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Abstract—The Morse potential, which is the most
widely used potential in evaluating the vibrational
energies of diatomic molecules, is studied and its un-
known parameters were estimated in this paper. The
integral-differential and integral approaches which are
relatively more accurate approaches of the objective
least squares function method were discussed and
applied in this paper. The approaches were used to es-
timate the Classical and Generalized Morse potential
parameters. The estimates obtained for the Classical
Morse potential was used to obtain the Morse poten-
tial parameters.
The approaches were used to identify new unknown
parameters of the Classical and Generalized Morse
potential. They were also used to approximate pa-
rameters which were fundamental to graphically iden-
tifying the potentials using potential energy curves.
The approach consists of recognizing the functional
form of the hybrid forms of the Morse potential as
the solution of some second order ordinary differential
equation with unknown parameters. Then construct-
ing the first objective function and integrating once
(for the integral-differential method) and twice (for
the integral method). The second objective function
is constructed from the functional forms of the Clas-
sical and Generalized Morse potential under paper.
A matrix system with the unknown parameters is
formulated and numerical simulation of the system
is done using gold atom experimental data sets.
The objective function values and reconstructed po-
tential energy curves fitted to experimental data sets
of gold atom shows high accuracy to the optimum
solution when compared to the objective least squares
function method. The estimated parameters approx-
imates to the experimental data sets of gold atom
through the range of interatomic distance.

Index Terms—least squares, interatomic potentials,
parameter estimation, potential energy curves, differ-
ential equations.

I. Introduction

ENERGY potentials are widely considered to be of a
great importance in computational chemistry. This

is due to the fact that potential energy functions provide
qualitative description of the energy-distance relationship
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of the chemical bond [11]. The Morse potential, originally
proposed by Philip Morse [7]

UM = D[e−2α(x−xm) − 2e−α(x−xm)], (1)

is used not only in molecular spectroscopy but also for
the evaluation of kinetic properties of gases and in studies
of crystal properties. The Morse potential has been
and still is one of the most used and convenient model
that provides an excellent, qualitative description of the
interaction between two atoms in a diatomic molecule
[1]. The Morse potential function, (or its hybrid forms)
are used in many problems related to metallic systems
[12] and it has been used frequently to paper the atomic
and configuration properties of pure metals [2]. The
hybrid functional forms of the Morse potential (which
are the Classical and Generalized Morse potentials) are
obtained through the expansion of Equation (1) and
making relevant substitutions. After the expansion of
Equation (1), we will use α1 to represent the Classical
Morse potential parameter and α2, α3 to represent the
Generalized Morse potential parameters.

The hybrid forms of the Morse potential considered
in this paper, are both nonlinear transcendental least
squares problems. Several methods exist for estimating
the parameters of nonlinear systems using approximations
of a system of linear equations, since solving these
systems can be an exhaustive task analytically [3].
Mathematical methods exist that permit standardization
of the fitting procedure. The method of maximum
likelihood and the least-square method are the most
common [4]. Of these two methods, the least squares
approach which requires initial guess values is more
applied for solving transcendental problems [6]. In
this paper, we introduce more efficient approaches
for identifying the parameters of the Morse potential
which guarantees better approximations than results
obtained from previous studies [16] as well as in the
literature. We also concisely introduce an alternative
novel approach for identifying the energy potentials
and make a comparison of both methods. The aim of
this paper is validated through the construction and
reconstruction of potential energy curves (PECs) and
the values of objective function presented in Table I. The
paper also reveals that the Classical Morse potential
is not a stable hybrid functional form of the Morse
potential as compared to the Generalized Morse potential.

This paper is structured as follows: Section II introduces
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the integral-differential and integral approaches to be
applied in this paper, In Section III-A, the integral-
differential method is used to estimate parameters of
the Classical Morse potential while the parameters of
the Generalized Morse potential are estimated in Section
III-C. Section IV-A discusses the approach of the integral
method for estimation of the Classical Morse potential,
Section IV-B estimates parameters of the Generalized
Morse potential using the integral method. Section V
concisely presents an alternative approach for identifying
the energy potentials, the obtained research results are
discussed and summarized in Section VI and conclusion
of the paper is presented in Section VII.

