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On the Solvability of a Resonant p-Laplacian

Third-order Integral m-Point Boundary Value
Problem

Ogbu Famous Imaga*, Sunday Onos Edeki’ and Olasunmbo Olaoluwa Agboola*

Abstract— In this work, we establish conditions
for the existence of at least one solution for a p-
Laplacian third order integral and m-point boundary
value problem at resonance. The Ge and Ren exten-
sion of Mawhin’s coincidence theory will be used to
obtain existence results for the p-Laplacian problem
at resonance.

Index Terms— Coincidence degree, resonance, m-

point, integral boundary value problem, p-Laplacian.

1 Introduction

This work deals with the following p-Laplacian third or-
der integral and m-point boundary value problem at res-
onance

(6p(u” (1)) = w(t, u(t), v (t),u" (),

subject to the boundary conditions

te(0,1), (1)

m i
() = S o [ oy )
(1) = 0, (1) = B (),

where the function w : [0,1] x R® — R is continuous,
bp(s) = |s[P~2s, p > 1, the inverse of(;S;l is ¢g, %—&-% =1,
0<&iH <& < <<, >0, (1 <i<m)eR
and n € (0,1). Since we require a nontrivial kernel for
our quasi-linear operator, the condition Y ;" a;& =1 is
critical. The integral in (2) is the Riemann-Stieltjes inte-
gral.

A boundary value problem Lu = u"'(t) = 0 is said to be
at resonance if L is non-vertible else it is a non-resonance
problem where L is a linear operator. Since the estab-
lishment of the coincidence degree theory by Mawhin,

(2)
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for boundary value problems at ressonance [13], many
authors have studied resonant problems when the differ-
ential operator is linear (see [1, 3, 5, 6, 8, 9, 12]). When
the differential operator is nonlinear, like in p-Laplace
boundary value problems the Mawhin coincidence degree
theory fails while the extension of the theorem by Ge and
Ren [4] is used (see [7, 2, 15, 10] ).

Inspired by the above works, this paper uses the Ge and
Ren extension of the coincidence degree theory [4] to es-
tablish the existence of solutions for the problems (1)-(2)
at resonance.

The rest of the paper is organized as follows. Section 2
gives necessary definitions, lemmas and theorem that are
needed tor the work. In section 3, we obtain existence re-
sults for (1)-(2) while an example will be given in section
4 to corroborate our result.

2 Preliminaries

In this section, we will give necessary lemmas, definitions
and theorems.

Definition 1. Given two Banach spaces, U and Z with
norms ||-||g and || ||z respectively, a continuous operator

M:dom M CcU — Z

is said to be quasi-linear if

(i) Im M is a closed subset of Z;

(ii) ker M is linearly homeomorphic to R™, n < cc.
Definition 2. ([10]) Let Q@ C U be a bounded open
set with the origin o € €. The nonlinear operator N :
Q' — Z, X e€]0,1] is said to be M-compact in  if there
exist Z1 C Z with dim gl = dim ker M and a continuous,
compact operator T :  x [0,1] — Us such that for A €
[0,1],

() (I—-QNyClIm M C (I - Q)Z;

(ii) QN xu =0, A€ (0,1) & QNu =0, Yu € Q;
(iii) 7(-,0) =0 and T(:, N[y, = (I = P)y,;
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(iv) M[P+T(-,\)]=({—-Q)Nx, A €]0,1];

where Us € U is a complement space of ker M, i.e. U =
ker M@ Uz; P, Q are projectors such that ker M = Im P,
Im Q@ =2, N=Ny,and ), = {ue€Q: Mu= Nyu}.

Lemma 3. [16] The following are true for ¢,:

1. ((i)) ¢p is continuous, invertible and monotonically
increasing. In addition, ¢;1 = ¢4 and for ¢ > 1 then

11 .
Lyloy
(ii) For all y, z,> 0,

Op(y +2) < dp(y) + dp(2), ifl<p<?,
bp(y +2) <2072(dp(y) + dp(2)), ifp>2.

