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Abstract—In this work, a class of trigonometric Bézier basis
functions over triangular domain with six shape parameters is
constructed. With the new developed basis functions, a kind
of trigonometric Bézier patch over triangular domain is given.
For the fixed control nets, the shape of the resulting patch can
be still modified flexibly by using the six shape parameters.
A de Casteljau-type algorithm is proposed for computing the
patch stably and efficiently. And the sufficient conditions for
joining two trigonometric Bézier patches with G1 continuous
smoothness are deduced. Several numerical examples are given
and the results show that the new class of trigonometric Bézier
basis functions is suited for surface modeling.

Index Terms—Trigonometric Bézier basis, triangular domain,
triangular patch, shape parameter, de Casteljau-type algorithm

I. INTRODUCTION

TRIGONOMETRIC polynomials have been widely de-
veloped for constructing spline curves and surfaces

within computer-aided geometric design (CAGD), and the
splines are widely applied in many fields of engineering,
such as the data fitting presented in [1], principal components
analysis in [2], data approximation to signal restoration in [3]
and so on.

In [4], the recurrence relation for a kind of trigonometric
B-splines was given. In [5], a class of trigonometric Lagrange
and Bernstein polynomials was developed. In [6], [7], [8],
[9], [10], some quadratic trigonometric B-splines possessing
local shape parameters were proposed. In [11], a family of
cubic trigonometric Bézier (T-Bézier, for short) basis with
a shape parameter was shown. In [12], a new cubic T-
Bézier basis with two shape parameters was further extended.
In [13], [14], shape features of the T-Bézier curves were
analyzed with the envelop and topological mapping theory.
There are some recent papers concerning representation of
curves using trigonometric spline with shape parameters;
see for example [15], [16] and [17], and the references
quoted therein. In [16], a class of rational cubic/quadratic
interpolation spline with three local free parameters was
constructed. In [17], a kind of C1 rational cubic/linear
trigonometric interpolation spline possessing two local pa-
rameters was presented. For the univariate splines, by using
the classical tensor product method, we can easily obtain
bi-variate splines with shape parameters through these new
basis functions. However, we cannot get basis functions over
triangular domain with shape parameters by the method of
tensor product. For some practical surfaces modeling, basis
functions over triangular domain are important.

Recently, some new basis functions over triangular domain
have been proposed; see [18], [19], [20], [21], [22], [23],
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[24], [25], [26] and the references quoted therein. In [18],
a class of Bernstein-Bézier basis functions with a shape
parameter over triangular domain was given. In [19], a kind
of Bernstein-like trigonometric basis functions with a shape
parameter over triangular domain was given, which was an
extension of the third-order p-Bézier basis given in [27].
In [20], a new Bézier-like basis over triangular domain with
a shape parameter was constructed, which can be used to
construct some surfaces with three boundaries of ellipse
arcs. In [21], a set of triangular Bézier surfaces with shape
parameters was presented. In [22], a class of triangular
Bernstein-Bézier-like surface with a shape parameter was
given. In [23], a kind of Bernstein-Bézier basis functions
over triangular domain possessing three exponential shape
parameters was constructed, which included the cubic tri-
angular Bernstein-Bézier basis together with Said-Ball basis
as special cases. Recently, in [24], four new trigonometric
Bernstein-like basis functions with two exponential shape
parameters are constructed. In [25], a class of trigonometric
polynomial basis functions over triangular domain with three
shape parameters is proposed. In [26], a practical method of
generating triangular polynomial surface in triangular domain
is presented, and the basic functions of triangular polynomial
surface with three shape parameters over triangular domain
are given.

The purpose of this paper is to present a new class of
trigonometric Bézier basis functions over triangular domain,
which has six shape parameters and is useful for generating
triangular Bézier patch. It improves on the existing schemes
in some ways:

1) The basis functions mentioned in [24], have two pa-
rameters. Other basis functions mentioned in [25], [26],
have only three parameters. And our basis functions
have six parameters in the corresponding triangular
Bézier patch, which have a predictable adjusting role
on the patch;

2) The new class of basis functions is a summary of
the existing basis functions, include some special cases
given in [24], [25], [26], [28], therefore it is more
general in method.

