A New Single-valued Neutrosophic Distance for TOPSIS, MABAC and New Similarity Measure in Multi-Attribute Decision-Making

Dongsheng Xu, Member, IAENG, Huaxiang Xian, Member, IAENG, Xiangxiang Cui, Member, IAENG, and Yanran Hong, Member, IAENG

Abstract—The aim of this paper is to define a new distance measure and apply it in three decision-making methods. First of all, we use single-valued neutrosophic numbers to describe the decision-making information, and proposes a new single-valued neutrosophic distance based on Hamming distance and Hausdorff distance. According to this new distance, a new similarity measure is initiated. Then we introduce three methods, which are TOPSIS, MABAC and similarity measure, to solve multi-attribute decision-making problem. Among these methods, the combined weight is obtained by both objective weight and subjective weight. After that, a numerical example is applied to figure out an ideal solution. Finally, we compare this result with other papers and discuss the effectiveness and reasonability.

Index Terms—Single-valued Neutrosophic Number; TOPSIS; MABAC; Similarity Measure; Multi-Attribute Decision-Making.

I. INTRODUCTION

Decision-making means selecting the best alternatives from the feasible alternatives. With the development of science, decision-making extends from the single attribute to multiple attributes. In order to make a proper decision-making and apply decision-making in the actual situation, Wang et al. [1] proposed a single-valued neutrosophic set (SVNS) and also introduced the set-theoretic operators of SVNSs. Sodenkamp et al. [2] developed a novel approach that utilizes single-valued neutrosophic sets (NSs) to process independent multi-source uncertainty measures affecting the reliability of experts assessments in group multi-criteria decision-making (GMCDM) problems. Abdelbasset et al. [3] modeled the imperfections of various data in smart cities and then proposed a general framework for processing imperfect and incomplete information through using SVNS and rough set theories. On the other hand, many multi-attribute decision-making methods based on SVNS have been put forward for solving MAGDM problems.

In order to make a proper decision-making, Hwang and Yoon [4] originally introduced the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method for selecting the appropriate machine. The idea of this method is that the best alternative should have shortest distance from the positive-ideal solution and the longest distance from the negative-ideal solution. And ranking the closeness coefficient value to choose the best alternative, that is bigger coefficient value means better solution. Furthermore, Chen [5] proposed a linguistic decision-making method to solve the multiple criteria decision-making problem under fuzzy environment by measuring the distance between two triangular fuzzy numbers. Tsaur et al. [6] set up a process to identify the most important attributes of customer service quality and to obtain customer evaluations of the three airlines on this basis. Shih et al. [7] proposed a group TOPSIS model for decision-making without involving the work of weight elicitation in their study. The weights in their study were given by decision makers. In addition, consensus and other group interactions were not discussed in their study. Opricovic and Tzeng [8] did a comparative analysis of VIKOR and TOPSIS, and the two methods use different normalizations and different aggregating functions for ranking. However, the tradeoffs involved in normalization were not considered when obtaining the aggregation function. Biswas et al. [9] devoted to present a new TOPSIS-based approach for multiple attribute group decision making (MAGDM) under single-valued neutrosophic environment. Xu et al. [10] used the standard Euclidean distance and the expectation of neutrosophic number to measure the correlation between attributes, and defined a novel TODIM method to choose the best for investment. Chen et al. [11] presented an ordered weighted averaging distance in TOPSIS method for green supplier selection under the single-valued neutrosophic linguistic environment. Yang et al. [12] proposed a novel operational rules of Interval Neutrosophic Linguistic Sets based on Einstein operations under interval neutrosophic linguistic environment, to sort the alternatives in the MCDM problem. Garg et al. [13] presented a new method to rank the alternatives evaluated under possibility linguistic single-valued neutrosophic set domain by the TOPSIS method. Aires et al. [14] conducted an analysis to define the major cases of ranking inversion in the literature and identify the main gaps associated with the TOPSIS method. It seems that the classical TOPSIS is a good method for solving the MADM problem, but there are many emerging methods to be put forward in recent years. Pamuca and Cirovic [15] initiated a Multi-Attributive Border Approximation area Comparison (MABAC) method to solve MCDM problem. Peng and Yang [16], [17] proposed the Pythagorean fuzzy Choquet integral average operator for solving MAGDM. Xue et al. [18] proposed a MABAC method to solve MAGDM, and used the Pythagorean fuzzy Choquet integral average operator to solve MAGDM. Xue et al. [18] proposed a MABAC method to solve MAGDM.
method for material selection and used the extended group decision method to sort the alternative materials. Sun et al. [19] developed a project-based MABAC method with fuzzy language item sets and extended this method into hesitant fuzzy linguistic environment. Peng and Dai [20] proposed a new definition of single-valued neutrosophic distance measure, which can reduce information loss and keep more original information. In order to avoid the disadvantages of impractical operations. Yang et al. [21] extended the Normalized Weighted Bonferroni Mean operator to adapt to the single-valued neutrosophic environment, and analyzed some ideal properties of the new operator. Ji et al. [22] established the fuzzy outsourcing supplier selection method. The method of outsourcing supplier selection uses extended MABAC to handle single-valued neutrosophic linguistic numbers (SVNLNs). Jia et al. [23] proposed a new group information aggregation tool and extended multi-criteria group decision making (MCGDM) model based on intuitionistic fuzzy rough number. Different from the above two, a new method for solving the neutrosophic decision-making problem was proposed by Ye in 2014. He [24] defined similarity measures based on a new interval neutrosophic distance, which can be used in practical scientific and engineering applications. Meanwhile, Ye [25] proposed cross entropy measures of SVNS for decision making. Liu [26] extended Archimedean t-conorm and c-norm to SVNNs. Ye et al. [27] proposed SVNS similarity measures based on tangent function, and developed a multi-cycle medical diagnosis method by using the similarity measure. Ye [28] introduced the concept of simplified neutrosophic set and defined the operational laws of SNS. But there was a mistake with the similarity degree. In order to conquer these shortcomings, Wang et al. [29] defined a improved similarity measure. Then, Peng and Dai [20] proposed a new axiomatic distance measure and similarity measure in the form of SVNN. Aghabozorgi et al. [30] proposed a new similarity measure between two vertices of the network, which is relying on structural units of online networks named motifs. Redrickson et al. [31] extended the similarity measure of medical event sequences using user-defined event weights.