Theorem 1. ([4]) Let U and Z be Banach spaces,
and 2 C U a bounded open nonempty set. Also M :
dom M C U — Z is quasi-linear and Ny : Q = Z, A €
[0,1] is M-compact in Q. Assume the following condi-
tions are satisfied

(i) Mu # Nyu for every (u,\) € [(dom M\ker M) N
99 < (0,1);

(ii) @Nu # 0 for every u € ker M N 9

(iii) deg(JQN,Q N ker M,0) # 0, where J : Im Q —
ker M is a homeomorphism.

Then, the abstract equation Mu = Nu has at least one
solution in 2.

Let

U= {ueC?0,1]: ¢p(u(t)) € C*[0,1], u(t) satisfies (2)}
t d =

s fo(0)] and [l

max{||t]|so, ||t/]|co, || ||cc } are defined on U.

Let Z = L0, 1] with the norm on Z denoted by || - ||;.

The quasi-linear operator M : dom M C U — Z will be
defined by

where the norms |z|lcc =

M :u— Mu = (¢ (u" (1)), t €[0,1],
where dom M = {u € UNC?0,400) :
m &i
e [ gyl (1) =
i=1

Bu’(n)}. Also, the nonlinear operator Ny : U — Z, X\ €
[0, 1] will be defined by

¢p(u”(0)) = 0, (1) =

(Naw)t = Xq(t, u(t), ' (t),u" (1)), t € [0,1],
thus problem (1)-(2) may be written in the form

Mu = Nyu.

Lemma 2. If 221 ;& = 1 then there exists
re{l,2,...,m— 1}, such that

i ai£;‘+2 7é 0

i=1

Proof. Since 0 < & < & < -
St ;& = 1 then there exists i €
a; # 0, hence >/ | a; # 0. Assuming

< &n < 1, and
[1,m] such that

m

Zaiggqu:O’r:O717"'7m_27
i=1
we have
% % 72n aq 0
RS " as 0
& & o &n Qm 0
Since
g g -
det . . .m
& & Em
1 1 e 1
gl 52 €m
=g | . . .
m—2 m—2 L m—2
1 2 m
m
= <H §2> I & —¢) #o,
i=1 1<i<j<m
then, oy = as = -+ = «,, = 0, which contradicts

o, i # 0. Hence, Lemma 2 holds.

Lemma 3. If >, ;& = 1, then, the operator M :
dom M C U — Z is quasi-linear.

Proof. By simple calculation, we see that
ker M = {u € dom M :u=d,d € R}.
We will now show that
Im M = {y €Z: zm:OzTA§ /Omy(v)dvdx = O}. (3)
i=1

The p-Laplacian problem

ép(u” (1)) = y(v) (4)
has a solution u(t) that satisfies (2) when
m & o
;ai/o /0 y(v)dvdz = 0. (5)
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The solution of (4),
as

u(t) = u(1)+u’(1)(t—1)—/tl/:¢q (/1y v)dv

Applying the boundary condition (2) and Y ;"

to (6) we obtain
&i
S [ [

which satisfies (3) and

u(t) =d+ pe=1) / bq /: y(v)dvdzs

1-p
> dxds,

[ [ a([ va

where d is an arbitrary constant and w(¢) is the solution
to (4) satisfying (2). Since ker M = 1 < oo and

MU N dom M) C Z is closed, the operator M is
quasi-linear.

u(t) that satisfies (2) can be written

) dxds.

(6)
;& =1

v)dvdx = 0,

Lemma 4. The nonlinear operator Ny is M-compact, if
w € C([0,1] x R3 R).

Proof. We define projectors P : U — Uy as Pu = u(1)
forallue U and Q : Z — Z; as
dvdw)

(e [

€[0,1],V y € Z, where Z; is the complement space of
Im M in Z. Let Q C U be bounded, then we will define
T:Qx[0,1] = ker P as

T, (1) = 2= / 1 (e [ - QNlo)do) da

( )(r +2)
z 1a§r+2

Qy=

1-5

_/tl /: be (/;[(I—Q)Nw](v)dv) duds, t € [0, 1.

