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Abstract—The Index theorem demonstrated at first, in the
middle of the last century, has overthrown the world of
fundamental mathematics , then that of theoretical physics. The
question that mathematicians were asked was, is the analytic
index of a Fredholm operator topological? The physicists then
discovered the topological nature of quantum field theory,
introducing the concept of supersymmetry: The index of the
Dirac operator appears in the partition function of a supersym-
metric field theory. In engineering science topological theories
also have a meaning. Gabriel Kron introduces matrix algebra,
then the theory of tensors to the study of networks and the
study electrical machines. In his Thesis, A. Kaufmann gives
a rigorous mathematical reading of this. The vector spaces of
nodes, branches and meshes are defined. In the last part of
this paper, we show how the analytical index as well as other
invariants (the invariants developed by Kron) can be rigorously
found from the properties of linear algebra.

Index Terms—Index theorem, Supersymmetry, Heat kernel,
K-theory.

I. INTRODUCTION

PHYSICS has known in history several mutations, which
have approached it from the mathematical world. New-

ton’s theory goes hand in hand with the development of
the analysis "The calculus of the students." Einstein’s theory
shows that differential geometry and tensor calculus describe
a world of the macroscopic matter very well. General rel-
ativity, unifies apparently distinct entities: space-time and
matter. At the beginning of the twentieth century, Topology
becomes a new branch of mathematics. The most surprising
are the fact that it is now a branch of the quantum fields
theory (QFT): the topological fields theory (TQFT. At the
origin of this is the index theorem of Atiyah-Singer. The first
proof of this theorem was given in the early sixties. Others
demonstrations will follow usign heat equation. Witten will
give another proof, thanks to the concept, for the moment
theoretical, of supersymmetry. In this paper, we propose
to revisit this theorem as well as some of these many
applications to the topological fields theories. We also want
to stress that the topology and the search for invariants also
takes all sense in engineering science, this will be mentioned
in the last part of this article, dedicated to the method of
Kron.

II. THE ANALYTIC INDEX OF A FREDHOLM OPERATOR

One problem that the analysts must solve is the follows:
Given a Fredholm operator L between two complex vector
bundles E and F over a compact manifold X (that mean an
operator where kernel and co-kernel of finite dimension), Is
there existence and uniqueness of the problem: L(v) = w,
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with v ∈ Γ(E), w ∈ Γ(F ) realized. To do this; one is led to
transform the Problem by the addition of constraints: part of
these constraints, on the side of the kernel (create a trouble
of unicity) they are injectivity constraints :

L(v) = w ⇔ L(v +
k∑
i=1

aivk) = w (1)

So the unicity is not respected if these constraints not vanish:
On the side of the image, we have constraints of surjectivity:
Let w1, ..., wl l sections of F such as classes [w1],...[wl]
constitute a basis of coker(L) = F/Im(L) then, if [w] =∑l
i=1 bi[wi] not vanish, that create a trouble of existence

∀w ∈ F,w ∈ Im(L)⇔ [w] = 0⇔ b1 = ...bl = 0 (2)

All of This justifies the definition of the analytical index:

Inda(L) = dim(ker(L)− dim(Coker(L)) (3)

Denotes the analytical index of operator L

III. TOPOLOGICAL CHARACTER OF INDEX, INDEX
THEOREM

The index theorem states that the analytic index of a
Fredholm operator L has a topological nature: this theorem,
first demonstrated by Atiyah and Singer [1] in the second
half of the twentieth century, bridges between problems of
an analytical nature (index of a differential operator) that can
be calculated by considering topological invariants. We can
define an topological index, Indt(L) so

Inda(L) = Indt(L) (4)

In the following we will motivate this remark from some
simple examples. We will see what this theorem says, in the
case where the operator is a linear map between two vector
spaces of finite dimension or not.

IV. TOY MODEL: INDEX THEOREM IN LINEAR ALGEBRA

We begin with the more simplest case that is linear
algebra in finite dimension then, before addressing the most
interesting case, that of compact manifolds, we study what
can happen in infinite dimension.

A. Index of linear map between two vector spaces in finite
dimension

Let, E and F two vector spaces of finite dimension. then
the formula for the index can be found thanks to the formula
of the rank:

Inda(L) = dim(ker(L)− dim(Coker(L)) =

dim(ker(L)− (dim(F )− dim(Im(L)) =

dim(E)− dim(F )

(5)
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We find that the index is necessarily constant and reveals in
some way the topological nature of this index: the differ-
ence in dimension between the initial and target the vector
space is a topological invariant. Another property reflects
the underlying topological nature of this analytical index.
A small deformation of a non-bijective linear mapping can
make it bijective without Changing its index. for example,
in this simple case, the dimensions of the source spaces and
target space are identical: We can, for example, consider the
endomorphisms f And fε of R2 whose respective matrices
are given by:

Mf =

(
1 3
2 6

)
et Mfε =

(
1 + ε 3

2 6 + ε

)
It is easy to notice That these two operators have the same
index (null).

