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Derivation of New Numerical Model Capable of
Solving Second and Third Order Ordinary
Differential Equations Directly

E. O. Adeyefa, and J. O. Kuboye

Abstract— Numerical methods are widely used for the numerical
integration of initial value problems (I\VVPs) in ordinary differential
equations (ODEs). Nevertheless, the block method is not normally

used for the numerical integration of both pth and

(p +1)" order IVPs. This paper focuses on the formulation of a
self-starting method capable of obtaining the numerical solution of
second and third-order IVPs. The method is formulated from
continuous schemes obtained via collocation and interpolation
techniques and applied in a block-by-block manner as a numerical
integrator for second and third-order ODEs. The convergence
properties of this method are discussed via zero-stability and
consistency. Numerical examples are included and comparisons
are made with existing methods in the literature.

Keywords: Block Method, Convergence, Second and Third
Order Ordinary Differential Equations, Zero-stability

I. INTRODUCTION

The demand for the solution of Differential Equations (DES)
is on the increase as the quest for numerical methods has
increasingly been of much interest to researchers because
most of these DEs are difficult to solve or their analytical
solutions do not exist. Although it is possible to
integrate pth an initial value problem (IVP) using a
numerical method but to use the same method to integrate
two or more IVP(p+1)"s of different has not been

commonly reported. Thus, the focus of this paper is to
develop a self-starting method for the numerical solution of
the ODE of the form

yPO)=f(X Y,y e Y,

(1a)
y2(X,)=ys, a=01..,k-1
and
yPHX)=f (XY, Y s YP),
(1b)

yo (%) =y>, b=04,. k-1

The solution of (1a) and (1b) for p ranging from p = 1(1)3
has been extensively discussed by various researchers.
Among them are [1]-[3] and [7]-[18].

The block method approach which simultaneously generates
approximations at different grid points within the interval of
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integration without overlapping of sub-intervals has been
reported to circumvent the setback commonly experience in
reducing m>1 in (1a) to a system of first-order equations
and the predictor-corrector approach, see [16]. Furthermore,
this new method is superior to those mentioned above since

it is equipped with handling both p™ and (p+2)™ order

IVPs.

The aim of developing new methods has always been to
improve on the efficiency and convergence of existing
methods with the ultimate aim of reducing the error of
approximation. Thus, in what immediately follows in
Section 2, we derive the proposed method for direct

integration of p" and (p+1)" order IVPs in ODEs

where p = 2. The basic properties of the method are
discussed in Section 3, numerical examples are given to
show the efficiency of the methods in Section 4 and the
discussion of results is given in Section 5. Finally, the
conclusion of the paper is discussed in Section 6.

Il. DERIVATION OF THE METHOD
This section examines the derivation of a new block method
that can solve the second and third-order initial value
problems of ODEs.

Let the power series
k+6

y(9 =2 a;x )

be considered as an approximate solution to second and
third-order ODEs of the form

y () = f(x, y(x), y'(x)), } 3
y(xo) =Yo y'(xo) = Y6
y"(x) = £ y(%), y'(x), y'(X), y(%,) = yo’} 4

124

y!(Xo) = y(',,, y”(Xo) =Y

Interpolating (2) at X = X__ ,U = 0,1, the second derivative

n+u!

1
of (2) is collocated at X =X_,v =0, > .1 and collocating

n+v?

the third derivative of (2) at X=X

n+w?

W=Qll
2

Consequently, we have
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k+6

za] n+u

k+5

ZJ(J Daxiy = f..,

k+5

Z iG-D(i-2a;x)s =

yn+u

()

g n+w

In (5), Gaussian elimination is applied to find the unknown
variables @'S which are then substituted to (2) to produce a
continuous implicit scheme of the form:

ao(t)yn+0! Oy =h* Zﬂ () fr;

o ©)
+h ﬂl(t)f 1 +h3[251(t)gn+1 +5 (t)g 1J

j=0 2

t=
where h ,
%o 1 -2)\t°
a1 (o 2\t
2
13 1 23 33 34 4
0o -= = qo-==_= 2|
5 84 2 12 10 15 7|t
g 2L g o 4 8 8 e
b 12 3 5 15 2
dllg g L oo L W% 4,
Bl 84 2 10 15 t
%l g o N A 13
5 6720 6 2 2 5 21 t8
: 2 2 8 4 8
20 = 0 0 -2 2 = Zlp
0, 105 3 5 3 21 :
I B A A
6720 12 4 15 21
Equation (6) is differentiated once to give
k
2y (t)y, +ai (t)y 1=h[2ﬂ}(t)fn+j+ﬂi(t)f 1j
3 n+= =0 3 n+E (7)