The rest of this paper is organized as follows. Section II
gives the construction and properties of the trigonometric
Bézier basis functions over triangular domain. In Section III,
the definition and properties of the trigonometric Bézier
patch over triangular domain with six shape parameters are
shown. A practical de Casteljau-type algorithm for com-
puting the proposed trigonometric Bézier patch over the
triangular domain is developed. Conclusions are given in
Section IV.
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II. A T-BÉZIER CURVE WITH SHAPE PARAMETERS OVER
A TRIANGULAR DOMAIN

A. Definition of the new base function

Definition 1: For any α, β, γ ∈ [1,+∞), λ ∈ [−α, 1],
µ ∈ [−β, 1], η ∈ [−γ, 1], the following ten functions

B3
3,0,0 = (1− cosu)α(1− λ cosu),

B3
0,3,0 = (1− cos v)β(1− µ cos v),

B3
0,0,3 = (1− cosw)γ(1− η cosw),

B3
2,1,0 = cosw sin v(1− cosu)

×
[
1+cosu−(1−cosu)α−1(1−λ cosu)

cosu

]
,

B3
2,0,1 = cos v sinw(1− cosu)

×
[
1+cosu−(1−cosu)α−1(1−λ cosu)

cosu

]
,

B3
1,2,0 = cosw sinu(1− cos v)

×
[
1+cos v−(1−cos v)β−1(1−µ cos v)

cos v

]
,

B3
0,2,1 = cosu sinw(1− cos v)

×
[
1+cos v−(1−cos v)β−1(1−µ cos v)

cos v

]
,

B3
1,0,2 = cos v sinu(1− cosw)

×
[
1+cosw−(1−cosw)γ−1(1−η cosw)

cosw

]
,

B3
0,1,2 = cosu sin v(1− cosw)

×
[
1+cosw−(1−cosw)γ−1(1−η cosw)

cosw

]
,

B3
1,1,1 = 1− (B3

3,0,0 +B3
0,3,0 +B3

0,0,3 +B3
2,1,0

+B3
2,0,1 +B3

1,2,0 +B3
0,2,1 +B3

1,0,2 +B3
0,1,2),

(1)
are defined as trigonometric Bézier basis functions with
six shape parameters over the triangular domain D ={
(u, v, w)

∣∣u+ v + w = π
2π/2, u ≥ 0, v ≥ 0, w ≥ 0

}
.

Remark 1: When one of the three variables w is taken as
zero, the ten trigonometric Bézier basis functions B3

i,j,k(i+
j + k = 3; i, j, k ≥ 0) will degenerate to the following four
cubic trigonometric Bézier-Type (TB-type for short) basis
functions (notice v = π/2−u) with four shape parameters α,
β, λ and µ given in [28]

T0(t) = (1− sin t)α(1− λ sin t),
T1(t) = 1− sin2t− (1− sin t)α(1− λ sin t),
T2(t) = 1− cos2t− (1− cos t)β(1− µ cos t),
T3(t) = (1− cos t)β(1− µ cos t).

Remark 2: Here, we give some hints on how to construct
the ten trigonometric Bézier basis functions over triangular
domain. Our starting point is to extend the four univariate
trigonometric basis functions given in [28] to ten multi-
variable basis functions over triangular domain such that the
ten multi-variable basis functions can degenerate to the four
univariate trigonometric like basis functions when one of the
three variables is taken as zero and form a partition of unity.