The rest of this article is as follows: In Section 2, single-valued neutrosophic set are introduced. In Section 3, we define a new distance and a new similarity measure. In section 4, we introduce three methods to solve multi-attribute decision-making problems. In Section 5, A numerical example and a comparison analysis are shown to elaborate the proposed methods. The conclusions are drawn in section 6.

II. PRELIMINARIES OF NEUTROSOPHIC

This section gives a brief overview of concepts and definitions of neutrosophic set (NS), and single-valued neutrosophic set (SVNS).

Definition 1: [32] Let X be a space of points (objects), with a class of elements in X denoted by x. A neutrosophic set A in X is summarized by a truth-membership function \(T_A(x) \), an indeterminacy-membership function \(I_A(x) \), and a falsity-membership function \(F_A(x) \). The functions \(T_A(x), I_A(x), F_A(x) \) are real standard or non-standard subsets of \([0, 1]^3\). That is \(T_A(x) : X \rightarrow [0, 1], I_A(x) : X \rightarrow [0, 1], F_A(x) : X \rightarrow [0, 1] \).

There is restriction on the sum of \(T_A(x), I_A(x) \) and \(F_A(x) \), so \(0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3 \). As mentioned above, it is hard to apply the neutrosophic set to solve some real problems. Hence, Wang et al. [1] presented a single-valued neutrosophic set (SVNS).

Definition 2: [1] Let X be a space of points (objects), with a class of elements in X denoted by x. A single-valued neutrosophic set N in X is summarized by a truth-membership function \(T_N(x) \), an indeterminacy-membership function \(I_N(x) \), and a falsity-membership function \(F_N(x) \). Then a SVNS N can be denoted as follows:

\[
N = \{ (x, T_N(x), I_N(x), F_N(x)) : x \in X \}
\]

where \(T_N(x), I_N(x), F_N(x) \in [0, 1] \) for all \(x \in X \). Meanwhile, the sum of \(T_N(x), I_N(x), F_N(x) \) fulfills the condition

\[
0 \leq T_N(x) + I_N(x) + F_N(x) \leq 3.
\]