(7)

T(-,A) is continuous and relatively compact since w €
C([0,1] x R3,R), and X € [0,1]. We will now show in the
following four steps that N is M-compact.

Step 1: Let y € Z, then

Q%y = Q(Qy) = Qu(Q)

(r+1)(r+2)
Z77l €T+2
t€[0,1],

=Qy

m {l
( al/ / Tdvda:)]
= Qy,
hence Q% = Q. Therefore Q(I — Q)NA(Q) =

(%
Q)Nx(2) = 0. This implies that Q(I — Q)NA(Q) C
ker@ = Im M. Now, if g € Im M, then Qg = 0. We

can writegasg=9g—Qg = (I —Q)g, thusge (I -Q)Z
Therefore (i) of definition 2.2 is satisfied.

Step 2: If QNu = 0, then Nu = Nu — QNu =
(I —Q)Nu = 0. Since Nu # 0, (I — Q) is a zero op-
erator. Hence (I — Q)Nyu = 0 and QN u = 0. Using
same logic it can also be shown that when QNyu = 0,
QNwu = 0. Hence (ii) of definition 2.1 is satisfied.

Step 3: Here we show that (iii) of definition 2 holds.
From (7), we have

7, 3)(0) = VA=) / 1 (¢q / 1[(1@)Nu1<v)dv) dx

f)\//qﬁq (/ (I — Q)Nu](v)dv)dxds,

hence T'(+,0)

AlsoforuGZ:{uéﬁ:Mu:NAu}or
A

{ueQ: (gp(u”))

SHED T (o [ @ty oan)

-/ 1 : o] 1<¢p<u”<v>>>'<v>dv) dods

= dw(t,u(t), v (t),u"(t))}, we have

T(u, A)(t)

Bt-1) [
T 1-5 /77u d$d8+// x)dxds
B ﬂit_ﬂl) [w'(n) = ' (D] + ' (1) (1 = £) — (1) + u(t)
= ()t = 1)+ (1)(1 = 1) = u(1) + u(t)

= [(I = P)u] ().
Step 4: Now for all w € U Ndom M, we have
M[P+T(-,\)]u=u(l)

2D [ (o0 [ 10- @M

//% <[ r= Q)Nw](v)dv> dxds

(I — Q)N u(t).

Since conditions (i) - (iv) of Definition 2 are satisfied in
Q, then Ny is M-compact .

3 Existence Results

Theorem 2 Let w : [0,1] x R® — R be continuous func-
tion. The p-Laplacian boundary value problem (1)-(2)

with 27;1 O[ié-l = 17
$(2)22 (2| + Iyl + 215 <1 for p <2
(8)
and
¢q(2) (28 + Iyllit + 2185 <1 forp>2 (9)

has at least one solution in C?[0, 1], if the following con-
ditions hold
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(C1) There exist function x,y, z, h € C([0, 1], [0, 00)) such
that for all (a,b,c) € R3, t € [0,1]

w(t, a,b, )] < x(t)p(lal) +y(t)dp(0])

T 2(t)b(lc]) + (o). 10

(C3) There exists a constant D > 0, such that for any u €
dom M, if |u(t)| > D, or |[u/(t)] > D, or |u"(t)| > D,
for every ¢ € [0, 1] then

QNu(t) £0, t €[0,1]. (11)

(C3) There exists a constant F' > 0 such that for d € R,
if |[d| > F, then either

m & pt
doZai/O /Ow(v,d,(),())dvdt<0, (12)
1=1

or
m & ot
doZai/ /w(v,d,0,0)dvdt>0. (13)
i=1 0 0

Proof. We set
Q1 ={u € domM ker M : Mu= Nyu, X € [0,1]}.