II. Materials and Methods
The Objective least squares function method (ObLSf)

with differential, integral-differential and integral ap-
proaches were first discussed in [3] (where it was referred
to as the multiple goal function, MGF method). In
[6], the MGF method with the three aforementioned
approaches were used to identify the Classical Rydberg
potential energy function using experimental data sets
of Copper, Silver and Copper-Silver alloy. The author(s)
in [16] coined the ObLSf term and used it (with the
differential approach alone) to identify the Classical and
Generalized Morse potential function using experimental
data sets of gold atom. The integral-differential and
integral approach consists of constructing two objective
functions. The first one is constructed from the functional
form of the Classical and Generalized Morse potential
which is considered to be the solution to some second
order ordinary differential equation. The second objective
function is constructed from the functional form of the
Classical and Generalized Morse potential functional form.
Each of the objective functions is partially differentiated
with respect to the unknown parameters and a matrix
system is formulated. This matrix system with the
unknowns is numerically simulated to yield estimates
for the parameters. The unknown parameter estimates
obtained using the first objective function is used to
obtain the unknown parameters of the Classical and
Generalized Morse potential. The unknown parameters
of the mentioned energy potentials are obtained from the
constructed second objective function.
Traditional approaches of estimating parameters of
transcendental equations such as Levenberg-Marquardt,
Gauss-Newton, Powell Dog Leg, Maximum Likelihood
[8] all require the provision of initial guess values of
which convergence to optimal solution is not always
guaranteed. The methods discussed in this paper over-
comes the setbacks and limitations of previous well-
known approaches of solving nonlinear transcendental
least squares problems and also produced more accurate
results than was obtained in recent studies [16]. This paper
applies both the integral-differential and integral methods
to estimate parameters of the Classical and Generalized
Morse potential. The approaches both involves numerical
integration (once and twice respectively) of the second
order ODE, construction of the first objective function to
estimate parameter(s) α1 for the Classical Morse potential
and α2, α3 for the Generalized Morse potential. The

formulated matrix system is numerically simulated in
MathCad R© to obtain numerical approximations which
are used to construct the second objective function and
estimate the parameters ACM, BCM and AGM and BGM.
Several authors have applied the MGF method to solving
various nonlinear transcendental problems. [14] used the
ObLSf method for estimation of the Rayleigh distribution
parameter. [5] also used the ObLSf method for parameter
estimation of different probability density functions. The
ObLSf method was used in [9] to identify parameters of
epidemiological models under missing observable data.

III. Integral-differential method to estimate
parameters of the hybrid forms of Morse

potential

The integral-differential approach requires taking the
first integral of the second-order ODE with the boundaries
[ro, r]. We now estimate the parameters of the Classical
and Generalized Morse potentials in the next sections.

A. Classical Morse potential energy function

The functional form of the Classical Morse potential is

UCM = ACMe
−2α1r −BCMe

−α1r. (2)

From the knowledge of ordinary differential equations
(ODE), Equation (2) is the solution of some second-order
linear homogeneous ODE

d2U

dr2 + (2α1 + α1)dU
dr

+ (2α1 · α1)U = 0. (3)

Equation (3) is written as

d2U

dr2 + a1
dU

dr
+ a2U = 0, (4)

where a1 and a2 are new unknown parameters. The
constraint equation of Equation (3) is written as
g[a1(λ), a2(λ)] = [2a1(λ)]2 − 9[a2(λ)]. Integrating Equa-
tion (4) with respect to r on the integral domain [r0, r]
to obtain

dU

dr
+ a1U + a2

∫ r

r0

U(ρ)dρ+ c1 = 0, (5)

where we introduced c1 to replace −dU0

dr
− a1U(r0). For

simplicity, we make a further substitution
∫ r

r0

U(ρ)dρ =

I1. The first objective function (GCM1) is now constructed
as

GCM1(a1, a2, c1, λ) = 1
2

N∑
n=1

(
dUn
drn

+ a1Un + a2I1n

+c1)2 + λ(2a2
1 − 9a2) −→ min. (6)
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Taking partial derivatives, setting the derivatives equal
to zero returns a matrix system in three dimensions

a1(λ)
a2(λ)
c1(λ)