Definition 3: [1] Let \(x = (T_x, I_x, F_x) \) and \(y = (T_y, I_y, F_y) \) be two SVNNs, then operations can be defined as follows:

1. \(x^e = (T_x - 1, I_x, T_x) \);
2. \(x + y = (T_x + T_y - T_x, T_y, I_x + I_y, F_x + F_y) \);
3. \(x \circ y = (T_x + T_y - I_x + I_y, I_x + I_y, F_x + F_y - F_x + F_y) \);
4. \(\lambda x = \frac{1}{1 - |I_x|^\lambda}, I_x, (F_x)^\lambda, \lambda > 0 \);
5. \(x^N = (T_x^N, 1 - (1 - I_x)^N, 1 - (1 - F_x)^N), \lambda > 0 \).

Definition 4: [1] For two SVNNs \(x = (T_x, I_x, F_x) \) and \(y = (T_y, I_y, F_y) \), if \(x \leq y \) then \(T_x \leq T_y, I_x \geq I_y, F_x \geq F_y \).

Definition 5: [24] Let \(x \) and \(y \) be any two SVNNs, then the Hamming distance between \(x \) and \(y \) can be defined as follows:

\[
d_{Ha}(x, y) = \frac{1}{3} \left(|T_x - T_y| + |I_x - I_y| + |F_x - F_y| \right)
\]

Definition 6: [24] Let \(x \) and \(y \) be any two SVNNs, then the Euclidean distance between \(x \) and \(y \) can be defined as follows:

\[
d_E(x, y) = \sqrt{\frac{1}{3} \left((T_x - T_y)^2 + (I_x - I_y)^2 + (F_x - F_y)^2 \right)}
\]

Definition 7: [10] Let \(x \) and \(y \) be any two SVNNs, we can get normalized generalized distance between \(x \) and \(y \) as

\[
D_{xy}(x, y) = \frac{1}{3} \left(|T_x - T_y|^\lambda + |I_x - I_y|^\lambda + |F_x - F_y|^\lambda \right)^{\frac{1}{\lambda}}
\]

with the condition of \(\lambda > 0 \). When \(\lambda = 1 \), it is the Hamming distance; when \(\lambda = 2 \), it is the Euclidean distance.

Definition 8: [17] Let \(x = (T_x, I_x, F_x) \) be a SVNN, then the proposed score function \(S_{\alpha, \beta}(x) \) is defined as follows:

\[
S_{\alpha, \beta}(x) = \frac{2}{3} + \frac{T_x}{3} - \alpha \frac{I_x}{3} - \beta \frac{F_x}{3}
\]

Definition 9: Let \(x = (T_x, I_x, F_x) \) be a SVNN, then the proposed accuracy function \(H(x) \) is defined as follows:

\[
H(x) = T_x - F_x
\]

Definition 10: Let \(x, y \) be any two SVNNs, If \(S_{\alpha, \beta}(x) < S_{\alpha, \beta}(y), x < y \), when \(S_{\alpha, \beta}(x) = S_{\alpha, \beta}(y) \); If \(H(x) = H(y) \) and then \(x = y \), else if \(H(x) < H(y) \) and then \(x < y \).
III. A NEW SVNN DISTANCE AND SIMILARITY MEASURE

Definition 11: Let \(x \) and \(y \) be any two SVNNs, then the normalized single-valued neutrosophic Hausdorff distance between \(x \) and \(y \) is

\[
D_{Hd} = \max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\}
\]
(7)

Let \(x, y \) and \(z \) be any three SVNNs, the above defined the weighted single-valued neutrosophic Hausdorff distance among \(x, y \) and \(z \) satisfies the following properties (1)–(4):

(1) \(D_{Hd}(x, y) \geq 0 \);
(2) \(D_{Hd}(x, y) = 0 \) if and only if \(x = y \);
(3) \(D_{Hd}(x, y) = D_{Hd}(y, x) \);
(4) If \(x \leq y \leq z \), then \(D_{Hd}(x, z) \geq D_{Hd}(x, y) \) and \(D_{Hd}(x, z) \geq D_{Hd}(y, z) \).