+h [25 gn+] g 1j
2 2
where

-2
h
2
h

13

84
1

12
1
84

59

6720
2

105
11

6720

o Nk O

B 68
2 5
S 1

5
5
2 5
5 12
4 5
8 -8
58
4 5

wlibhwloow D

tO
tl
tZ
t3
t4
tS
t6

The discrete scheme and its derivatives in (8) are
derived by evaluating (6) at X=X ,(t=1) and (7)

atx =
2.0

yn +1

for

and

X

-1
-2

-2

h
-2

n+i?

1
1t— ,—.1).
( > )
2
2
hiy, fn 9,
2 y +h*Q né +hSRgn+1
h n+- 2 2
E fn+1 gn+1
h
E
30 60 30
131 1
84h 12h  84h
187 11 37
3360h 60h 3360h
11 9 31
140h  20h  140h
1 _1
320 320
59 2 11
6720h  105h 6720h
1 19 1
210h 840h 672h
53 2 -101
6720h 105h 6720h

To get the block, (8) can be rewritten in the form

Ayy.a =AYy +hByj, +h*[D°fy +D'fy ]

+ hS[EogN + ElgN+l]

3.0 Where
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Ynu :[ymy yn+1]T v Yna = [yn_y yn]T )
2 2

Yaa =Ly oyi10
2

fN =[f 17 fn]T’

2

fN+1 :[fn+1, fn+l]T’gN :[gn_llgn]Ti
2

2
and

gN+1 = [gmlv gn+1]T
2

A A° B,D° D' E° E"aren X nmatrices.

Therefore, A" is multiplied by (9) and this gives

Yal (1 D
: 2 f, g,
y;+1 _|1 h[ijws f |+hT|g |
ym_l O 1 n n+E n+E
!2 fn+1 gn+1
yn+1 0 1
137 1
168 168 168
) | 79 112 19
_| 420 420 420
101 128 11
480h 480h 480h
.7
where 30h 30h  30h
59 128 11
13440 13440 13440
105 168 42
40 T —| 8820 8820 8820
13 40 3
960h 960h 960h
1 b
60h 60h

I1l. PROPERTIES OF THE METHOD

The basic properties of this method such as order, error
constant, zero stability and consistency are analyzed below.
3.1 Order

Equation (10) derived is a discrete scheme belonging to the
class of LMMs of the form

k k k
Zajynﬂ = hZZﬂj fn+j + hazngmj (10)
j=0 j=0 j=0

Following [4] and [8], we define the local truncation error
associated with (11) by the difference operator

c[a;y(x, +jh)—h?B, f(x, + jh)}(ll)

=2, ey g+

where y(X) is an
differentiableon [ a, b ].

arbitrary  function, continuously

Expanding (11) in Taylor series about the pointX, we
obtain the expression

L[y (x);h]=C,y(x) +C;hy'(x) + C,h*y" (x)
+...+C_,hP2yP2(x)
where the C,, ,

p+2
C,.C,...C,...C,,, areobtained as

k k . 1 k ]
Co :Z“j’C1:ZJ“j’ C, :EZJZ‘ZJ',
j=0 j=1 k!

K K
Z jqaj -q(q _1)2181' jq_z
1|7= -1

! K g
a -q(@-D@-2)>7;i"°

j=1
In the spirit of [11], (11) is of order p if
C,=C,=C,=...C,=C,,, =0andC,,, = 0.
TheC,,, #0 is  called
andC

q

the error constant

0.2N"2yP*2(x,) is the principal local truncation

error at the point X, .
Thus, the block (10) is of order P = 6 and error constant

c _[_1 1 1 1 70
P2 | 4423680'1209600° 1209600 604800 |

3.2 Zero Stability of the Method

The linear multistep method (10) is said to be zero-stable if

no root of the first characteristic polynomial o(R)has

modulus greater than one and if every root of modulus one

has multiplicity not greater than the order of the differential

equation.

To analyze the zero-stability of the method, we present (10)

€)'

ym = (yn+l t yn+r )T !

in vector notation form of column vectors € = (el .

d=(d,...d,)",

F(ym) = (fn+1 tee fn+r )T

Gy, )=(9,.,---0,., )T and matrices

B=(b,).