 =



4λ+
N∑
n=1

(Un)2
N∑
n=1

UnI1n

N∑
n=1

Un

N∑
n=1

UnI1n

N∑
n=1

(I1n)2
N∑
n=1

I1n

N∑
n=1

Un

N∑
n=1

I1n

N∑
n=1

1



−1

×



−
N∑
n=1

(
dUn
drn

)
Un

9λ−
N∑
n=1

I1n

(
dUn
drn

)
−

N∑
n=1

(
dUn
drn

)


. (7)

The system of Equation (7) is simulated in MathCad R©

to obtain the value of the Lagrange multiplier λ as 0.258
and numerical values for a1, a2 and c1

[a1(λ), a2(λ), c1(λ)]T = [5.206, 6.022, 0.515]T . (8)

The value of α1 is estimated using either of the relations
a1

3 or
√
a2

2 . This yields α1 = 1.735. The constraint
equation is satisfied as [2a1(λ)]2−9[a2(λ)] = 5.826×10−13

The second objective function (GCM2) is constructed
using Equation (2) as

GCM2(ÃCM, B̃CM) =1
2

N∑
n=1

(
ÃCMe

−2α1rn − B̃CMe
−α1rn

− Un )2 −→ min. (9)

which reduces to the system

[ÃCM, B̃CM]T =


N∑
n=1

(e−2α1rn)2 −
N∑
n=1

e−3α1rn

−
N∑
n=1

e−3α1rn

N∑
n=1

(e−α1rn)2


−1

×

[
N∑
n=1

Une
−2α1rn ,−

N∑
n=1

Une
−α1rn

]T
,

(10)

after partial differentiation with respect to the unknown
parameters ÃCM and B̃CM and further algebra. Numerical
simulation of Equation (10) with α1 = 1.735 and exper-
imental data sets of gold atom [10] yields the following
results

[ÃCM, B̃CM]T = [4152, 44.679]T . (11)

B. Experimental fitting of data sets to construct potential
energy curves

The built-in “Minimize” function in MathCad R© using
estimated parameters of the integral-differential method
as initial guess values yielded α1 = 1.746, ÃCM = 4739
and B̃CM = 45.886. Using these approximate values, we

construct the potential energy curves (PECs) in the Fig-
ure 1 using Mathematica R©. UExp, UCM, UCAS represents
the gold atom experimental data sets provided by [10],
approximated values obtained using the ObLSf method
integral-differential approach and built-in function in
MathCad R© software respectively. The error plots of the
reconstructed PECs are graphically illustrated in Figure
2. It should be noted that all potential energy curves were
constructed and reconstructed in Mathematica R© while
numerical simulations and calculations were done using
MathCad R©.

C. Generalized Morse potential energy function
The Generalized Morse potential considered has a

functional form

UGM = AGMe
−α2r −BGMe

−α3r, (12)

which is also a solution of some second-order ODE
d2U

dr2 + b1
dU

dr
+ b2U = 0, (13)

where b1 = α2 + α3 and b2 = α2 · α3. The first objective
function (GGM1) is formulated by integrating Equation
(13) with respect to r.

GGM1(b1, b2, c2) = 1
2

N∑
n=1

(
dUn
drn

+ b1Un + b2I1n + c2

)2

GGM1(b1, b2, c2) −→ min, (14)

where c2 (replaces c1) and I1 are as defined in Section
III-A. The Generalized Morse potential does not need
a constraint equation as it has a four parameter space.
We introduce column vectors for Un, I1n and dUn

drn
as

~U = [U1, U2, . . . , UN ]T , ~I = [I1,1, I1,2, . . . , I1,N ]T , ~E =
[1, 1, . . . , 1]T , ~dU = [dU1, dU2, . . . , dUN ]T . The short form
~dU represents dUn

drn
. Equation (14) then reduces to

GGM1(b1, b2, c2) = b1~U + b2~I + c2 ~E + ~dU −→ min.