With these thoughts in mind, it is easy to construct the
function B3

3,0,0 (u, v, w;α, β, γ;λ, µ, η) and symmetrically
we can obtain the formulas of B3

0,3,0 (u, v, w;α, β, γ;λ, µ, η)
and B3

0,0,3 (u, v, w;α, β, γ;λ, µ, η). Next, we shall con-
struct the two functions B3

2,1,0 (u, v, w;α, β, γ;λ, µ, η) and
B3

2,0,1 (u, v, w;α, β, γ;λ, µ, η) at the same time. As is shown
in Remark 1, when one of the three variables w is taken
as zero, the function B3

2,1,0 (u, v, w;α, β, γ;λ, µ, η) should
degenerate to the bivariate function T2 (u;α;λ) (notice v =
π/2 − u ) and the function B3

2,0,1 (u, v, w;α, β, γ;λ, µ, η)

should vanish. Analogously, when one of the three vari-
ables v is taken as zero, we can get a similar conclusion
that the function B3

2,1,0 (u, v, w;α, β, γ;λ, µ, η) should van-
ish while the function B3

2,0,1 (u, v, w;α, β, γ;λ, µ, η) should
degenerate to the bivariate function T2 (u;α;λ) (notice
w = π/2 − u ). These give us a hint that the func-
tion T2 (u;α;λ) should be divided into two multi-variable
functions and B3

2,1,0 (u, v, w;α, β, γ;λ, µ, η) is reasonable
to possess the factor of cosw sin v. From these and notice
that cosu = cosw sin v + sinw cos v for u + v + w =
π/2, we can immediately divide T2 (u;α;λ) into a pair
of multi-variable function B3

2,1,0 (u, v, w;α, β, γ;λ, µ, η)
and B3

2,0,1 (u, v, w;α, β, γ;λ, µ, η). Similarly, we can ob-
tain the four functions B3

1,2,0 (u, v, w), B3
0,2,1 (u, v, w),

B3
1,0,2 (u, v, w) and B3

0,1,2 (u, v, w). Finally, considering the
property of partition of unity, it is natural to obtain the
formula of B3

1,1,1 (u, v, w;α, β, γ;λ, µ, η).
When u = π/2 or v = π/2 or w = π/2, the trigonometric

Bézier basis functions B3
i,j,k(i+j+k = 3; i, j, k ≥ 0) degen-

erate to Ti(i = 0, 1, 2, 3). So B3
i,j,k(i+j+k = 3; i, j, k ≥ 0)

can be seen as a generalization of Ti(i = 0, 1, 2, 3) over
triangular domain given in [28].

Remark 3: For λ = µ = η = 0, the ten basis functions
given in (1) will return to the ten basis functions with three
exponential shape parameters given in [24]. And for any α =
β = γ = 2, it is easy to check that the ten functions (1) will
return to the ten basis functions with three shape parameter
given in [25]. Moreover, for any α = β = γ = 1, it is easy
to check that the ten functions (1) will return to the ten basis
functions with three shape parameters given in [26].

Before further discussion, we provide the following lem-
ma, which is useful in the following discussion and proved
in [25].

Lemma 1: For u+ v + w = π
2 , we have

1−
(
sin2u+ sin2v + sin2w

)
= 2 sinu sin v sinw. (2)

B. Properties of the new basis function

From the definition of the basis functions with shape
parameters over the triangular domain, we can obtain the
following important properties of the basis functions.

Theorem 1: The basis functions with shape parameters
(1) have the following properties:

(A) Nonnegativity: B3
i,j,k(i+ j + k = 3; i, j, k ≥ 0) ≥ 0.

(B) Partition of unity:
∑

B3
i,j,k(i+ j + k = 3; i, j, k ≥ 0)=1.

(C) Symmetry: For all i+ j + k = 3, i, j, k ≥ 0, we have

B3
i,j,k (u, v, w;α, β, γ;λ, µ, η)

= B3
j,i,k (u, v, w;α, β, γ;λ, µ, η) ,

= B3
j,k,i (u, v, w;α, β, γ;λ, µ, η) ,

= B3
i,k,j (u, v, w;α, β, γ;λ, µ, η) ,

= B3
k,i,j (u, v, w;α, β, γ;λ, µ, η) ,

= B3
k,j,i (u, v, w;α, β, γ;λ, µ, η) .

(D) Boundary properties: When one of the three variables
u,v,w is set to be π/2, then the basis functions with
shape parameters B3

i,j,k(i + j + k = 3; i, j, k ≥ 0) will
degenerate to Ti(i = 0, 1, 2, 3) given in Remark 1.