Proof: In order for \(D_{Hd} \) to be qualified as a reasonable distance measure for SVNSs, it must meet the (1)–(4) of axiomatic requirements.

For any three SVNNs \(x = (T_x, I_x, F_x), y = (T_y, I_y, F_y) \) and \(z = (T_z, I_z, F_z) \).

(1) \(|T_x - T_y| \geq 0, |I_x - I_y| \geq 0, |F_x - F_y| \geq 0 \) was established. So \(\max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\} \geq 0 \).

(2) When \(D_{Hd}(x, y) = 0 \). We can get that \(\max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\} = 0 \), then \(|T_x - T_y| = 0, |I_x - I_y| = 0, |F_x - F_y| = 0 \), that is \(x = y \).

On the other hand, if \(x = y \), it is obvious that \(D_{Hd}(x, y) = 0 \).

(3) \(\max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\} = \max \{|T_y - T_x|, |I_y - I_x|, |F_y - F_x|\} \) because of \(|T_x - T_y| = |T_y - T_x|, |I_x - I_y| = |I_y - I_x|, |F_x - F_y| = |F_y - F_x| \).

(4) If \(x \leq y \leq z \), then \(T_x \leq T_y \leq T_z, I_x \geq I_y \geq I_z \) and \(F_x \geq F_y \geq F_z \), hence \(|T_x - T_y| \geq |T_y - T_z|, |I_x - I_y| \geq |I_y - I_z|, |F_x - F_y| \geq |F_y - F_z| \), so \(\max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\} \geq \max \{|T_y - T_z|, |I_y - I_z|, |F_y - F_z|\} \).

Consequently \(D_{Hd}(x, z) \geq D_{Hd}(x, y) \).

Similarly, \(D_{Hd}(x, z) \geq D_{Hd}(y, z) \). This completes the proof.

Definition 12: The normalized generalized single-valued neutrosophic Hausdorff distance between \(x \) and \(y \) is

\[
D_{gHd} = \max \{|T_x - T_y|^\lambda, |I_x - I_y|^\lambda, |F_x - F_y|^\lambda\} \frac{1}{\lambda}
\]
(8)

\(\mu > 0 \), when \(\mu = 1, 2, \ldots \), it is the Hausdorff distance. We get \(D_{Hd} = D_{gHd} \) with any two SVNNs.

Definition 13: The weighted parameter single-valued neutrosophic Hausdorff distance between \(x \) and \(y \) is

\[
D_{wHd}(x, y) = vD_{Hd}(x, y) + (1 - v)D_{Hd}(x, y)
\]

\[
= \frac{1}{\lambda} \left(|T_x - T_y|^\lambda + |I_x - I_y|^\lambda + |F_x - F_y|^\lambda \right) \frac{1}{\lambda}
+ (1 - v) \max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\}
\]
(9)

where \(\lambda > 0 \), and \(0 \leq v \leq 1 \).

It is easy to prove that the definition is valid, and the proof process is omitted. If we set \(\lambda = 1 \), then we can get the weighted parameter from the Hamming and Hausdorff single-valued distance which is described as follows:

\[
D_{wHH}(x, y) = vD_{Ha}(x, y) + (1 - v)D_{Hd}(x, y)
\]

\[
= \frac{1}{\lambda} \left(|T_x - T_y|^\lambda + |I_x - I_y|^\lambda + |F_x - F_y|^\lambda \right) \frac{1}{\lambda}
+ (1 - v) \max \{|T_x - T_y|, |I_x - I_y|, |F_x - F_y|\}
\]
(10)
1) TOPSIS: Step 1. Identify the alternatives and attributes, and obtain the single-valued neutrosophic matrix
\[R = (r_{ij})_{m \times n} = \left(T_{ij}, I_{ij}, F_{ij} \right)_{m \times n} \quad (i = 1, 2, \cdots, m; j = 1, 2, \cdots, n). \]
Step 2. Normalize the single-valued neutrosophic decision matrix
\[\tilde{R} = (\tilde{r}_{ij})_{m \times n} = \left(T_{ij}, I_{ij}, F_{ij} \right)_{m \times n}. \]
Step 3. Compute the weight of each attribute
\[\tilde{w}_j = \frac{d_+ - d_-}{d_+ - d_-}, \quad i = 1, 2, \cdots, m \]
Step 4. Compute the weight of each alternative by Eq. (19).
\[C_i = \frac{d_+ - d_i}{d_+ - d_+}, \quad i = 1, 2, \cdots, m \]
Step 5. Rank the alternatives according to the closeness coefficient
\[\text{The most desired alternative is the one with the biggest value of } C_i. \]

