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ABSTRACT—Doubly stochastic matrix has many important

applications, and the family of compact graphs has important
research value which can be seen as the generalization of the
famous Birkhoff theorem of doubly stochastic matrix in
combinatorial matrix theory. Determining whether a graph is a
compact graph is a difficult problem, and only few compact
graphs are known at present. We have studied the compact
graph and have obtained some results: the graph constructed
by the disjoint union of any compact graph and some isolated
points is a compact graph, the graph constructed by adding one
pendant edge to each vertex of any compact graph is also a
compact graph, and some compact graphs also are obtained
using above results. In this paper, based on previous studies, the
results of compact graphs are further given: the graph
constructed by adding n pendant edges to each vertex of the
complete graph is a compact graph, and the graph constructed
by adding two pendant edges to each vertex of any compact
graph is a compact graph. The disjoint union of any number of
non-isomorphic complete graphs is a compact graph. Combined
with these results, some results of compact graphs and
super-compact graph are given.

Index Terms—Compact graph, doubly stochastic matrix,
super compact graph, permanent

I Introduction
N this paper, the simple and undirected graph

),( EVG n with the vertex set },,2,1{ nVn  and

the edge set E is considered. The adjacency matrix
)(GAA  of a graph G is a (0,1) matrix of order n ,

whose element is 1ija or 0 , if an edge Eji  , or

not. Thus, a graph of order n corresponds to an adjacency
matrix  

nnijaA


 . The graphs G and H are isomorphism

if and only if their adjacency matrices are permutation
similarity. That is, if A and B are the adjacency matrices
of the graphs G and H respectively, then G and H are
isomorphism if and only if there exists a permutation matrix
P such that PBAP  , where P is called the
self-isomorphic permutation matrix of A .
Let np be the set of all permutation matrices of order n ,
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and )(P A be the set of all self-isomorphism of graph G ,

i.e., },P|{)(P XAAXXXA n  .

Let )(P A denote

    0),(P,1|)(P iiiii cAPcPcA .

A non-negative square matrix X is called doubly
stochastic matrix, if the X is the solution of the Linear
programming equation eeXXe T  , where e is the
n -dimensional vector whose elements are all 1.
Let n be the set of all doubly stochastic matrices of

ordern , and
},|{)( AXXAXXA n  .

Obviously, )()(P AA  . If )()(P AA  , graph

G is called compact graph. Compact graph can be seen as
the generalization of Birkhoff theorem[1] of doubly
stochastic matrix in combinatorial matrix theory.
Theorem 1.1.(Birkhoff theorem) [1] Let A be a doubly

stochastic matrix of order n , then A can be expressed as the
convex linear combination of several permutation matrices of
order n , i.e.

t

i i
i

A c P ,

where iP is the permutation matrix of order n , 1
t

i
i

c  ,

and ( 1, 2, , )ic i t  is positive.

Let G be a complete graph of order n , then its adjacency
matrix n nA J I  , where nJ is a square matrix whose all

elements are 1. It is easily to be seen that ( ) nA   and

nA P)(P  . So, they are equivalent that )()(P AA 
and Birkhoff theorem. Therefore, the compact graph is
indeed the extension of the Birkhoff theorem. Birkhoff
theorem can be obtained by compact graph.
Theorem 1.2.( Tinhöfer theorem) [2] The disjoint union of

the same compact graph is compact graph.
By the definition of compact graph, 2K (Complete graph

of order two) is compact graph. By theorem 1.2, if G is the
disjoint union of n copies of 2K , then G is compact graph,
and its adjacency matrix is

0
0
I

A
I

 
  
 

.

It is easily to be seen that
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1 2

3 4

X X
X X

 
 
 

0
0
I

I
 
 
 

0
0
I

I
 

  
 

1 2

3 4

X X
X X

 
 
 

,

if and only if

1 4 2 3= , =X X X X .

Let X S T  be a doubly stochastic matrix of order n ,
where ,S T are non-negative matrices, then

( )
S T

A
T S
 

 
 

.