(E) Linear independence:
{
B3

i,j,k(i+ j + k = 3; i, j, k ≥ 0)
}

are linearly independent.
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Proof: We shall prove (A) and (E). The remaining prop-
erties can be proved easily.
(A) Apparently, for any α, β, γ ∈ [1,+∞), λ ∈ [−α, 1],
µ ∈ [−β, 1], η ∈ [−γ, 1], we have B3

i,j,k(i + j + k =
3; i, j, k ≥ 0; i, j, k ̸= 1) ≥ 0. Furthermore, for B3

1,1,1,
using Lemma 1, we have

B3
1,1,1 = 1−

∑
i+j+k=3
i·j·k ̸=1

B3
i,j,k

= 1−
(
sin2u+ sin2v + sin2w

)
= 2 sinu sin v sinw ≥ 0.

(E) For any α, β, γ ∈ [1,+∞), λ ∈ [−α, 1], µ ∈
[−β, 1], ζi,j,k ∈ R, (i+ j + k = 3, i, j, k ∈ N), we consider
a linear combination∑

i+j+k=3
i,j,k∈N

ζi,j,kB
3
i,j,k = 0.

Let w = 0, we have
3∑

i=0

ζi,3−i,0Ti (t) = 0. (3)

Differentiating with respect to the variable v on both sides,
we have

3∑
i=0

ζi,3−i,0Ti
′ (t) = 0. (4)

For v = 0, from (3) and (4), we get the following linear
system of equations with respect to ζ0,3,0 and ζ1,2,0{

ζ0,3,0 = 0,
(α+ λ)(ζ1,2,0 − ζ0,3,0) = 0.

Thus, we have ζ0,3,0 = ζ1,2,0 = 0. For t = π/2 from (3)
and (4), we have ζ3,0,0 = ζ2,1,0 = 0. Similarly, ζi,0,3−i =
ζ0,i,3−i = 0 for i = 0, 1, 2, 3. Finally, ζ1,1,1 = 0. These
imply the theorem.
Fig. 1 shows the trigonometric Bézier basis function-

s B3
i,j,k(i + j + k = 3; i, j, k ≥ 0) over triangular domain,

where the six shape parameters are α = β = γ = 2, λ =
µ = η = −1.

III. A TRIANGULAR BÉZIER PATCH WITH SIX SHAPE
PARAMETERS OVER TRIANGULAR DOMAIN

A. Definition and properties of triangular Bézier patches

Definition 2: For any α, β, γ ∈ [1,+∞), λ ∈
[−α, 1], µ ∈ [−β, 1], η ∈ [−γ, 1], over triangular domain
D =

{
(u, v, w)

∣∣u+ v + w = π
2 , u ≥ 0, v ≥ 0, w ≥ 0

}
, the

control points Pi,j,k ∈ R3, i + j + k = 3, i ≥ 0, j ≥ 0,
k ≥ 0, we call the patch

R(u, v, w) =
∑

i+j+k=3

B3
i,j,kPi,j,k (5)

be the triangular Bézier patch with six shape parameters over
triangular domain.

According to the properties of the basis functions with
shape parameters given in Theorem 1, some properties of
the corresponding triangular Bézier patch given in (5) can
be obtained as follows:

0
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0
1

0
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0
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0
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(e) α = β = γ = 2, λ = µ = η =
−1

0
1

0
1

0

0.5
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(f) α = β = γ = 2, λ = µ = η =
−1

0
1

0
1

0

0.5

1

B
0,0,3
3

(g) α = β = γ = 2, λ = µ = η =
−1

0
1

0
1

0

0.5

1

B
1,0,2
3

(h) α = β = γ = 2, λ = µ = η =
−1

0
1

0
1

0

0.5

1

B
0,1,2
3

(i) α = β = γ = 2, λ = µ = η =
−1

0
1

0
1

0

0.5

1

B
1,1,1
3

(j) α = β = γ = 2, λ = µ = η =
−1

Fig. 1. The plots of trigonometric Bézier basis functions over trigonometric
domain.