2) MABAC: Steps 1–3. It is the same as the TOPSIS method.
Step 4. Compute the weighted matrix
\[t_{ij} = \left(T_{ij}, I_{ij}, F_{ij} \right) = \tilde{w}_j \tilde{r}_{ij} \]
Step 5. Compute the border approximation area (BAA) matrix
\[g_j = \prod_{i=1}^{m} (t_{ij})^{1/m} = \left(\prod_{i=1}^{m} (T_{ij})^{1/m}, \prod_{i=1}^{m} (I_{ij})^{1/m}, \prod_{i=1}^{m} (F_{ij})^{1/m} \right) \]
Step 6. Compute the closeness coefficient
\[C_i = \frac{d_+ - d_i}{d_+ - d_+}, \quad i = 1, 2, \cdots, m \]
Step 7. Rank the alternatives according to the closeness coefficient

V. NUMERICAL EXAMPLE
In this section, a numerical example is given to illustrate the feasibility of the three proposed methods. The decision-making problem is a municipal library selection problem with incomplete weight information. A city is going to build a municipal library. The choice of air-conditioning system in the library is one of the problems for the city development commissioner. The contractor provides five feasible alternatives \(A_i(i = 1, 2, 3, 4, 5) \) for library. Supposing that three attributes \(C_{1} \) (economic), \(C_{2} \) (functional), and \(C_{3} \) (operational), the subjective weight of the attribute \(C_{j} = (j = 1, 2, 3) \) is \(w = (0.5, 0.2, 0.3)^T \). Meanwhile, the attributes are all benefit attributes. Assume that the \(A_i(i = 1, 2, 3, 4, 5) \) under \(C_j(J = 1, 2, 3, 4, 5) \) are represented by the single-valued neutrosophic matrix
\[R = (r_{ij})_{5 \times 3} = (T_{ij}, I_{ij}, F_{ij})_{5 \times 3} \]

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
</tr>
<tr>
<td>A_3</td>
</tr>
<tr>
<td>A_4</td>
</tr>
<tr>
<td>A_5</td>
</tr>
</tbody>
</table>

Step 6. Compute the distance matrix
\[d_{ij} = \begin{cases} d_{wHH} (t_{ij}, g_j), & \text{if } t_{ij} > g_j \\ 0, & \text{if } t_{ij} = g_j \\ -d_{wHH} (t_{ij}, g_j), & \text{if } t_{ij} < g_j \end{cases} \]
Step 7. Rank the alternatives by \(Q_i \), where
\[Q_i = \sum_{j=1}^{n} d_{ij}, \quad i = 1, 2, \cdots, m; j = 1, 2, \cdots, n \]

The most desired alternative is the one with the biggest value of \(Q_i \).

3) similarity measure: Steps 1–3. It is the same as the TOPSIS method.
Step 4. An alternative is the one with the biggest value of \(S(A_i, A^*) \).
Step 3. Compute the score function matrix $S_{0.2,0.4} = (s_{ij})_{5 \times 3}$, see Table 2. And get $S^+_{1} = 0.3733, S^-_{2} = 0.7800, S^+_{3} = 0.7993, S^-_{4} = 0.8244, S^+_{5} = 0.7822$. Then we calculate $(a_{ij})_{5 \times 3}$, see Table 3. Next, the objective weights are obtained by eq. (13):

$$\omega_1 = 0.3175, \omega_2 = 0.2376, \omega_3 = 0.4449.$$

Finally, we can get the final weight by combining the objective weights and subjective weights:

$$\omega_1 = 0.4673, \omega_2 = 0.1399, \omega_3 = 0.3928.$$

Step 4 Determine the SVN-PIS R^+ and SVN-NIS R^- by Eqs. (15) and (16), get

$$R^+ = \{(0.3, 0.0, 0.0, 0.0), (1.0, 0.0, 0.0, 0.0), (0.5, 0.0, 0.0, 0.2)\}$$

$$R^- = \{(0.0, 0.1, 0.1, 1.0), (0.9, 0.2, 0.3, 0.0), (0.0, 0.3, 1.0)\}$$

Step 5 Compute the difference of each alternative from the SVN-PIS d^+_i shows in Table 4 and SVN-NIS d^-_i shows in Table 5 by Eqs. (17) and (18), the results are shown as follows:

Step 6. Calculate the closeness coefficient C_i of each alternative by Eq. (19), see Table 6.