Thus, (10) forms the block formula

A’y =hBF(y,)+ Ay, +hbf +hDG(y,)
+hdg, (12)

where h is a fixed mesh size within a block.
In line with (12),

A:(a‘ij)

13 59
10 0 1 170
0 _ 1 1168 _ 113440
’ ‘[o 1]"\ ‘(o J’b‘ 799|205 |
420 8820
71 ~128 -1l
_ 1168 168 _ 113440 13440
B= E E and D = 168 a0
420 420 8820 8820
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The first characteristic polynomial of the block hybrid
method is given by

p(R) = det(RA® — A1) (13)

where
0 10 1 01
A" = and A =
0 1 01

3.3 CONSISTENCY AND CONVERGENCE OF THE
METHOD

The linear multistep method (10) is said to be consistent if it
has order p >1 Equation (10) is of order 6.

According to the theorem of [5], the necessary and
sufficient condition for a LMM to be convergent is to be
consistent and zero stable. Since the method satisfies the
two conditions hence it is convergent.

substituting A’ and  A' in (13) and solving for R, the
values of R are obtained as 0 and1.
According to [6] and [7], the block method (10) is zero-

stable, since from (13), p(R) =0, satisfy ‘Rj‘ﬁl,

J =1 and for those roots with ‘Rj‘ =1, the multiplicity

does not exceed two.

IV NUMERICAL EXPERIMENTS

In examining the efficiency of the newly developed block
method, it is applied to the following second and third-order
initial value problems of ordinary differential equations.

Problem1:

Y —x(y')? =0, y(0) =1,y'(0) = % h=0.003125

Exact Solution: y(X) =1+ 1 In(ﬂj
2 \2—-X

Table la: Comparing the solutions of the exact and the new block for Problem 1

X Exact Solution Numerical Solution
0.1 1.050041729278491400 1.050041729285235300
0.2 1.100335347731075300 1.100335347786803200
0.3 1.151140435936466500 1.151140436133040400
0.4 1.202732554054081600 1.202732554548837200
0.5 1.255412811882994600 1.255412812926617300
0.6 1.309519604203111900 1.309519606185874500
0.7 1.365443754271397100 1.365443757799182000
0.8 1.423648930193603500 1.423648936214441100
0.9 1.484700278594054600 1.484700288613987300
1.0 1.549306144334058600 1.549306160797821400

Table Ib: Comparing the errors of the new block and existing methods for Problem 1

X Error in the new method, | Error in[9], k=3 Error in [10], k=6 Error in [1], k=6
k=1

0.1 | 6.743939E-012 5.850875E-13 9.577668E-10 0.1329867326E-09
0.2 5.572787E-011 2.848832E-12 2.368709E-09 0.5872691257E-08
0.3 1.965739E-010 6.328715E-12 3.732243E-09 0.1327845616E-07
0.4 4.947556E-010 6.756392E-09 5.475119E-09 0.2317829012E-07
0.5 1.043623E-009 1.380119E-08 1.142189E-08 0.3218793564E-07
0.6 1.982763E-009 2.174817E-08 4.567944E-08 0.6871246012E-07
0.7 3.527785E-009 1.073052E-07 2.055838E-06 0.1012728156E-06
0.8 6.020838E-009 2.001340E-07 4.248299E-06 0.1231093271E-06
0.9 1.001993E-008 3.088383E-07 6.660458E-06 0.2019286712E-06
1.0 | 1.646376E-008 9.805074E-07 9.445166E-06 0.2990871645E-06
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Problem2: y" =y’ y(0)=0,y'(0)=-1, h=0.01

Exact Solution: y(X) =1—e”*

Table Ila: Comparing the solutions of the exact and the new block for Problem 2

X Exact Solution Numerical Solution
0.1 -0.105170918075647710 -0.105170918285230290
0.2 -0.221402758160169850 -0.221402760252888020
0.3 -0.349858807576003180 -0.349858815418549070
0.4 -0.491824697641270570 -0.491824717736273730
0.5 -0.648721270700128640 -0.648721312697835510
0.6 -0.822118800390509550 -0.822118877678934210
0.7 -1.013752707470477500 -1.013752837854869500
0.8 -1.225540928492468800 -1.225541134976360700
0.9 -1.459603111156951200 -1.459603422838633400
1.0 -1.718281828459047300 -1.718282281559109400

