z| − β|z|
≥ β|z|3 − |bz| − |z|, (∵ β < 1)

= β|z|3 − |z|(|b|+ 1)

⇒ |b||u| ≥ |z|{β|z2| − (1 + |b|)},
i.e.,

|u| ≥ |z|{β|z2|/(|b|+ 1)− 1}. (5)

Now, for Szn = (1− α)un−1 + αQc(un−1), we have

|Sz1| = |(1− α)Su+ αQc(u)|
|bz1| = |(1− α)bu+ α(u3 + c)|.

Using (5), we have

|bz1| ≥ |(1− α)b|z|+ α(|z|3 + c)|
≥ α|z|3 − |(1− α)bz| − |αz|
≥ α|z|3 − |bz| − |z|, (∵ α < 1)

= |z|{α|z2| − (1 + |b|)},
i.e., |z1| ≥ |z|(α|z2|/(1 + |b|)− 1).

Since |z| ≥ |c| > (2(1 + |b|)/α)1/2, |z| ≥ |c| > (2(1 +
|b|)/β)1/2 and |z| ≥ |c| > (2(1+ |b|)/γ)1/2 exist. Therefore,
we have α|z2|/(1 + |b|)− 1 > 1. Hence, there exists δ > 0
such that α|z2|/(1+ |b|)− 1 > δ+1 > 1. Consequently, we
have

|z1| > (1 + δ)|z|.
Particularly, |zn| > |z|. So, using the same argument n times,
we have,

|zn| > (1 + δ)n|z|.
Thus, the orbit of z tends to infinity as n tends to infinity.
Hence, the result.

C. A General Escape Criterion
Now, we obtain a general escape criterion for higher

degree complex polynomials.

Theorem 3.3: Let Gb,c(z) = zn− bz+ c, n = 2, 3, ... be a
higher degree complex polynomial. Choose Qc(z) = zn + c
and Sz = bz where b, c ∈ C. Define

Sz1 = (1− α)Su+ αQc(u)

Sz2 = (1− α)Su1 + αQc(u1)

· · ·
· · ·
· · ·

Szn = (1− α)Sun−1 + αQc(un−1);n = 1, 2, ... .

Then, the general escape criterion is |z| > max{|c|, (2(1 +
|b|)/α)1/(n−1), (2(1+|b|)/β)1/(n−1), (2(1+|b|)/γ)1/(n−1)}.

Proof: We shall prove the theorem by using the method
of induction. For n = 1, we have Qc(z) = z + c and this
implies

|z| > max{|c|, 0, 0, 0}.
For n = 2, we have Qc(z) = z2+ c, so by Theorem 3.1, the
escape criterion is

|z| > max{|c|, 2(1 + |b|)/α, 2(1 + |b|)/β, 2(1 + |b|)/γ}.
Similarly, for n = 3, we get Qc(z) = z3 + c. Then, from
Theorem 3.2, the escape criterion is given by

|z| > max{|c|, (2(1 + |b|)/α)1/2, (2(1 + |b|)/β)1/2,
(2(1 + |b|)/γ)1/2}.

Thus, the theorem is true for n = 1, 2, 3. Now, suppose that
theorem is true for any n. We shall prove that, the result
holds for n + 1. Let Qc(z) = zn+1 + c and |z| ≥ |c| >
(2(1 + |b|)/α)1/n, |z| ≥ |c| > (2(1 + |b|)/β)1/n and |z| ≥
|c| > (2(1 + |b|)/γ)1/n be escape criterion.
Then, consider

|Sv| = |(1− γ)Sz + γQc(z)|,
|bv| = |(1− γ)bz + γ(zn+1 + c)|

≥ |γzn+1| − |(1− γ)bz| − |γc|
≥ |γzn+1| − |bz|+ |γbz| − |γz|, (∵ |z| ≥ |c|
≥ |γzn+1| − |bz| − |γz|, (∵ |b| ≥ 0)

⇒ |bv| ≥ |γzn+1| − |b||z| − |z|, (∵ γ < 1)

= |γzn+1| − |z|(|b|+ 1)

= |z|{γ|zn| − (|b|+ 1)}.
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Thus,

|b||v| ≥ |z|{γ|zn| − (|b|+ 1)}

|v| ≥ |z|(1 + 1/|b|){γ|zn|/(|b|+ 1)− 1}

≥ |z|{γ|zn|/(|b|+ 1)− 1},

i.e.,
|v| ≥ |z|{γ|zn|/(|b|+ 1)− 1}. (6)

Now, take

|Su| = |(1− β)Sv + βQc(v)|
|bu| = |(1− β)bv + β(vn+1 + c)|
≥ |(1− β)b{|z|(γ|zn|/(|b|+ 1)− 1)}

+ β[{|z|(γ|zn|/(|b|+ 1)− 1)}n+1 + c]|.