(A) Affine invariance and convex hull property. Since basis
functions with shape parameters (1) have the properties
of the partition of unity and nonnegativity, these imply
that the corresponding triangular Bézier patch (5) has
affine invariance and convex hull property.

(B) End point interpolation property. Through direct com-
putation, we can get that R(π/2, 0, 0) = P3,0,0,
R(0, π/2, 0) = P0,3,0, R(0, 0, π/2) = P0,0,3.
These indicate that the triangular Bézier patch interpo-
lates at the three end points.

(C) End point tangent property. Let w = π/2 − u − v, we
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Fig. 2. Schematic diagram of Bézier patch control points and control grids
over triangular domain.

have
∂R(u,v,w)

∂u

∣∣∣
(π/2,0,0)

= (λ+ α)P3,0,0 − (λ+ 1)P2,0,1

+ (1− α)P1,1,1,
∂R(u,v,w)

∂v

∣∣∣
(π/2,0,0)

= (λ+ 1) (P2,1,0 − P2,0,1) ,

∂R(u,v,w)
∂u

∣∣∣
(0,π/2,0)

= (µ+ 1) (P1,2,0 − P0,2,1) ,

∂R(u,v,w)
∂v

∣∣∣
(0,π/2,0)

= (µ+ β)P0,3,0 − (µ+ 1)P0,2,1

+ (1− β)P1,1,1,
∂R(u,v,w)

∂u

∣∣∣
(0,0,π/2)

= (η + 1)P1,0,2 − (η + γ)P0,0,3

+ (γ − 1)P1,1,1,
∂R(u,v,w)

∂v

∣∣∣
(0,0,π/2)

= (η + 1)P0,1,2 − (η + γ)P0,0,3

+ (γ − 1)P1,1,1.

These indicate that the tangent plane at the three end
points (π/2, 0, 0), (0, π/2, 0), (0, 0, π/2) are the three
planes spanned by the control points P3,0,0, P2,1,0,
P2,0,1, P0,3,0, P1,2,0, P0,2,1, P0,0,3, P1,0,2, P0,1,2 and
P1,1,1 respectively.

(D) Boundary property. For w = 0, R(t, s, w) is just the
following cubic T-Bézier curve given in [28] with four
shape parameters α, β, λ and µ .

R(u, π/2− u, 0)=
3∑

i=0

Pi,3−i,0Ti(u;λ, µ) (6)

Similarly, R(0, v, π/2 − v) and R(π/2 − w, 0, w) are
also T-Bézier curve with shape parameters β, γ, µ, η
and α, γ, λ, η respectively. For α = β = 1, λ = µ =
0, the T-Bézier curve (6) can represent exactly elliptic;
For α = β = 1, λ = µ = 1, b − a>0, the T-Bézier
curve (6) can represent exactly parabola arcs; For α =
β = 2, λ = µ = 0, the T-Bézier curve (6) represent
a quarter of elliptic arc; For α = β = 2, λ = µ = 2,
b − a>0, the T-Bézier curve (6) represent a segment
of the parabola; see [28]. These imply that the three
boundaries of trigonometric Bézier patch (5) can be arcs
of ellipse or parabola, respectively.

(E) Shape adjustable property. The control points of
the trigonometric Bézier patch are P (3, 0, 0) =
(0, 0, 0), P (0, 3, 0) = (−2,−2, 0), P (0, 0, 3) =
(2,−2, 0), P (2, 1, 0) = (−0.5,−0.5, 1), P (2, 0, 1) =
(−0.5, 0.5, 1), P (1, 2, 0) =

(−1.5,−1.5, 1), P (1, 0, 2) =
(1.5,−1.5, 1), P (0, 2, 1) = (−1,−2, 1), P (0, 1, 2) =
(1,−2, 1), P (1, 1, 1) = (0,−1.2, 1.5). Fig. 2 shows
the schematic diagram of Bézier patch control points
and control grids over triangular domain. Without
changing the control points, we can adjust the shape of
the obtained trigonometric Bézier patch conveniently
using the six shape parameters λ, µ, η, α, β and γ.
As the six shape parameters increase at the same time,
the trigonometric Bézier patch will be made close to
the control net. From the boundary property of the
trigonometric Bézier patch, we can see that the six
shape parameters λ, µ, η, α, β and γ have nothing to
do with the boundary curves R(0, v, w), R(u, 0, w) and
R(u, v, 0) respectively. It is equivalent that changing the
value of single one shape parameter, one corresponding
boundary curve will not change. Moreover, from (5),
differentiating with respect to the shape parameter λ,
we have