Table I1b : Comparing the errors of the new block and existing methods for Problem 2

X

Error in  new

method, k=1

Error in [10], k=5

Error in [13], k=5

0.1

2.095826E-010

Error in [12], k=5

2.508826E-13

2.004000000E-07

2.198000000E-05

0.2

2.092718E-009

6.493175E-11

5.386000000E-07

6.070400000E-06

0.3

7.842546E-009

1.683146E-09

8.840000000E-07

1.005100000E-05

0.4

2.009500E-008

1.700635E-08

1.229700000E-06

1.402530000E-05

0.5

4.199771E-008

1.025454E-07

1.575200000E-06

1.799340000E-05

0.6

7.728842E-008

2.558711E-06

1.920400000E-06

2.161620000E-05

0.7

1.303844E-007

5.273300E-06

2.506000000E-06

2.799300000E-05

0.8

2.064839E-007

8.275935E-06

3.106000000E-06

3.456100000E-05

0.9

3.116817E-007

1.161667E-05

3.705000000E-06

4.111400000E-05

1.0

4.531001E-007

1.542187E-05

4.304000000E-06

4.765600000E-05
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Problem3: y" =¢* y(0)=3,y'(0)=1y"(0)=5h=0.1
Exact Solution: y(X) = 2+ 2x* +e*

Table Illa: Comparing the solutions of the exact and the new block for Problem 3

X Exact Solution Numerical Solution

0.1 3.125170918075647700 3.125170918075638800
0.2 3.301402758160169700 3.301402758160134200
0.3 3.520858807576003300 3.529858807575920300
0.4 3.811824697641270600 3.811824697641117900
0.5 | 4148721270700128200 4.148721270699882200
0.6 | 4542118800390508900 4.542118800390142000
0.7 4.993752707470476600 4.993752707469958800
0.8 5.505540928492466800 5.505540928491764200
0.9 6.079603111156949100 6.079603111156023600
1.0 6.718281828459044600 6.718281828457857200

Table I11b : Comparing the errors of the new block and existing methods for Problem 3

X Error in new Error in [1], k=5 Error in [14], k=5
method, k=1
0.1 8.881784E-015 3.369305E-12 9.24352E-10
0.2 3.550714E-014 2.160050E-11 8.3983E-10
0.3 8.304468E-014 5.333245E-11 4.23997E-10
04 | 1 597667E-013 9.988632E-11 3.58729E-10
05 | 5 460254E-013 1.598988E-10 2.99872E-10
0.6 3.668177E-013 2.511404E-10 3.90509E-10
0.7 | &178080E-013 3.961489E-10 1.47048E-09
08 | < 025491E-013 5.926823E-10 2.49247E-09
09 | 9954819E-013 8.429168E-10 0.15695E-09
10 | 4 187495E-012 1.144603E-09 3.54096E-09
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Problem4: y"—y"+y'—y=0, y(0)=1y'(0)=0,y"(0) =-1,h=0.01

Exact Solution: y(X) = COS X

Table 1V: Comparing the new block method with [15] for solving Problem 4

X Exact Solution Numerical Solution Error in new method, k=1 | Error in [15], k=3
0.1 0.999950000416665260 | 0.999950000414032480 | 2.632783E-012 1.9990E-07
0.2 0.999800006666577760 | 0.999800006605354950 | 6.122280E-011 1.9560E-07
0.3 0.999550033748987540 | 0.999550033315882550 | 4.331050E-010 1.3651E-07
0.4 0.999200106660977920 | 0.999200104881007410 | 1.779971E-009 2.5210E-07
0.5 0.998750260394966280 | 0.998750255022231250 | 5.372735E-009 1.3039E-06
0.6 0.998200539935204190 | 0.998200526636915390 | 1.329829E-008 3.0280E-06
0.7 0.997551000253279590 | 0.997550971585185910 | 2.866809E-008 3.3453E-06
0.8 0.996801706302619440 | 0.996801650474031580 | 5.582859E-008 1.2405E-06
0.9 0.995952733011994270 | 0.995952632438632860 | 1.005734E-007 1.3290E-06
1.0 0.995004165278025820 | 0.995003994920954820 | 1.703571E-007 1.7180E-05
Problem 5: Vanderpol’s oscillator Problem