~U, ~I, ~E and ~dU are all (N × 1) matrices. Partially
differentiating this equation with respect to the three
unknowns and setting the derivatives to zero, we will
obtain

[~U ~I ~E] · [b1, b2, c2]T = [− ~dU ]. (15)

If we represent [~U ~I ~E] (an (N × 3) matrix) as L and
[− ~dU ] as R, Equation (15) is then simplified using matrix
manipulations

[b1, b2, c2]T = (LT · L)−1 · (LT ·R). (16)

Numerical simulation of this Equation (16) in MathCad R©

gives the values for b1, b2 and c2

[b1, b2, c2]T = [5.332, 5.853, 0.511]T . (17)

The parameters of the Generalized Morse potential are
estimated using the eigenvalues

α2, α3 = b1 ±
√
b2

1 − 4b2

2 ,
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Fig. 1: PECs for estimated Classical Morse potential parameters
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Fig. 2: Error plots of constructed PECs of Classical Morse potential

which yields α2 = 3.787 and α3 = 1.546. The integral-
differential approach does not yield complex conjugate
eigenvalues at any starting point used to numerically
simulate the system in Equation (16). This is in
contrast to the ObLSf method and differential approach
applied to estimate the parameters of the Classical
and Generalized Morse potential in [16] where complex
conjugates eigenvalues were obtained for the equivalent
α2 and α3 parameters. The vector definitions in this
section, were introduced to reduce the cumbersome
matrix representations. It is also a more computationally
efficient approach.

The construction of the second objective function
(GGM2) is done using Equation (12) as follows

GGM2(ÃGM, B̃GM) =1
2

N∑
n=1

(
ÃGMe

−α2rn − B̃GMe
−α3rn

−Un)2 −→ min. (18)

Partially differentiating Equation (18) with respect to the
unknown parameters ÃGM, B̃GM and further simplifying

the resulting equations

[
ÃGM
B̃GM

]
=


N∑
n=1

(e−α2rn)2 −
N∑
n=1

e(−α2+α3)rn

−
N∑
n=1

e(−α2+α3)rn

N∑
n=1

(e−α3rn)2


−1

×

[
N∑
n=1

Une
−α2rn ,−

N∑
n=1

Une
−α3rn

]T
. (19)

The numerical simulation of Equation (19) yields

[ÃGM, B̃GM]T = [7268, 20.941]T . (20)

D. Experimental fitting of data sets to construct potential
energy curves

The built-in “Minimize” function using estimated
parameters of the integral-differential approach as initial
guess values yielded α2 = 3.925, α3 = 1.51, ÃGM = 9681
and B̃GM = 17.784. The reconstructed PECs as well as
their corresponding error plots are presented in Figures 3
and 4. The definitions of UExp, UGM, UCAS are the same
as was defined under Section III-B.

IV. Integral method for estimation of the
Classical Morse potential parameters

In this section, we consider the second integration of
the second-order ODEs examined under Section III-A
and III-C, this can also be the integration of the first-
order ODEs examined under the sections. In this case, we
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Fig. 3: PECs for estimated Generalized Morse potential parameters
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Fig. 4: Error plots of constructed PECs of Generalized Morse potential

don’t have any differentials in the first objective functions
to be constructed. Hence, no numerical data would be
loss due to numerical differentiation of experimental data
sets. This is the basis of the supremacy of the numerical
integration as compared to the numerical differentiation.
The integration of the ODEs is also with respect to r
having the boundaries [ro, r].

A. Classical Morse potential energy function
In this section, we demonstrate the integral approach

in estimating parameters of the Classical Morse potential
parameters. It involves integrating Equation (4) twice
with respect to r within the integral domain [r0, r] to
obtain. Which is in principle, the same as the integration
of Equation (5) with respect to r with the domain [r0, r]

U(r)+a
∫ r

r0

U(ρ)dρ+b
∫ r

r0

[∫ r

r0

U(ρ)dρ
]
dρ+c∆r+d = 0.