∂R(u,v,w)
∂λ

= (1− cosu)α cosu(P1,1,1 − P3,0,0)
+ cosw sin v(1− cosu)

α
(P2,1,0 − P1,1,1)

+cosv sinw((1− cosu)
α
(P2,0,1 − P1,1,1).

(7)

Therefore, there is no relationship between ∂R(u,v,w)
∂λ

and λ. These imply that for the fixed control points
and the given value (u, v, w) ∈ D, changing single one
shape parameter will make the corresponding point on
the trigonometric Bézier surface patch (5) move linearly
in the direction given by (7). The shape parameters µ, η,
α, β and γ have the similar effect on the trigonometric
Bézier surface patch.

Fig. 3 shows the trigonometric Bézier patches and the
effect on the patches by altering the values of the shape
parameters under the same control points.

B. De Casteljau-type Algorithm

The classical de Casteljau algorithm is a stable and effi-
cient process for computing the triangular Bézier patch. Now,
we want to develop a practical de Casteljau-type algorithm
for computing the proposed the triangular Bézier surface
given in (5). For this purpose, for any (u, v, w) ∈ D, let

f1(u, v, w) :

=
sinu cosw(sin2u+sin2v+sin2w)

cosw(sinu+sin v)(sin2u+sin2v+sin2w)+sinw(sin2u+sin2v)
,

f2(u, v, w) :

=
sin v cosw(sin2u+sin2v+sin2w)

cosw(sinu+sin v)(sin2u+sin2v+sin2w)+sinw(sin2u+sin2v)
,

f3(u, v, w) :

=
sinw(sin2u+sin2v)

cosw(sinu+sin v)(sin2u+sin2v+sin2w)+sinw(sin2u+sin2v)
,

g1(u, v, w) := (1− cosu)
(
sin2u+ sin2v + sin2w

)
,

g2(u, v, w) := sin v cosw
(
sin2u+ sin2v + sin2w

)
+ sinu sin v sinw,

g3(u, v, w) := cos v sinw
(
sin2u+ sin2v + sin2w

)
+ sinu sin v sinw,
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Fig. 3. Trigonometric Bézier patches with different shape parameters

and

P 1
2,0,0 := (1+cosu)α−2(1−λ cosu)

1+cosu P3,0,0

+
[1+cosu−(1+cosu)α−2(1−λ cosu)] sin v cosw

(1+cosu) cosu P2,1,0

+
[1+cosu−(1+cosu)α−2(1−λ cosu)] sinw cos v

(1+cosu) cosu P2,0,1,

P 1
0,2,0 :=

[1+cos v−(1+cos v)β−2(1−µ cos v)] sinu cosw

(1+cos v) cos v P1,2,0

+ (1+cos v)β−2(1−µ cos v)
1+cos v P0,3,0

+
[1+cos v−(1+cos v)β−2(1−µ cos v)] sinw cosu

(1+cos v) cos v P2,0,1,

P 1
0,0,2 :=

[1+cosw−(1+cosw)γ−2(1−η cosw)] sinu cos v

(1+cosw) cosw P1,0,2

+
[1+cosw−(1+cosw)γ−2(1−η cosw)] sin v cosu

(1+cosw) cosw P0,1,2

+ (1+cosw)γ−2(1−η cosw)
1+cosw P0,0,3,

P 1
1,1,0 := f1 (u, v, w)P2,1,0 + f2 (u, v, w)P1,2,0

+ f3 (u, v, w)P1,1,1,
P 1
1,0,1 := f1 (u, v, w)P2,0,1

+ f3 (u, v, w)P1,1,1 + f2 (u, v, w)P1,0,2,
P 1
0,1,1 := f3 (u, v, w)P1,1,1 + f1 (u, v, w)P0,2,1

+ f2 (u, v, w)P0,1,2.