Step 7. The final ranking: FC denotes the final choice which is shown in Table 7. Clearly, the best alternative is A_4. We can find the different ranking order with different value of v. And with the increasing of v, the gap between alternatives can be bigger and bigger. If the difference of alternatives are not obvious, it can be easy to choose the best choice when we increase the value of v. Meanwhile, it shows that the final choice is fixed.

B. Application of MABAC

Step 1 – 3. It is the same as the TOPSIS section.

Step 4. Calculate the weighted matrix $T = (t_{ij})_{5 \times 3}$ by Eq. (20), which is shown in Table 8.

Step 5. The BAA $G = (g_{ij})_{3 \times 3}$ is determined according to the Eq. (21), we can get

$$g_1 = (0.0000, 0.5837, 0.2675)$$

$$g_2 = (0.7786, 0.6651, 0.4479)$$

$$g_3 = (0.0000, 0.7628, 1.0000).$$

Step 6. Calculate the distance matrix $D = (d_{ij})_{5 \times 3}$ by Eq. (22) with different value of v, when $v = 0.1, D = (d_{ij})_{5 \times 3}$ is shown in Table 9.

when $v = 0.3, D = (d_{ij})_{5 \times 3}$ is shown in Table 10.

when $v = 0.5, D = (d_{ij})_{5 \times 3}$ is shown in Table 11.
Table X

The SVN matrix \(D = (d_{ij})_{5 \times 3} \) by \(v = 0.3 \).

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>0.6190</td>
<td>0.8749</td>
<td>0.7628</td>
</tr>
<tr>
<td>(A_2)</td>
<td>-0.2271</td>
<td>-0.1535</td>
<td>0.5230</td>
</tr>
<tr>
<td>(A_3)</td>
<td>-0.2415</td>
<td>-0.2211</td>
<td>0.5762</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.6259</td>
<td>0.2553</td>
<td>0.5569</td>
</tr>
<tr>
<td>(A_5)</td>
<td>0.3232</td>
<td>-0.1535</td>
<td>0.5569</td>
</tr>
</tbody>
</table>

Table XI

The SVN matrix \(D = (d_{ij})_{5 \times 3} \) by \(v = 0.5 \).

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>0.6725</td>
<td>1.0148</td>
<td>0.7628</td>
</tr>
<tr>
<td>(A_2)</td>
<td>-0.2545</td>
<td>-0.1976</td>
<td>0.5925</td>
</tr>
<tr>
<td>(A_3)</td>
<td>-0.2786</td>
<td>0.2177</td>
<td>0.6480</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.6841</td>
<td>0.2779</td>
<td>0.6158</td>
</tr>
<tr>
<td>(A_5)</td>
<td>0.3605</td>
<td>0.1761</td>
<td>0.6158</td>
</tr>
</tbody>
</table>

Table XII

The SVN matrix \(D = (d_{ij})_{5 \times 3} \) by \(v = 0.7 \).

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>0.7260</td>
<td>1.1546</td>
<td>0.7628</td>
</tr>
<tr>
<td>(A_2)</td>
<td>-0.2820</td>
<td>-0.1987</td>
<td>0.6421</td>
</tr>
<tr>
<td>(A_3)</td>
<td>-0.3156</td>
<td>0.3221</td>
<td>0.7198</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.7422</td>
<td>0.3005</td>
<td>0.6748</td>
</tr>
<tr>
<td>(A_5)</td>
<td>0.3976</td>
<td>0.1987</td>
<td>0.6748</td>
</tr>
</tbody>
</table>

Table XIII

The SVN matrix \(D = (d_{ij})_{5 \times 3} \) by \(v = 0.9 \).