Since |z| > (2(1 + |b|)/γ)1/n, we have |z|(γ|zn|/(|b|+ 1)
− 1) > 1.
This gives

|bu| ≥ |(1− β)b|z|+ β(|z|n+1 + c)|
≥ β|z|n+1 − |(1− β)bz| − β|z|, (∵ |z| ≥ |c|
≥ β|z|n+1 − |bz|+ βb|z| − β|z|
≥ β|z|n+1 − |bz| − |z|, (∵ β < 1)

= β|z|n+1 − |z|(|b|+ 1),

i.e., |b||u| ≥ |z|{β|zn| − (1 + |b|)}

⇒ |u| ≥ |z|{β|zn|/(|b|+ 1)− 1}. (7)

Now, for Szn = (1− α)un−1 + αQc(un−1), we have

|Sz1| = |(1− α)Su+ αQc(u)|
|bz1| ≥ |(1− α)bu+ α(un+1 + c)|.

Using (7), we have

|bz1| ≥ |(1− α)b|z|+ α(|z|n+1 + c)|
≥ α|z|n+1 − |(1− α)bz| − |αz|
≥ α|z|n+1 − |bz| − |z|, (∵ α < 1)

= |z|{α|zn| − (1 + |b|)},
i.e., |z1| ≥ |z|(α|zn|/(1 + |b|)− 1).

Since |z| ≥ |c| > (2(1 + |b|)/α)1/n, |z| ≥ |c| > (2(1 +
|b|)/β)1/n and |z| ≥ |c| > (2(1+|b|)/γ)1/n exist. Therefore,
we have α|zn|/(1 + |b|)− 1 > 1. Hence, there exists δ > 0
such that α|zn|/(1+ |b|)−1 > δ+1 > 1. Consequently, we
have

|z1| > (1 + δ)|z|.

So, repeating the same argument n times, we have

|zn| > (1 + δ)n|z|.

Thus, the orbit of z tends to infinity as n tends to infinity.

From the above theorem, we obtain the following results
in the form of corollaries:

Corollary 3.4: Assume that |c| > (2(1 +
|b|)/α)1/n−1, |c| > (2(1 + |b|)/β)1/n−1 and
|c| > (2(1 + |b|)/γ)1/n−1 exists. Then, the orbit
SP (Qc, 0, α, β, γ) escapes to infinity.

Corollary 3.5: (Escape Criterion) Let us suppose that for
some k ≥ 0, |zk| > max{|c|, (2(1 + |b|)/α)1/k−1, (2(1 +
|b|)/β)1/k−1, (2(1 + |b|)/γ)1/k−1}, then |zk| > δ|zk−1| and
|zn| → ∞ as n→∞.

Using this corollary, we obtain an algorithm for computing
the connected Julia sets of nth degree complex polynomials
of the form Gc(z) = zn−bz+c, n = 2, 3, ... . For any point
zk satisfying |zk| > max{|c|, (2(1 + |b|)/α)1/k−1, (2(1 +
|b|)/β)1/k−1, (2(1 + |b|)/γ)1/k−1}, we obtain the orbit of
zk. If for some n, |zn| lies outside the circle of radius
max{|c|, (2(1 + |b|)/α)1/k−1, (2(1 + |b|)/β)1/k−1, (2(1 +
|b|)/γ)1/k−1}, then we observe that the orbit escapes to
infinity, i.e., zk does not lie in the connected Julia set. If
|zn| never exceeds this bound, then according to definition
zk lies in the connected Julia set.

IV. ALGORITHM FOR GENERATING MANDELBROT SETS
AND JULIA SETS

Using the general escape criterion which is obtained
in Theorem 3.3, we provide an algorithm for generating
Mandelbrot sets and Julia sets. This algorithm demonstrate
the significance of our results obtained in Section III. This
algorithm includes the following steps:

1) Setup :
Choose a complex number c = l +mι.
Initialize values to parameters α, β, γ, b.
Take z0 = x+ yι as first iteration.

2) Iterate :

Szn+1 = (1− α)Sun + αQc(un),

Sun = (1− β)Svn + βQc(vn),

Svn = (1− γ)Szn + γQc(zn); n = 0, 1, 2, ... ,

where Qc(zn) = zn + c, n = 2, 3, ... and Sz = bz.

3) Stop :

|zn| > escape radius

= max{|c|, (2(1 + |b|)/α)1/n−1, (2(1 + |b|)/β)1/n−1,

(2(1 + |b|)/γ)1/n−1}.

4) Count : number of iterations to escape.

5) Color : point depends on number of iterations required
to escape.

Note: To generate Mandelbrot set, we take z0 = 0 as our
first iteration while in case of Julia set z0 is taken non-zero,
i.e., z0 6= 0.