(21)
The substitution

∫ r

r0

U(ρ)dρ = I1 and∫ r

r0

[∫ r

r0

U(ρ)dρ
]
dρ = I2 is used to make Equation

(21) compact, ∆r = r − r0 and c is equivalent to c1 in
Equation (5). The first objective function (GCM1) used
to estimate α2 is formulated as

GCM1(a, b, c, d, λ) =1
2

N∑
n=1
{U(r) + aI1n + bI2n + c∆r + d}2

+ λ(2a2 − 9b) −→ min. (22)

Here the constraint equation of the Classical Morse po-
tential is g[a(λ), b(λ)] = [2a(λ)]2− 9[b(λ)]. Differentiating
Equation (22) partially with respect to the four unknown
parameters (a, b, c, d) yields a matrix in 4 dimensions

[a(λ), b(λ), c(λ), d(λ)]T =

4λ+
N∑
n=1

(I1n)2
N∑
n=1

I2nI1n

N∑
n=1

I1n∆rn
N∑
n=1

I1n

N∑
n=1

I1nI2n

N∑
n=1

(I2n)2
N∑
n=1

I2n∆rn
N∑
n=1

I2n

N∑
n=1

I1n∆rn
N∑
n=1

I2n∆rn
N∑
n=1

(∆rn)2
N∑
n=1

∆rn
N∑
n=1

I1n

N∑
n=1

I2n

N∑
n=1

∆rn
N∑
n=1

1



−1

×



−
N∑
n=1

UnI1n

9λ−
N∑
n=1

UnI2n

−
N∑
n=1

Un∆rn

−
N∑
n=1

Un


. (23)
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The numerical simulation yields value of the Lagrange
multiplier, λ = −0.611 and Equation (23) as

[a(λ), b(λ), c(λ), d(λ)]T = [−0.685, 0.104,−0.023, 0.536]T .
(24)

This gives α1 = 0.228. The values of a and b satisfies the
constraint equation.

The second objective function (GCM2) is the same as
Equation (9) and the matrix system to be obtained is
same as in Equation (10), α1 will only be replaced by α2.
Numerical simulation yields results of the values of ÃCM
and B̃CM

[ÃCM, B̃CM]T = [0.552, 0.297]T . (25)

It is clearly observable from the numerically simulated
values α1, ÃCM and B̃CM of the Classical Morse poten-
tial, that the integral method fails to give estimates
that converge to the optimal solution. The authors in
[16] discovered that the built-in “Minimize” (Levenberg-
Marquardt) algorithm embedded in Mathematica R© failed
to minimize the Classical Morse potential as the estimated
parameter values did not have a global minimum. This
can be due to the nonuniqueness of the Classical Morse
potential functional form.
Using these values that fail to converge to the optimum
solution as initial guess values (IGVs) in the built-in “Min-
imize” algorithm returns the values α1 = 1.746, ÃCM =
4379 and B̃CM = 45.886 and the corresponding optimized
value is shown in Table I. The reconstructed PECs for the
Classical Morse potential parameters is shown in Figure
5. As can be seen, the approximations using the estimates
that failed to converge to the optimum solutions as IGVs
in the built-in algorithm of MathCad R© are good.

B. Generalized Morse potential energy function
The integral approach yields the equation (see Equation

(22)) as obtained in Section IV-A, we only use different
notations for the first objective function (GGM1) to
estimate the parameters α2 and α3.

GGM1(e, f, g, h) = 1
2

N∑
n=1
{U(r) + eI1n + fI2n + g∆r + h}2

GGM1(e, f, g, h) −→ min. (26)

This is because the second-order ODE are similar and
the second integration yields the same equation. In this
section, we also introduce column vectors as was done
previously for the integral-differential section. The fol-
lowing definitions apply, ~I1 = [I1,1, I1,2, . . . , I1,N ]T , ~I2 =
[I2,1, I2,2, . . . , I2,N ]T , ~∆r = [∆r1,∆r2, . . . ,∆rN ]T , ~E1 =
[1, 1, . . . , 1]T and ~U = [U1, U2, . . . , UN ]T where ~U repre-
sents U(r). This definitions reduces the objective function
in Equation (26)

GGM1(e, f, g, h) = ~U + e~I1 + f ~I2 + g ~∆r + h ~E1 −→ min.