By the compactness of G , the following results hold
(1) (2)

(2) (1)
1

=
t

i i
i

i i i

S T P P
c

T S P P

  
  

   
 ,

(1) (2)

(2) (1) ( )i i

i i

P P
P A

P P
 

 
 

,

where ( 1, 2, , )ic i t  is positive number and 1
t

i
i

c  .

If (1) (2)
i i iP P P  ( 1, 2, , )i t  , then iP is

permutation matrix for all i and
t

i i
i

X c P . It is truly

Birkhoff theorem.
Let A be the adjacency matrix of graph G . If there exists

a non-negative square matrix X such that XA AX , then
the X is called the non-negative self-isomorphism of A . All
non-negative self-isomorphisms of G are denoted by

)(ACone
XXAAXX ,|{  is a non-negative matrix} .

The self-isomorphic set )(P A of G generates

}0),(P|{)(P̂  iiii cAPPcA .

It is easily to be seen that )()(P̂ AConeA  . Then, for

what kind of graph does the equation )()(P̂ AConeA 
hold? A graph G is called super-compact graph if its

adjacency matrix A satisfies )()(P̂ AConeA  . Obviously

(A)P̂)(P A , ( ) ( )A Cone A  , and it can be proved

that if the adjacency matrix A of the graph G satisfies

)()(P̂ AConeA  , there must be )()(P AA  . So a
super-compact graph must be a compact graph. But not all the
graphs are compact graphs and the compact graphs are not
necessarily super-compact graphs. Sometimes there is little
difference between the non-compact and the compact and the
super-compact . We will illustrate this in the following.
In 1986, the concept of compact graph is proposed by

G.Tinhöfer[2]. In 1988, R.A.Brualdi systematically
introduced the compact graph in [3]. In 1990, Bai-lian Liu
related some results on the compact graph and gave some
new results in [4]. In 1997, C.D.Godsil discussed the compact
graph on the view of algebraic combination in [5]. After that,
Xiu-ping Zhang and Wei-cheng Lu gave some methods of
constructing compact graph in and some results in [6], [7],

[8], [9],[10]. But until now, only few families of compact
graphs are known. We have studied the compactness of a
graph in [12-14]. Particularly, the following two important
results are given in [13] :
Theorem 1.3.[13] The disjoint union of any compact graph

and some isolate vertices is compact graph.
Theorem 1.4.[13] The graph obtained by attaching one

pendant edge to each vertex of compact graph is compact.
Based on the above results, we obtained some useful

results such as any wheel graph is compact graph and any
windmill graph is compact graph.
In this paper, based on the previous research, the following

results will been given: the graph obtained by attaching n
pendant edges to each vertex of a complete graph is compact
graph, and the graph obtained by attaching two pendant edges
to each vertex of any compact graph is compact graph, and
the disjoint union of any number of non-isomorphic complete
graphs is a compact graph. The relations between
non-compact graph and compact graph and super-compact
graph will be discussed.

II Definitions and preliminary lennas
Definition 2.1. [4] The maximum number of non-zero

elements in different rows and different columns of a
nonnegative matrix is called the term rank of the matrix.

Definition 2.2. [4] Let   ( )ij m n
A a m n


  be a matrix,

we call

1 2

1 2

1 2
, , ,

m
n

m m

i i mi
i i i P

PerA a a a


 




the permanent of A , where n
mP presents the set of all

permutations of m elements in  1,2, ,n .

Lemma 2.1. [4] The permanent of doubly stochastic matrix
is positive.
Lemma 2.2.[4] If the graph G is compact, then the

complementary graph cG of G is compact.

Lemma 2.3.[4] The complete graph nK , circle graph nC ,

tree graph T , bipartite graph ,n nK and graph ,n nK are all

compact graphs, where ,n nK is the graph obtained by deleting

1 factor from ,n nK .