If w € Qp, then Mu = Nyu and X\ # 0, then Nu €
ImM = ker@ and@QNu(t) = 0. From (C2), it follows
that there exits to,¢1,t2 € [0,1] such that |u(to)] < D,
|/ (t1)] < D and |u”(t2)] < D. By the absolute continuity
of u,u, we have u(t) = u(to) + ftf) o' (v)dv i.e,

t
<D+ [ |[u(v)|dv.

to

lu(t)| = U(t())+/ o' (v)dv

to

Hence, ||u)lcoc < D + ||t/||0o- Also, since u'(t) = u(ty) +
j;tl v (v)dv, then

[/ (t)] = U(t1)+/ '’ (v)dv

t1

t
§D+/ [u” (v)|dv
ty

Hence, ¢/ ||oc < D + ||t”||oo. Thus,

[ulloo < 2D+ [|u”]|

Therefore,

— / 11
bl = Ol Wl Wk
< 2D + Hu”||oo.
Now,
t
W (8)] = by |6 (0" (22)]) + / " (v)dv
ta

<oy [opllu @) + | t Mol

to

< ¢q[dp(D) + [[Null1].

Suppose ||[Nul[1 < ¢4(D), then
[u"llse < dq(2lINull[l2)-

For 1 < p < 2, considering (10) and lemma 3, we have

[u”lloo < ¢q (2 Nullll1)
< 0q(2) 27 (Sl o lullZS + lylloo 1u'l125)
+ g (llzlloo lu” 1557 + 17l0))]
< ¢q(222 {215 o
Y15 1 Nl
+ 121145 1 oo + [1I1E]
< ¢(22 | (|2 155" + lIyllL
+l2l + RIS
From (14), we have
lull <2D + [[u" |
= 2D + 6222 lull (215" + llwll&
+l29 + Rl

or
2D + 6, (2)22773 B !
Jull < o (15)
= 0g@20 | T+ [yl %+ 2157
Let D; = 2D+¢4(2)2% 4 ||h||i ! , in view of

1—q(2)229= 4[|z )| &5 +[[yl|% "+ 21451
(8), we see that Dy > 0 and |u|| < D;. Hence, ; is
bounded.
For p > 2,
[ [loo < ¢q (2| Null]]1)

< dg ()l /1%5H flull oo

a1 oo + 120155 I [loo + RIS

< dg@)Null(lzl St + Nylds + 21t + A1)
From (14), we have

l[ull < 2D + [|u”||

= 2D+ ¢o2)[lull (=125 + llylles!
+ 2+ IR

or
2D + ¢4(2)|| b4 !
[Jul] < T - s (16)
1 —oq2)[llz)& " + Iyl +l121% ]
Let Dy = 2D+ (2)]11]1 2 , in view of (9), we

1—¢q(2)[ll=]| % +llyl1% " +]1211% "]
see that Dy > 0 and |ju|| < D;. Hence, € is bounded.
We next let

Qo ={ueckerM: NueImM}.

If u € Qo, then u € ker M and u can be defined as u(t) =
w, t €0,1], w is an arbitrary constant.
Since QNu = 0, then

m &
Z ai/ / w(v,d,0,0)dvdt = 0.
i=1 0 /0
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From (Cj3), it follows that |u|] = w < F. Hence, 3 is
bounded.
Let the isomorphism J : Im @@ — ker L be defined as

J(dt") =d, d € R.
Ifd 3" a foi fow
Q3 ={ucker M : \J 'u=(1-NQNu, X€0,1]}.

w(v,d,0,0)dvdt < 0, we define

For u € Q3, we have
Adt”

, r+1)(r+2) « &
:t(l—/\)(z §r+22al// (v,d,0,0)dvdt.

When A =1, d = 0. However, when |d| > F, in view of
(11), we obtain

a(u(0) =6 [ o0t =2 [ ow )

W(1) =0, u'(1) = 3 (;) ,

wherep*3>2 q =
& =

3, a1 = 6, Qg = 72, 51
andﬂ—?) Also,

w(t,a,b,c) =t + 5a® + 12(cos b*) + 12¢2.

The resonance condition is fulfilled since, oy + ag =4 —

) 2=2%#0 and
Adt 0[151 + Ct2§2 = (4) (%) + (—2) (%) =1. Now
” (r+1)( &i
:td(l—)\)zi ang / / (v,d,0,0)dvdt
<0 lw(t,a,b,c)| < |t| +5lal* + 12| cos b?| + 12|c|?

which contradicts Ad?t" > 0. Therefore |u| =
implying that ||u|| < F. Hence €23 is bounded.