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>0.7795</td>
<td>1.2944</td>
<td>0.7628</td>
</tr>
<tr>
<td>(A_2)</td>
<td>-0.3094</td>
<td>-0.2213</td>
<td>0.6917</td>
</tr>
<tr>
<td>(A_3)</td>
<td>-0.3527</td>
<td>0.3728</td>
<td>0.7916</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0.8004</td>
<td>0.3231</td>
<td>0.7337</td>
</tr>
<tr>
<td>(A_5)</td>
<td>0.4348</td>
<td>0.2213</td>
<td>0.7337</td>
</tr>
</tbody>
</table>

Table XIV

The value of \(Q_i \)

<table>
<thead>
<tr>
<th>(v)</th>
<th>(Q_1)</th>
<th>(Q_2)</th>
<th>(Q_3)</th>
<th>(Q_4)</th>
<th>(Q_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.8677</td>
<td>0.1522</td>
<td>0.1256</td>
<td>0.8184</td>
<td>0.5877</td>
</tr>
<tr>
<td>0.3</td>
<td>1.6700</td>
<td>0.1303</td>
<td>0.1020</td>
<td>0.7439</td>
<td>0.5300</td>
</tr>
<tr>
<td>0.5</td>
<td>1.4722</td>
<td>0.1083</td>
<td>0.0784</td>
<td>0.6963</td>
<td>0.4722</td>
</tr>
<tr>
<td>0.7</td>
<td>1.2744</td>
<td>0.0686</td>
<td>0.0548</td>
<td>0.5948</td>
<td>0.4145</td>
</tr>
<tr>
<td>0.9</td>
<td>1.0769</td>
<td>0.0645</td>
<td>0.0312</td>
<td>0.5203</td>
<td>0.3568</td>
</tr>
</tbody>
</table>

Table XV

The ranking order and FC

<table>
<thead>
<tr>
<th>(v)</th>
<th>Ranking Order</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>(A_1 > A_4 > A_5 > A_2 > A_3)</td>
<td>(A_1)</td>
</tr>
<tr>
<td>0.3</td>
<td>(A_1 > A_4 > A_5 > A_2 > A_3)</td>
<td>(A_1)</td>
</tr>
<tr>
<td>0.5</td>
<td>(A_1 > A_4 > A_5 > A_2 > A_3)</td>
<td>(A_1)</td>
</tr>
<tr>
<td>0.7</td>
<td>(A_1 > A_4 > A_5 > A_2 > A_3)</td>
<td>(A_1)</td>
</tr>
<tr>
<td>0.9</td>
<td>(A_1 > A_4 > A_5 > A_2 > A_3)</td>
<td>(A_1)</td>
</tr>
</tbody>
</table>

Table XVI

The weight similarity measure \(S^A_i (A_i, A^*) (i = 1, 2, \ldots, m) \)

\[
\begin{array}{cccccc}
\alpha & S (A_1, A^*) & S (A_2, A^*) & S (A_3, A^*) & S (A_4, A^*) & S (A_5, A^*) \\
0.1 & 0.9722 & 0.7647 & 0.7623 & 0.8232 & 0.7596 \\
0.3 & 0.8148 & 0.7665 & 0.7838 & 0.8466 & 0.7905 \\
0.5 & 0.6643 & 0.8087 & 0.8086 & 0.8628 & 0.7905 \\
0.7 & 0.7138 & 0.8500 & 0.8332 & 0.8849 & 0.8239 \\
0.9 & 0.7993 & 0.8531 & 0.8581 & 0.9070 & 0.8514 \\
\end{array}
\]

Table XVII

The ranking order and FC

<table>
<thead>
<tr>
<th>(v)</th>
<th>Ranking Order</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>(A_4 > A_2 > A_3 > A_5 > A_1)</td>
<td>(A_4)</td>
</tr>
<tr>
<td>0.3</td>
<td>(A_4 > A_2 > A_3 > A_5 > A_1)</td>
<td>(A_4)</td>
</tr>
<tr>
<td>0.5</td>
<td>(A_4 > A_2 > A_3 > A_5 > A_1)</td>
<td>(A_4)</td>
</tr>
<tr>
<td>0.7</td>
<td>(A_4 > A_2 > A_3 > A_5 > A_1)</td>
<td>(A_4)</td>
</tr>
<tr>
<td>0.9</td>
<td>(A_4 > A_2 > A_3 > A_5 > A_1)</td>
<td>(A_4)</td>
</tr>
</tbody>
</table>