Lemma 2.4.[9] A graph G is a super compact graph if
and only if G is a compact and connected regular graph.
Lemma 2.5. [10] Let 1G and 2G be connected k -regular

compact graphs of order n and m respectively, )( 1GV
)( 2GV , u be a vertex of 1G , v be a vertex of 2G ,

then the graph G obtained by adding edge uv to the graph

21 GG  is also compact where mn  .

Lemma 2.6.[11] Let ( )G be the minimum degree of the

vertex of graph G with order n . If ( ) 1
2
nG     

, then

G is a connected graph.
Lemma 2.7. A non-negative matrix must be a square
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matrix, if its row sum equals to its column sum but not equals
to zero.
Proof. Let ( )ij n mA a  , and the row sum and column

sum be both ( 0)r  , then 1
2

m

i ij
j

a r a


  . Hence

1
1 1 2

n n m

i ij
i i j
a nr a

  

  

1
1 2 1

n m n

i ij
i j i

a nr a
  

   
( 1)r nr m r n m      .

Therefore, ( )ij n mA a  is a square matrix.

Lemma 2.8. Let G be a compact graph of order n and its
adjacency matrix be A , ( )X A , X S T  , where

,S T are non-negative matrices, then there are permutation

matrices )(P,,, 21 APPP t  such that

t

i i
i

X c P ，

(1) (2)

(2) (1)
1

=
t

i i
i

i i i

S T P P
c

T S P P

  
  

   
 ,

where
(1) (2)

(2) (1)
i i

i i

P P
P P

 
 
 

is a permutation matrix of order 2n ,

(1) (2)
i i iP P P  , ( 1, 2, , )ic i t  are positive numbers

and 1
t

i
i

c  .

Proof. Let
S T

Y
T S
 

  
 

, by lemma 2.1, the term rank

2Y n  . We use mathematical induction on the numbers

( )Y of non-zero elements of Y .

(i) If ( ) 2Y n  , then ,X Y are permutation matrices.
Lemma 2.8 holds.
(ii) If ( ) 2Y n  . Since ( )X A and G is a

compact graph, so there is a permutation matrix )(P1 AP 
such that the positive elements of 1P correspond to the n
positive independent vectors of +X S T . Decompose 1P
into the sum of two matrices (1)

1P , (2)
1P whose elements are

0 and 1 such that the positive elements of (1)
1P correspond to

the positive elements of S , the positive elements of (2)
1P

correspond to the positive elements of T .So
(1) (2)
1 1
(2) (1)
1 1

P P
P P

 
 
 

is a permutation matrix and its positive elements group
correspond to the independent group of 2n positive elements

of
S T
T S
 
 
 

:

 1 2 21 2 2 ,, , ,
nj j n ja a a .

Denote  1 2 21 1 2 2 ,min , , , 
nj j n jc a a a , then

10 1  c .
Let

(1) (2)
1 1

2 1 1 2 1 (2) (1)
1 1 1 1

1 1( ), ( )
1 1

P P
X X c P Y Y c

c c P P
 

        
then 1 ( )X A and 1Y are all doubly stochastic matrices,
and

(1) (2)
2 1 1 1 1 1 1

1 1 1

1 1 1( )= ( ) ( )
1 1 1

X X c P S c P T c P
c c c

    
  

1( ) ( ) 2Y Y  

Let (1) (2)
2 1 1 2 1 1

1 1

1 1( ), ( )
1 1

S S c P T T c P
c c

   
 

,

then 2 2 2X S T  .

If 2( ) 2Y n  , then make )(P2 AP  such that the

positive elements of 2P correspond to the independent group

of n positive elements of 2 2 2X S T  . Decompose 2P
into the sum of two matrices (1)

2P , (2)
2P whose elements are

0 and 1 such that the positive elements of (1)
2P correspond to

the positive elements of 2S and the positive elements of
(2)
2P correspond to the positive elements of 2T . So

(1) (2)
1 1
(2) (1)
1 1

P P
P P

 
 
 

is permutation matrix, and its positive

elements group correspond to the independent group of 2n

positive elements of 2 2
2

2 2

S T
Y

T S
 

  
 

:

 (1) (1) (1)
1 2 2

(1) (1) (1)
1 2 2 ,

, ,
nj j n j

a a a .