Ifd-3" o 5 5 w(v,d,0,0)dvdt > 0, we define
Q3 ={ucker M : \J 'u=—(1-NQNu, A€ [0,1]}.

ld| < F,

Similar arguments can be used to show that Qg is
bounded. This concludes the proof of Theorem 2.

Finally, we will show that all the conditions of Theo-
rem 1 are satisfied. Take an open bounded set Q@ C U
such that U2 ,Q; C Q. Lemma 3 shows that M is a
quasi-linear operator while Lemma 4 shows that N, is
M-compact on Q. Thus conditions (i) and (ii) of Theo-
rem 1 are satisfied. Finally, we show that (iii) also holds.
Set E(u,\) = £ u+ (1 — A\)JQNu, J(dt") = d. When
A=0, JQNu # 0, for A = 1, E(u,1) = £Idu # 0.
For A € (0,1), from (C3), we see that E(u,0) # 0. Then
based on the above argument, for every u € ker M N 0X2,
E(u, A) # 0. Therefore, the homotopy property of degree
gives

deg(JQN |ker .2 Nker M, 0) = deg(E(-,0), 2N ker M, 0)
=deg(E(-,1),2Nker M,0)
= deg(+£Id,Q2Nker M,0) = +1
# 0.

Therefore condition (iii) of Theorem 1 holds and problem
(1)-(2) has at least one solution in €.

4 Example

We will consider the following p-Laplacian boundary
value problem

(p3(u”
(17)

(1)) = t+5u(t)?4+12 cos(u/ (t)*)+12u" (t)?, t € (0,1),

=1+ 5[al® + 12 + 12|c|?
=13 + 5|al* + 12|¢*.

Since z(t) =5, y(t) =0, z(t) =12, t € (0,1), then

G2 + [yl it + [I2l|451) = 275[57% + 1273)
= 0.6934(0.5848 + 0.4368) = 0.7083 < 1.

Therefore, condition (F;) is satisfied.

Next we show that condition (Fs) holds. Let D = 3. and
u € dom M. if |u(t)] > D, t € (0, 1), then either u(t) > D
or u(t) < —D.

For u(t) > D, we have

m &t
Z ai/ / w(v,u, v, u'")dvdt
i=1 0 70

o[
0
/ / (v—|—5u + 12 cos(u')? + 12(u/ ))dvdt
0 0
/2 / <v+5D2 124 12D2)dvdt
0 0

3 ot
72/ / (v+5D212+12D2>dvdt

0 0

<v+5u + 12(cos(u')? + 12(u’ )>dvdt

[}

l\')

>4
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Similarly, if u(t) < —D, then

m &t
Zai/ / w(v,u, v, u'")dvdt
i=1 0 70
5 ot
= 4/ / (v + 5u? + 12 cos(u’)? + 12(u")2>dvdt
o Jo

3 gt
-2 /2 / <v + 5u? + 12 cos(u’)? + 12(u”)2) dvdt
o Jo

st

< 4/ / (v —5D% +12 — 12D2) dvdt
0 0
I ot

- 2/ / (u —5D%? 412 — 12D2>dvdt
0 0

317
212
<24 1 <0

Therefore, condition (Fs) holds.
Finally, we will show that condition (Fs5) holds. Here,

m &t
d~Zai/0 /Ow(v,d,O,O)dvdt
i=1

3t 1 3t 1
d[4/ / <v+ d)dvdtQ/ / (U+d>dvdt}
0o Jo 5 o Jo 5
1 1
:d[mm%]

Let F' = % > 0, then for ¢ € R, such that |d| > F, then
either d > F or d < —F. For d > F, we have

m & ot
d~2ai/0 /0 w(v,d,0,0)dvdt > 0,
i=1

while for d < F,

m &t
d- Z ozi/o /0 w(v,d,0,0)dvdt < 0.
i=1

Thus, Condition (Es5) is holds. The p-Laplacian problem
(13) - (14) has at least one solution in C?[0,1] since it
satisfies Theorem 2.
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