B. Index of linear map between two vector spaces in infinite
dimension

The problem is more omplex, first of all, in infinite
dimension, we can construct operators that are not
Frehdolm. For this reason, the analytical index cannot always
be calculated. For example, the endomorphism of C∞(R)
which to f associates Exp(x).f is not Fredholm.(The
polynomial space of infinite dimension is not in the image
of this endomorphism). Let us give a non-trivial example of
a calculable analytic index. We take C∞(R), the infinitely
differentiable functions and the derivation operator. Its
kernels: the set of constant functions is of dimension 1,
let us determine its cokernel: Any continuous function
have a primitive, it is easy to deduce that the derivation
operator realizes a surjective map on the space of infinitely
differentiable functions. In other words, the cokernel is
reduced to 0. Then, the analytical index of this operator
is 1. With a hindsight, by development on The de Rham
complex of the manifold of real numbers, the alternating
sum of the Betti numbers in this case is again 1, that is the
Euler Poincaré characteristic of R so: Inda( d

dx ) = χ(R)=1.
Give another example by restricting to periodic 2π
functions, and the derivation operator again: the kernel
always has one dimension, but now the cokernel has also
one dimension ( proof left to the reader). ... So, the action
of the periodicity on R amounts to considering the space
S1 and Inda( ddθ ) = χ(S1)=0

We can conclude this paragraph by insisting that the nature
of index operator is not only analytic. Topology has its
role to play, the analytical index can be calculated by using
topological invariants. One understands why Gelfand asked
this question which was first solved by Atiyah and Singer in
The early sixties. Taking the example of finite dimensional
vector spaces, we can give another face of the index theorem.
its link with supersymmetric field theory.

C. Index and superspaces

Return to the previous example, E= Cn, F= Cm ,
we can now build a new space using the tensor product
E ⊗ F . If f denote linear map between us with matrix
P and f∗ is. We can build a new space using the tensor

product, in this, the matrix
(

0n,n P ∗

P 0m,m

)
is an endo-

morphism that exchanges E and F we will say that E is

the space of Bosons, F that of fermions. This endomor-
phism can be seen as a square root of endomorphism with

matrix:
(
P ∗P 0n,m
0m,n PP ∗

)
with, PP ∗ and P ∗P : selfadjoint

In physics, the first matrix denote the Dirac operator, and
it is the square root of the second matrix: the Laplacian
(Hamiltonian) The eigenvalues of PP ∗ and P ∗P are positive
(self-adjoint operator). It has two heat equations (bosonic
aspect), easily resolvable:

(
d

dt
+ P ∗P )u1(t) = 0

(
d

dt
+ PP ∗)u2(t) = 0

(6)

there solutions are u1(t) = e−tP
∗Pu1(0) and u1(t) =

e−tPP
∗
u2(0)

The non-zero eigenvalues of PP ∗ and P ∗P are identical.
they represent the exited states (in quantum mechanics). We
show that the kernel of P ∗P (resp. P ∗P ) are those of P
(resp. P ∗), They represent non-exited states or ground states.
We can then define the "super-trace" of P 2:

Str(e−tP
2

) = Tr(e−tP
∗P )− Tr(e−tPP

∗
) =

Tr(e−tP ) − Tr(e−tP
∗
) =

dim(ker(f))− dim(coker(f)) = Inda(f)

(7)

Solve the heat equation on (E,P 2), gives the spectrum of
the selfadjoint operator P 2; LetP : E → F , P ∗ be adjoint,
the embedding of E in the super-space E⊗F gives a natural
self-adjoint: PP ∗ + P ∗P whose in the square root, P and
its adjoint exchange E (bosons) and F (fermions). the index
of P select the ground states of the supersymmetric system
so constructed.

D. Summary:Index equivalences

We have seen a first equivalence: the index theorem
connects a problem of analysis to a problem of topology.
And now, In a supersymmetric world, only the non-exited
states contribute to the super partition function of the
quantum theory considered. These ground states are the
signatures of the topology, given by Index theorem. We
have the "triangle" : Analysis-topology-Physic

ANALYSIS

↗↙ INDEX ↖↘

TOPOLOGY � PHYSIC
After this nice introduction, the reader is prepared if
he wishes, to read the following developments. We now
present in the next paragraph, some indications on the
differents proofs of the theorem.