Denote  (1) (1) (1)
1 2 2

(1) (1) (1)
2 1 2 2 ,

min , , ,
nj j n j

c a a a  ,

then 20 1c  .
Let

(1) (2)
2 2

3 1 2 2 3 1 2 (2) (1)
2 2 2 2

1 1( ), ( )
1 1

P P
X X c P Y Y c

c c P P
 

        

3 2( ) ( ) 2Y Y   ,

then 3 ( )X A and 3Y are all doubly stochastic matrices.
Repeating the above process, the following iterative

formula can be got:

1 1

1 1

, ;

, ,

  


     
 

X X X S T
S T

Y Y Y
T S
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1 1 1

1

(1) (2)
1 1 1 1 1 1

1 1

(1) (2)
1 1

1 1 (2) (1)
1 1

1

1 1 1 1

,
1

, ( 2,3, );
1 1

( 2,3, ),
1

= (1

i i i
i i i

i

i i i i i i
i i

i i

i i
i i

i ii i
i

i ii

i i i i

X c PX S T
c

S c P T c PS T i
c c

P P
Y c

S TP P
Y i

T Sc

X c P c

  



     

 

 
 

 



   

    
  

    
              

 







(1) (2)
1 1

1 1 1(2) (1)
1 1

) ( 2,3, );

(1 ) ( 2,3, ),

i

i i
i i i i

i i

X i

P P
Y c c Y i

P P
 

  
 




      
 





where (1) (2)
1 1 1 ; ( ) ( ) 2( 1).i i i iP P P Y Y i       

Since iY is doubly stochastic matrix, there is a t such that
( )=2tY n , i.e., tY is permutation matrix. So by

i i iX S T  ,

we know tX is also permutation matrix.

Let
(1) (2)

(2) (1)
t t

t
t t

P P
Y

P P
 

  
 

, then (1) (2)= +t t tX P P , tX is

denoted by tP . Iterating the above formula, there is

0( 1,2,3, , )ic i t   ,
=1

1
t

i
i

c  such that

1 1 2 2 3 3

(1) (2) (1) (2)
1 1 2 2

1 2(2) (1) (2) (1)
1 1 2 2

(1) (2) (1) (2)
3 3

3 (2) (1) (2) (1)
3 3

= ;

=

,

t t

t t
t

t t

X c P c P c P c P

P P P P
Y c c

P P P P

P P P P
c c

P P P P

   


       
    
              







In summary, Lemma 2.8 holds.

III Main results and their proof

Let G be any graph and G be the graph obtained by
attaching n pendant edges to each vertices of G . Let A be
the adjacency matrix of graph G , then by adjusting the order
of vertices, we can obtain the adjacent matrix of G

0 0 0
0 0 0

0 0 0

A I I I
I

A I

I



 
 
 
 
 
 
 
 





    


.

Let X  be the doubly stochastic matrix with the same
order as A . Perform the same partitioned mode of X  as

*A such that

12 13 1, 1

21 22 23 2, 1

31 32 33 3, 1

1,1 1,2 1,3 1, 1

n

n

n

n n n n n

X X X X
X X X X
X X X XX

X X X X








    

 
 
 
 
 
 
 
 





    


If A X X A    , then

12 21 13 31 1, 1 1,1

2 3 , 1

2 3 1,

= = = ;

;
+ ( 2,3, , 1);

+ ( 2,3, , 1).

n n

i i i n

j j n j

X X X X X X Y
AX XA
YA X X X X i n
AY X X X X j n

 





   
 
      
      



 
 

Since X  is doubly stochastic matrix, the row sum of
1

2

n

ik
k

Y X




 equals to the row sum of X nY . Hence the

row sum of
1

2

n

ik
k
X




 is equal to or larger than the row sum of

X . Since 0YA  , and
1

2

( 2,3, , 1)
n

ik
k

YA X X i n




     ,

we know =0YA . Thus
1

2

( 2,3, , 1)
n

ik
k
X X i n





    .