Then, we can rewrite the expression of the triangular

Bézier patch as follows:

R(u, v, w)

= 1−cos2u
sin2u+sin2v+sin2w

×
[
g1 (u, v, w)P

1
2,0,0 + g2 (u, v, w)P

1
1,1,0

+g3 (u, v, w)P
1
1,0,1

]
+ 1−cos2v

sin2u+sin2v+sin2w

×
[
g2 (u, v, w)P

1
1,1,0 + g1 (u, v, w)P

1
0,2,0

+g3 (u, v, w)P
1
0,1,1

]
+ 1−cos2w

sin2u+sin2v+sin2w

×
[
g3 (u, v, w)P

1
1,0,1 + g2 (u, v, w)P

1
0,1,1

+g1 (u, v, w)P
1
0,0,2

]
.

(8)

Furthermore, by setting

P 2
1,0,0 := g1 (u, v, w)P

1
2,0,0 + g2 (u, v, w)P

1
1,1,0

+ g3 (u, v, w)P
1
1,0,1,

P 2
0,1,0 := g2 (v, u, w)P

1
1,1,0 + g1 (v, u, w)P

1
0,2,0

+ g3 (v, u, w)P
1
0,1,1,

P 2
0,1,0 := g3 (v, u, w)P

1
1,0,1 + g2 (v, u, w)P

1
0,1,1

+ g1 (v, u, w)P
1
0,0,2,

we have

R(u, v, w) = 1−cos2u
sin2u+sin2v+sin2w

P 2
1,0,0

+ 1−cos2v
sin2u+sin2v+sin2w

P 2
0,1,0

+ 1−cos2w
sin2u+sin2v+sin2w

P 2
0,0,1

:= P 3
0,0,0.

(9)

For u+v+w = π/2, it is easy to check that f1(u, v, w)+
f2(u, v, w)+f3(u, v, w) = 1 and g1(u, v, w)+g2(u, v, w)+
g3(u, v, w) = 1 (by using Lemma 1). Thus Eqs. (8) and
(9) indicate a de casteljau-type algorithm for computing the
proposed triangular Bézier patch given in (5).

C. Join two triangular Bézier surfaces

In practical surface construction, we often need to join
several patches together to generate surfaces that are too
complex to handle with a single patch. During the join of the
triangular Bézier patches, we need to control the smoothness
of the connecting surface. Let two triangular Bézier patches
be

R1(u, v, w) =
∑

i+j+k=3

B3
i,j,kPi,j,k,

and
R2(u, v, w) =

∑
i+j+k=3

B3
i,j,kQi,j,k.

Apparently, if the control points satisfy

P0,j,k = Q0,j,k, j, k ∈ N, j + k = 3, (10)

the two patches join along a common boundary curve:
R1 (0, v, w)=R2 (0, v, w) , v + w = π/2. Thus, the two
patches clearly form a surface with positional continuity, or a
surface with C0 continuity. For the common boundary curve
R1 (0, v, π/2− v) differentiating with respect to v, we have

dR1(0,v,π/2−v)
dv

= sin v(1− cos v)
β−1

[β + µ− µ (β + 1) cos v]
× (P0,0,3 − P0,2,1) + 2 sin v cos v (P0,2,1 − P0,1,2)

+ cos v(1− sin v)
γ−1

[γ + η − η (γ + 1) sin v]
× (P0,1,2 − P0,0,3) .

(11)
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For R1 (u, v, π/2− u− v) and R2 (u, v, π/2− u− v), by
differentiating with respect to u respectively, we get

dR1(u,v,π/2−u−v)
du

∣∣∣
u=0

= sin v(1− cos v)
β−1

[β + µ− µ (β + 1) cos v]
× (P0,0,3 − P0,2,1) + 2 sin v cos v × (P0,2,1 − P0,1,2)

+ cos v(1− sin v)
γ−1

[γ + η − η (γ + 1) sin v]
× (P0,1,2 − P0,0,3) ,

(12)
dR2(u,v,π/2−u−v)

du

∣∣∣
u=0

= sin v(1− cos v)
β−1

[β + µ− µ (β + 1) cos v]
× (Q0,0,3 −Q0,2,1) + 2 sin v cos v × (Q0,2,1 −Q0,1,2)

+ cos v(1− sin v)
γ−1

[γ + η − η (γ + 1) sin v]
× (Q0,1,2 −Q0,0,3) .