We partially differentiate this equation with respect to
the four unknowns and after some algebra

[~I1 ~I2 ~∆r ~E1] · [e, f, g, h]T = −[~U ]. (27)

The notation L = [~I1 ~I2 ~∆r ~E1] (an N × 4 matrix) and
R = −[~U ] (an (N×1) matrix) is used to simplify Equation
(27)

[e, f, g, h]T = (LT · L)−1 · (LT ·R), (28)

which is numerically simulated to yield the values

[e, f, g, h]T = [5.592, 5.856, 0.522,−0.013]T . (29)

The relation

α2, α3 = e±
√
e2 − 4f
2 ,

gives α2 = 4.196 and α3 = 1.395.

The second objective function (GGM2) is the same as
in Equation (18) while the corresponding matrix system
to be obtained is same as Equation (19), where α2 and α3
replaces α2 and α3. Numerical simulations of Equation
(19) for this section yields

[ÃGM, B̃GM]T = [16780, 11.386]T . (30)

C. Experimental fitting of data sets to construct potential
energy curves

The reconstructed PECs of the integral approach
for this section and the corresponding error plots are
presented in Figures 6 and 7.

V. A Novel Approach
In this paper, we have identified the Classical and Gen-

eralized Morse potentials using the Objective least squares
function, ObLSf, method with the integral-differential
and integral approaches. We refer to this method as the
Lagrange multiplier method. The aforementioned method
is based on reliable methods readily available in literature
and it was well-detailed in the estimation of the energy
potential parameters. We concisely demonstrate a more
comprehensive evaluation of this paper by proposing a
novel approach. Considering Equation (4), replacing a1, a2
by C1, C2 and integrating the equation twice with respect
to r within the domain [r0, r]

U(r) + C1I1(r) + C2I2(r) + C3 + C4∆r = 0, (31)

where the definitions C4 = −(U ′0+C1U0), C3 = −Uo apply
and I1(r), I2(r) retain their previous definitions. The
Equation (31) linearly depends on C1, . . . , C4 unknown
parameters and there is one constraint between C1 and
C2 parameters

2C2
1 (C4)− 9C2(C4) = 0. (32)

We introduce the parameters C3 and C4 to account for
statistical uncertainty of experimental data sets. Let us
consider C4 as a variable parameter so that C1, . . . , C3
coefficients are considered as functions of this auxiliary
parameter: C1 = C1(C4), C2 = C2(C4), C3 = C3(C4).
The objective function is now constructed as

G(C1, C2, C3, C4) = 1
2

N∑
i=1

[C1I1i + C2I2i + C3

+(Ui + C4∆ri)]2 −→ min. (33)
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Next, we partially differentiate the objective function with
respect to all three parameters C1, . . . , C3, equalize them

to zero and obtain the system whose solution is

C1(C4)
C2(C4)
C3(C4)

 =



N∑
i=1

(I1i)2
N∑
i=1

I1iI2i

N∑
i=1

I1i

N∑
i=1

I2iI1i

N∑
i=1

(I2i)2
N∑
i=1

I2i

N∑
i=1

I1i

N∑
i=1

I2i

N∑
i=1

1



−1

×


[
−

N∑
i=1

I1iUi,−
N∑
i=1

I1iI2i,−
N∑
i=1

Ui

]T

+C4 ·

[
N∑
i=1

I1i∆ri,
N∑
i=1

I2i∆ri,
N∑
i=1

∆ri

]T .

(34)
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Next, we solve 2C2
1 (C4) − 9C2(C4) = 0 to obtain C4.