Also, the row sum of
1

2

n

ik
k

Y X




 and X nY are all

equal to 1, so if 2n  , then =0Y . Therefore,

22 23 2, 1

32 33 3, 1

1,2 1,3 1, 1

0 0 0
0
0

0

n

n

n n n n

X
X X X
X X XX

X X X






   

 
 
 
 
 
 
 
 





    


,

1

2
1

2

;

( 2,3, , 1);

( 2,3, , 1).

n

ik
k
n

jk
k

XA AX

X X i n

X X j n











   


   










(*)

Whereas, if X  satisfies the condition (*), then
A X X A    .

If G is complete graph, then ( ) nA   . Obviously,

the condition XA AX in (*) can be satisfied. Hence for
complete graph G and the null graph 0G with same order
(Constructed by some isolated vertices), we have

0( ) ( )A A    , where A and 0A
 are the adjacency

matrices of G and 0G
 respectively. Since 0G

 is the
disjoint union of the same star graph, and the star graph is
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compact[4], by theorem 1.2, 0G
 is a compact graph. So G

is also a compact graph and the following theorem holds:
Theorem 3.1. The graph obtained by attaching n pendant

edges to each vertices of complete graph is a compact graph.
Whether the result similar as theorem 3.1 holds for any

compact graph? It is an unsolved problem. For the special
case, we give the following theorem after theorem 1.4:
Theorem 3.2. The graph obtained by attaching two pendant

edges to each vertices of any compact graph is a compact
graph.
Proof. Let G be a compact graph of order n , A be the

adjacency matrix of G , *G be the graph obtained by
attaching two pendant edges to each vertices of G , and *A
be the adjacency matrix of *G . By properly adjusting the
order of the vertices, we can make

0 0
0 0

A I I
A I

I



 
   
 
 

Let ( )X A  . Perform the same partitioned mode of

X  as *A such that

12 13

21 22 23

31 32 33

X X X
X X X X

X X X



 
   
 
 

Since A X X A    , combining with above discussion,
we know

22 23

32 33

0 0
0 ,
0

X
X X X

X X



 
   
 
 

2 3

2 3

;
+ ( 2,3);
+ ( 2,3).

i i

j j

XA AX
X X X i
X X X j


  
  

Hence 22 33 32 23= , =X X X X . Let 22 32= , =X S X T ,
then

0 0
0
0

X
X S T

T S



 
   
 
 

,

where ( )X A ,
S T
T S
 
 
 

is doubly stochastic matrix of

order 2n , and X S T  .
Since G is a compact graph, by lemma 2.8, we have

1

t

i i
i

X c P


 ,
1

1
t

i
i
c



 , ( )iP A .

So *G is a compact graph.
From lemma 2.4 and theorem 3.2, the graph obtained by

adding two pendent edges to each vertex of any
super-compact graph is a compact graph, but not a super
--compact graph.

Theorem 3.3 The disjoint union of any number of
non-isomorphic complete graphs is a compact graph.
Proof. Let G be the disjoint union of the n distinct

complete graphs 1 2, , , nG G GL with the adjacency matrices

1 2, , , nA A AL respectively, where iA is the matrix of order

in . Then the adjacency matrix of G is

1 2( , , , )nA diag A A A L .

Let ( ) ( )ij n nX X A  , then i ij ij jA X X A ,

( , 1, 2, , )i j n L . Since i i iA J I  , j j jA J I  , so

i ij ij jJ X X J . Then the row sum and the column sum of

ijX are same. According to Lemma 2.7, when i j ,

0ijX  . Hence

11 22( , , , )nnX diag X X X L ,

( )( 1,2, , )ii iX A i n  L .

By Lemma 2.3, ( 1,2, , )iG i n L are compact graphs.

So there exist ( )( 1,2, , )i iP P A i n  L such that the

positive elements of iP correspond to the independent group

 ( ) ( ) ( )
1 (1) 1 (2) 1 ( ), , ,

i i i i

i i i
nx x x  K

of the positive elements of iiX .
Let

 ( ) ( ) ( )
1 (1) 1 (2) 1 ( )min , , ,

i i i i

i i i
i nx x x    L ;

 min | 1, 2, ,i i n   L ;  1 2, , , nP diag P P P L .