y"=2cosx—cos’x—y' —y-y?y, y(0)=0,y'(0)=1

Exact Solution: y(X) = sin X
Table VV: Comparison of the new method with [3]
X Exact Solution Approximate solution Error in new Error in [3]

method

0.1 | 0.099833416646828155 0.099833416316099016 3.307291E-010 4.16719627E-13
0.2 | 0.198669330795061220 0.198669328479548270 2.315513E-009 3.54860749E-12
0.3 | 0.295520206661339600 0.295520200499645890 6.161694E-009 9.0472212E-12
0.4 | 0.389418342308650520 0.389418330384836750 1.192381E-008 1.650241042E-11
0.5 | 0.479425538604203010 0.479425519259765230 1.934444E-008 2.544360932E-11
0.6 | 0.564642473395035370 0.564642445640541220 2.775449E-008 3.535590072E-11
0.7 | 0.644217687237691020 0.644217651157492410 3.608020E-008 4.570838971E-11
0.8 | 0.717356090899522680 0.717356047921081210 4.297844E-008 5.598981142E-11
0.9 | 0.783326909627483300 0.783326862546561360 4.708092E-008 6.574464284E-11
1.0 | 0.841470984807896390 0.841470937523322140 4.728457E-008 7.460291389E-11
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yi = —4t Yi—

yg = _4t2yz -

Problem 6: We consider the second-order system equations
2y V4

%’ yl[ E} =0,

VY Yo

%’ yz( Z]:L y;(\/EJZO,\/EStS]_O

VY +Y,s 2 2 2

T T
1= |==2./%, h=001
(5 )--2l3

Exact Solutions: vy, (t) = cos(t?), y, (t) =sin(t?)

Table VI: Result generated when the new method was applied to system of second order ODEs

t- values | Exact Solution Numerical Solution vy, Error

1.2583141 | 0.999921147578931800 | 0.999921117529356310 3.004958E-008
1.2633141 | 0.999683345819422750 | 0.999683285585503570 6.023392E-008
1.2683141 | 0.999284741752009320 | 0.999284651012086630 9.073992E-008
1.2733141 | 0.998723501579551810 | 0.998723380268963120 1.213106E-007
1.2783141 | 0.997997811695503390 | 0.997997659663992120 1.520315E-007
1.2833141 | 0.997105879715436850 | 0.997105696969847740 1.827456E-007
1.2883141 | 0.996045935521627570 | 0.996045722087244840 2.134344E-007
1.2933141 | 0.994816232320477560 | 0.994815988276771760 2.440437E-007
1.2983141 | 0.993415047712551740 0.993414773263781360 2.744488E-007
t- values | Exact Solution Numerical Solution 'y, Error

1.2583141 | -0.012557811291468633 | -0.012557811291308991 | 1.596414E-013
1.2633141 | -0.025163626354015697 | -0.025163626353447266 | 5.684307E-013
1.2683141 | -0.037815405612265290 | -0.037815405667311876 | 5.504659E-011
1.2733141 | -0.050511062082270429 | -0.050511062224706874 | 1.424364E-010
1.2783141 | -0.063248461253903210 | -0.063248461592840324 | 3.389371E-010
1.2833141 | -0.076025420991302939 | -0.076025421591992062 | 6.006891E-010
1.2883141 | -0.088839711451837056 | -0.088839712475807853 | 1.023971E-009
1.2933141 | -0.101689055024075960 | -0.101689056571485010 | 1.547409E-009
1.2983141 | -0.114571126285240580 | -0.114571128569164710 | 2.283924E-009
1.3033141 | -0.127483551978623600 | -0.127483555135529060 | 3.156905E-009
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V. DISCUSSION OF RESULTS
Tables 1 — IV above show the tabular display of the
numerical solutions on the implementation of the newly
developed method. It is evident that the block method is
more efficient in terms of error when compared with
existing methods in spite of high step number k
considered.

V1. CONCLUSION

In this paper, the derivation of the new block method for
solving second and third-order ordinary differential
equations directly is examined. The method is of order six
which shows that it is consistent. The major advantage of
the method over the existing numerical methods is its
ability to solving effectively two different orders of
differential equations namely second and third-order
ordinary differential equations. To prove the efficiency of
the new method, it is applied to some differential
equations of order two and three, the results generated
outperform the existing methods in terms of error as
shown in Tables I — IV.
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