Step 4. It is easy to get \(A^*_1 = (0.0, 0.0, 0.0, 0.0, 0.0), A^*_2 = (1.0, 0.1, 0.0, 0.0) \). When \(v = 0.1 \) we can get that \(S(A_{11}, A^*_1) = 0.72, S(A_{12}, A^*_2) = 1.00, S(A_{13}, A^*_3) = 0.24, S(A_{21}, A^*_1) = 0.71, S(A_{22}, A^*_2) = 0.81, S(A_{23}, A^*_3) = 0.81, S(A_{31}, A^*_1) = 0.81, S(A_{32}, A^*_2) = 0.71, S(A_{33}, A^*_3) = 0.72, S(A_{41}, A^*_1) = 0.91, S(A_{42}, A^*_2) = 0.81, S(A_{43}, A^*_3) = 0.72, S(A_{51}, A^*_1) = 0.72, S(A_{52}, A^*_2) = 0.81, S(A_{53}, A^*_3) = 0.72 \).

We can use the same way to calculate the similarity measure when \(v = 0.3, 0.5, 0.7, 0.9 \).

Step 5. Calculate the weight similarity measure \(S^A \) \((A_i, A^*) (i = 1, 2, \ldots, m) \) by Eq.(24), which is shown in Table 16.

Step 6. Rank the alternatives by \(S^A \) \((A_i, A^*) (i = 1, 2, \ldots, m) \), which is shown in Table 17.

So the best choice is \(A_4 \). We can find that the ranking order is variational with different value of \(v \), but the final choice is fixed, which is the same with TOPSIS method.

D. A comparison analysis

In order to better verify the practicability of the multi-attribute decision making methods based on TOPSIS, MABAC and similarity measure of SVNNs and compared with the existing methods. The decision data adopts [33]. If the existing methods in Ye [24], [25], Biswas et al. [9], Liu [26], Li et al. [34], Peng et al. [20], and the proposed three methods are utilized to solve the MADM problem in this example, then the results can be obtained and shown in Table 18. From the results shown in Table 17, we can easy to find some interesting things. We can get various answers when we use different methods to solve the same question. Meanwhile, even the same author can get different results.
results. From the results we can find that different parameter may get various final ranking, but we can get the same optimal alternative. All of the methods get the same optimal alternative except method 2 and Liu [26]. Coincidentally, their results were very similar to each other.

VI. CONCLUSION

We consider a new distance in SVNNs distance, which includes weight parameter. Firstly we define some basic knowledge of the SVN, which is involving TOPSIS, MABAC, and similarity measure. Secondly, we introduce these three methods, which can efficaciously solve decision-making problems with the inconsistent information. Then we give a numerical example and use these three methods to solve this question and get the final choice from these three methods. We can find that the ranking order maybe have a little change, but the final choice is fixed. It shows that when we change the value of v, which means changing the weight of the two distances in the combined distance, we can get the same result. We can further deduce whether all the distance formulas will get the same result when calculating the distance, so when we encounter the distance calculation in the future, we can use the simplest distance calculation method to calculate the distance between the two SVNNs. This hypothesis deserves further examination. Finally, we do a comparison analysis with others who solved this example before. We can inspection the hypothesis by more parameters for combined distance and use this distance to solve other questions in the interval neutrosophic sets in the future.

REFERENCES

[29] J. Peng, J. Wang, and X. Chang, “Simplified neutrosophic sets and their applications in multi-criteria group decision-

Dongsheng Xu, born in Nanchong Country, Sichuan Province, P.R.China, on December 20, 1976. He received MSc degree in Science from Southwestern Petroleum University, P.R.China. He is an associate professor in the School of Science of Southwestern Petroleum University and a doctoral candidate in school of economics and mathematics of Southwestern University of Finance and Economics. His research direction is financial asset pricing. He has published 20 papers in journals, books and conference proceedings including journals such as Journal of Computational and Applied Mathematics, Chaos, Solitons and Fractals, Journal of southwest petroleum university (natural science edition), and 1 book.