With the help of this algorithm, we make a program
in Mathematica 11.0 and generate fractals of nth degree
complex polynomials of the form Gb,c(z) = zn − bz + c,
n = 2, 3, ... .
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V. GENERATION OF MANDELBROT SETS AND JULIA SETS
IN JUNGCK-SP ORBIT

In this section, using above algorith, we generate several
Mandelbrot sets and Julia sets for quadratic, cubic and
higher degree complex polynomials by running a program
in Mathematica 11.

A. Mandelbrot and Julia sets for quadratic complex polyno-
mial Pb,c(z) = z2 − bz + c :

We choose Qc(z) = z2 + 2 and Sz = bz. Considering
different values of parameters α, β, γ and b, we generate the
following graphics :

Fig. 1: Mandelbrot set for α = 0.3, β = 0.1, γ = 0.95, b = 2

Fig. 2: Mandelbrot set for α = β = γ = 0.9, b = 2

Fig. 3: Mandelbrot set for α = β = 0.1, γ = 0.9, b = 3

Fig. 4: Mandelbrot set for α = 0.9, β = γ = 0.1, b = 3

Fig. 5: Mandelbrot set for α = β = γ = 0.5, b = 4

Fig. 6: Julia set for α = 0.3, β = 0.1, γ = 0.7, c = −6.15 + 4.9ι, b = 2

Fig. 7: Julia set for α = β = 0.1, γ = 0.9, c = −5.05 − 5.05ι, b = 2
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Fig. 8: Julia set for α = β = γ = 0.5, c = −1.0 − 1.0ι, b = 3

Fig. 9: Julia set for α = 0.3, β = 0.1, γ = 0.6, c = −6.8 − 5.05ι, b = 3

Fig. 10: Julia set for α = 0.3, β = 0.1, γ = 0.9, c = −1.15 + 4.15ι, b = 4

B. Mandelbrot and Julia sets for cubic complex polynomial
Pb,c(z) = z3 − bz + c :

We choose Qc(z) = z3 + 2 and Sz = bz. Using different
values of parameters, we generate the following fractals :

Fig. 11: Mandelbrot set for α = β = γ = 0.9, b = 2

Fig. 12: Mandelbrot set for α = 0.9, β = γ = 0.1, b = 3

Fig. 13: Mandelbrot set for α = β = γ = 0.5, b = 3

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_24

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Fig. 14: Mandelbrot set for α = β = γ = 0.5, b = 4

Fig. 15: Julia set for α = 0.03, β = 0.1, γ = 0.6, c = −1.05ι, b = 1/2

Fig. 16: Julia set for α = 0.1, β = 0.6, γ = 0.9, c = −0.7 + 1.05ι, b = 2

Fig. 17: Julia set for α = 0.1, β = 0.5, γ = 0.8, c = −0.75 + 1.05ι, b = 3

Fig. 18: Julia set for α = 0.3, β = 0.8, γ = 0.1, c = −0.85 + 0.2ι, b = 4

C. Mandelbrot and Julia sets for higher degree complex
polynomials Pb,c(z) = zn − bz + c, n = 4, 5, ... :

We choose Qc(z) = zn + c and Sz = bz. We have the
following figures by using different values of parameters :

Fig. 19: Mandelbrot set for α = 0.9, β = 0.1, γ = 0.1, b = 3, n = 4

Fig. 20: Mandelbrot set for α = β = γ = 0.9, b = 2, n = 5
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Fig. 21: Mandelbrot set for α = β = γ = 0.5, b = 3, n = 5

Fig. 22: Mandelbrot set for α = 0.5, β = 0.5, γ = 0.5, b = 4, n = 10

Fig. 23: Julia set for α = 0.1, β = 0.5, γ = 0.8, c = −0.75 + 1.05ι,
b = 3, n = 4

Fig. 24: Julia set for α = 0.1, β = 0.3, γ = 0.9, c = −0.1 + 0.5ι,
b = 4, n = 15

VI. CONCLUSION

In this paper, we have established the new escape crite-
rion for complex quadratic, cubic and nth degree complex
polynomials and present an algorithm to generate fractals
via Jungck-SP orbit. Despite the theoretical development of
fractal theory, we have the following observations:

1) Due to high rate of convergence of Jungck-SP orbit, we
observe that 20 − 30 iterations are enough to generate
these beautiful graphics.

2) Julia set obtained in Fig. 23 resembles with a vegetable
Turnip (Shalajam in Hindi).

3) We notice that the Mandelbrot sets and Julia sets vary
with the variation of parameters.

4) Some Graphics generated by us may be useful for
graphics designer (see, Figs. 20-24).

5) Our results and algorithm can be further generalized to
obtain some new fractals.
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