(13)
The condition for smooth joining is that the vectors defined

by Eq. (11) through (13) are coplanar for any value of v,
see [29], which can be expressed as follows:

dR2(u,v,π/2−u−v)
du

∣∣∣
u=0

= ϕdR1(0,v,π/2−v)
dv + φ dR1(u,v,π/2−u−v)

du

∣∣∣
u=0

,

where ϕ and φ both are constants. From these, we can obtain
a rule Q1,2,0 −Q0,2,1 = ϕ (P0,3,0 − P0,2,1) + φ (P1,2,0 − P0,2,1) ,

Q1,1,1 −Q0,1,2 = ϕ (P0,2,1 − P0,1,2) + φ (P1,1,1 − P0,1,2) ,
Q1,0,2 −Q0,0,3 = ϕ (P0,1,2 − P0,0,3) + φ (P1,0,2 − P0,0,3) .

(14)
Summarizing the above discussion, we can conclude the

following theorem.
Theorem 2: For αi, β, γ ∈ [1,+∞), λ ∈ [−α, 1], µ ∈

[−β, 1], η ∈ [−γ, 1], i = 1, 2, the surface connected
R1(u, v, w) with R2(u, v, w) is continuous, if the control
points satisfy the conditions (10) and (14).

From Theorem 2, we can see that the conditions for
smooth joining two triangular Bézier patches are analogous
to the conditions for joining two triangular Bernstein-Bézier
patches; see [29]. However, we can adjust the shape of the
obtained G1 continuous surface conveniently using the shape
parameters in the triangular Bézier patches.

Fig. 4 shows the G1 continuous surface generated by
smooth joining triangular Bézier patches with different shape
parameters. The parameters take fixed value ϕ = 1 and φ =
−1.

IV. CONCLUSION

The new proposed trigonometric Bézier basis functions
possessing six shape parameters over triangular domain are
useful for constructing surfaces in CAGD, which include
some special cases given in [24], [25], [26], [28]. They
have good properties such as nonnegativity, partition of unity,
symmetry, linear independence and so on. With the new basis
functions, we construct the trigonometric Bézier patch over
triangular domain, which has some properties analogous to
that of the triangular Bernstein-Bézier cubic patch. In order to
computer the trigonometric Bézier patch, we propose a new
practical de Casteljau-type algorithm. In the end of the paper,
we show the G1 continuous smooth surfaces joining two
trigonometric Bézier patches with different shape parameters,
which have practical significance in the surface construction.

−1
0

1

−2−10
0

0.5

1

α
1
=1.5,β=γ=2,α

2
=2,λ=η=µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=2,β=γ=2,α

2
=1,λ=η=µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=2,β=γ=1.5,α

2
=2.5,λ=η=µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=3,β=γ=1.5,α

2
=2,λ=η=µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=2,β=γ=2,α

2
=2,λ=η=µ=−1

−1
0

1

−2−10
0

0.5

1

α
1
=2,β=γ=α

2
=3,λ=η=−2,µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=2,β=γ=α

2
=3,λ=η=−2,µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=3,β=γ=3,α

2
=3,λ=η=−1,µ=−0.5

−1
0

1

−2−10
0

0.5

1

α
1
=3,β=γ=3,α

2
=3,λ=η=µ=−1

Fig. 4. G1 continuous surfaces joining two trigonometric Bézier patches
with different shape parameters

There are still some problems worthy of further study, such
as the approximation power of the base functions. In practice,
the extension of the given trigonometric polynomial basis
over the triangular domain to higher degrees and subdivision
algorithm for the proposed trigonometric polynomial patch
are important considerations. These will be our future work.
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