The numerical simulation of the system in Equation (34)
practically gives the same results as those generated using
the Lagrange multiplier method detailed in this paper.
The advantage of this novel approach is that we calculated
the coefficient matrix only once but the coefficient matrix
is calculated for every λ using the Lagrange multiplier
method. This means, if there are 1000λ parameters,
the coefficient matrix would be calculated for every
single λ. The novel approach can also be applied to
any equation regardless of how complex the constraint
equation(s) is(are). The Lagrange multiplier method, on
the other hand, cannot be applied to equations having
complex constraint equations (i.e. it can only be applied
to equations having a quadratic constraint equation).
This is further expatiated by considering the Classical
Rydberg potential and Generalized Rydberg potential
energy functions

UCR(r) = (A1 +A2r)e−αr, (35)
UGR(r) = (A1 +A2r +A3r

2)e−αr. (36)

Equation (35) has the characteristic equation (λ + α)2

and constraint C2
1 − 4C2 = 0 while Equation (36) has

the characteristic equation (λ + α)3 and constraints
C2

1 − 3C2 = 0, C1C2 − 9C3 = 0 and C3
1 − 27C3 = 0.

In the case of the Generalized Rydberg energy potential,
the Lagrange multiplier method cannot be used due to
the cubic constraint equation. The method can not be
used in cases where the constraint equation(s) is nonlinear.
Although, the Classical Rydberg and Generalized Rydberg
potentials are not the focus of this paper, we only use their
analytic forms to expatiate on how the novel approach (in
comparison with the Lagrange multiplier method) is more
applicable to problems having more complex constraints.
A brief look at the dimensions of the matrices in Equations
(23) and (34) also shows the superiority of the Novel
approach to the Lagrange multiplier method. The Novel
approach will be well-detailed in identifying energy po-
tentials such as Classical Rydberg, Generalized Rydberg,
Generalized Morse, Simplified Buckingham and Extended-
Rydberg potentials in future investigations.

VI. Results and Discussion
The approaches that we considered in this work are

more accurate than the ObLSf method and differential ap-
proach used in [16], they were used to estimate parameters
of hybrid functional forms of the Morse potential. Figure
6 shows the very good approximations of the integral
approach as the reconstructed PECs for the experimental
data sets of gold atom, estimated parameters using the
integral approach and built-in function in MathCad R©

are almost graphically indistinguishable. The errors in
Figure 7 are also very small. Table I shows that the
integral approach gives better approximations compared
to the integral-differential approach (and even the ObLSf
method and differential approach in [16]). The integral
approach is therefore a preferred approach for estima-
tion of potentials as it filters random perturbation and
prevents numerical loss of data. It should be noted that
the optimized goal function value for the Classical Morse

potential in Table I was obtained using the estimated
values that did not converge to the optimal solution as
IGVs for the built-in algorithm in MathCad R©. Table
II compares the estimated Morse potential parameters
obtained using the integral-differential approach presented
in this work with estimated parameters in the literature
for gold (Au-Au), aluminum (Al-Al), chromium (Cr-Cr)
and iron (Fe-Fe) metal atoms. The disparities observed
between the values of D(eV) in our approach and the
existing values in literature is due to the fact that different
experimental data sets were used in obtaining the results.
The disparities between the values of rm(A0), α(1/A0)
in our approach and existing values are reasonably
acceptable.
Figure 5 illustrates that although the integral approach
fails for the Classical Morse potential energy function,
the obtained values can be used as starting IGVs with
the “Minimize” algorithm in MathCad R© to obtain quite
good approximations when fitted to experimental data
sets of gold atom [10].

VII. Conclusion

In this paper, we estimated the parameters of the
Classical and Generalized Morse potential using the
(relatively) more accurate integral-differential and integral
approaches. These approaches are more accurate because
they filter random perturbation as opposed to differential
approach which causes numerical loss of data. In [16], the
built-in “Minimize” function failed to produce estimates
that converge to the optimum solution. In this paper, the
integral approach failed to estimate parameters of the
Classical Morse potential using the ObLSf method and
integral approach. This paper therefore validates that,
the Generalized Morse potential is a more viable hybrid
form of the Morse potential. We further confirm this
proposition by papering the values presented in Table
I. The closer the values are to 1, the less accurate the
approximated estimates, the farther the values are from
1, the more accurate the approximated estimates. From
this standpoint, the initial proposition is validated. This
paper also shows that the approaches applied, gives good
estimates that agrees with experimental data sets of gold
atom globally and locally, within the whole range of
interatomic distance. A novel approach was concisely
introduced and comparisons were made between both
methods outlined in this paper.
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