(1) If 1  , then ( )X P A  .

(2) If 1  , let
1 ( )

1
Y X P


 


, then it is

obviously that ( )Y A and Y has at least one zero
elements more than X . Using mathematical induction on
the number of non-zero elements, we obtain ( )X A .

In summary, ( ) ( )A A   . That is ( ) ( )A A   ,

and G is a compact graph.
Example 3.1. By theorem3.3, the disjoint union of the

complete graphs 5K and 6K is a compact graph. And by
theorem 3.2, the following graph (Fig 1 Compact graph) is
compact.

Fig 1 Compact graph

Theorem 3.4 The disjoint union of circle 3C and circle

( 3)nC n  is a non-compact graph.
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Proof. Let A be the adjacency matrix of 3C , B be the

adjacency matrix of ( 3)nC n  , then 3 3A J I  ,

ij n
B b    , where ijb satisfies that 1ijb  if

)(mod1 nij  or )(mod1 nij  and otherwise

0ijb  .

Let

 1 1  ,  1 0 0 0 0 0 1  L ,

then

1

0
TA

A



 

  
 

,
1

0
TB

B



 

  
 

,

It is easily to be seen that 3
1 ( ( , ))
3 nJ diag A B

n  


.

Therefore, if the disjoint union of circle 3C and circle

( 3)nC n  is a compact graph, then

3
1
3 n i iJ c P

n  
  , 1ic  , ( ( , ))iP diag A B .

Furthermore, there must be a permutation matrix P
whose element (1,4) is 1 in ( ( , ))diag A B . Let

3 3 3

3

n

n n n

P P
P

P P
 

 

 
  
 

, 3

1 0
0nP

X

 
  
 

,

then by ( , ) ( , )P diag A B diag A B P   , we known

3 3

1 1

1 1

1 1

0 01 0 1 0
0 0

,
, .
.

n n

T T

T T T T

AP P B

A BX X

X
X A B
A X XB

 
 

 
     

 

      
       

      


   
 

　

However, 1 2TA   , 1 0TB   ,

1 1 .T TA B    Hence the disjoint union of circle 3C
and circle ( 3)nC n  is a non-compact graph. The proof of
Theorem 3.4 is finished.
Since the complete graph ( 1)nK n  is a 1n regular

connected compact graph, there exists a n regular connected
compact graph of order 1n for any non-negative integer
n . Therefore, the super-compact graphs of any order exist.
For non-compact graphs, the following conclusions can be

drawn from Lemma 2.2 and Theorem 3.4:
Corollary 3.1 If 3n  , the 1n regular connected

non-compact graph of order 4n exist.
Sometimes, the difference between a non-compact graph

and a compact graph is very small and maybe is only lost one
edge, which can be seen from Lemma 2.5 and Theorem 3.4.
For example:

Fig 2 Difference between non-compact graph and compact
gagraph

Similarly, the difference between the compact graph and
the super-compact graph can be only lost one edge, which can
be seen from Theorem 1.3, Lemma 2.2, Lemma 2.3 and
Lemma 2.4. For example:

Fig 3 Difference between compact graph and super compact graph

The following two conclusions are also notable.
Corollary 3.2. For 5n  , nC and c

nC both are
simultaneously super-compact graphs .

Proof. When 5n  , ( ) 3 1
2

c
n

nC n       
, so c

nC is a

connected graph. By Lemma 2.2, Lemma 2.3 and Lemma 2.4,

nC and c
nC both are simultaneously super-compact graphs .

Corollary 3.3. When 3n  , ,n nK and ,
c
n nK both are

simultaneously super-compact graphs, where ,n nK is the

graph obtained by deleting 1-factor from ,n nK .

Proof. Since ,
2( ) 1 1 1
2

c
n n

nK n n         
, so

,
c
n nK is a connected graph. When 3n  , it is easy to know

that ,n nK is a connected graph by mathematical induction.

By Lemma 2.2, Lemma 2.3 and Lemma 2.4, ,n nK and ,
c
n nK

both are simultaneously super-compact graphs.
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