V. INDEX THEOREM DEMONSTRATION

We have seen in the first paragraph how to define the an-
alytical index of a Fredholm operator. In very easy cases we
have been able to show that this index has an interpretation
Regarding topological invariant. The demonstration in the
general case is very complex even for compact manifolds.
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We give the general framework in which the index theorem
has been demonstrated Let E, F two vector bundle on a
compact manifold X . We call order m differential operator
P on X the linear application between space of sections
Γ(E) on Γ(F ). In local coordinate we have:

P =
∑
|α|≤m

Aα(x)
∂|α|

∂xα
(8)

The symbol of a differential operator in a manifold (Rieman-
nian), S(X) being the unit sphere in the cotangent, is the
mapping: σ(P ) : π∗(E)→ π∗(F ), where π is the projection
from S(X) to X . in local coordinates:

σξ(P ) =
∑
|α|=m

Aα(x)ξ|α| (9)

definition 1: analytic index

A differential operator is elliptic if and only if its symbol
is a fiber-to-fiber isomorphism. We prove that an elliptic
operator is a Fredholm operator, so we can also define its
analytic index as before, and it is an integer.
For this same operator, it is possible to define an index
which captures only the topological content of the manifold.
The symbol is an element of the compact K-theory of
T∗(X) :σξ(P ) ∈ Kcpt(T

∗X)

Some elements of K theory

Recall some K-theory tools; We get Φ(X), the set of
isomorphic classes of vectorial bundle on X a compact
Riemannian manifold. In order not to weigh down the
notation, we confuse a bundle E with its isomorphic classes
usually Ė). the following construction called symmetrization
will generalize the construction of the set of integers from
positive integers. We consider the equivalence relation on
Φ(X):

(E1, F1) ∼ (E2, F2)⇔ ∃G,H ∈ Φ(X)2 :

(E1 ⊕G,F1 ⊕G) = (E2 ⊕H,F2 ⊕H)
(10)

By definition, the K − theory group of X is the quotient
set of Φ(X) by the equivalence relation defined above:

K(X) = Φ(X)/ ∼ (11)

We denote [E] − [F ] or d([E], [F ]), (d for difference) the
class of an element of K(X), we have just defined the
"formal difference" of two vector bundles, and a new group
the K-theory group of isomorphic classes of Vector bundle
on X . We note also that, if the space X is reduced to a
point, the difference of the two bundles, element of the K-
theory of the point is, in fact, that of two vector spaces: That
is to say the difference of the dimensions of these vector
spaces. The reduced K-theory recalled later, teaches us that
the topological index of the linear map between E and F
(formal difference between (dimension of) vector spaces) is
indeed the analytic index found in the toy model for vector
spaces.

Properties
1) P1: An important result is that any element [E]− [F ]
∈ K(X) can be represented as the difference [V ] −
[θN ] where θN represents a trivial bundle. (because by
increasing the size of the fibers one can trivialize any
vector bundle).

2) P2: If θn, θp are two trivial vector bundle with respec-
tive ranks n and p, we have:

[E]−[θn] = [E]−[θn]⇔ ∃q ∈ R, E⊕θn+q ∼ F⊕θp+q
(12)

K theory relative
This theory is crucial to find the situation of elliptic

operators, we need to define a K-theory relative that is to say
groups K(X,Y ), Y ⊂ X defined as follows: Let E, F two
bundles and α an isomorphism from E|Y to F |Y , the equiv-
alence relation is defined by: (E1, F1, α) ∼ (E2, F2, α

′):

∃G,H ∈ Φ(X)2 : (E1 ⊕G,F1 ⊕G,α⊕ Id|G) =

(E2 ⊕H,F2 ⊕H,α′ ⊕ Id|H)
(13)

Note d([E], [F ], alpha) an element of the group of relative
K−theory . We notice then that this is equivalent to defining
a K "pointed" theory denoted K̃, if we divide X by Y
because then Y is brought back to a point:

K(X,Y ) = K(X/Y, ∗) = K̃(X/Y ) (14)

This will be applied to the theory of elliptic operators by
taking the group of relative K-theory K(B(X), S(X)); if
X is a compact manifold, B(X) the sub-bundle in ball units
of T ∗X , S(X) the sub-bundle into sphere units, it is easy
to notice that then:
K(B(X), S(X)) ≈ Kcpt(T ∗X) = K(T ∗X,∞), Thus for an
elliptic operator D with symbol σ(D) between two vector
bundles E, F
we have: d([E], [F ], σ(D))) ∈ K(B(X), S(X))

definition 2: topological index
Constructing a topological index [2]: Consider a compact

differential manifold X then j an embedding of X into a
Rn, this is always possible by a famous Whitney theorem.
Let N be a tubular neighborhood of j(X), then TN is
a tubular neighborhood of dj(TX) ∈ TRn we have the
diagram:

π∗(N ⊕N) //

��

N ⊕N

��
TX

π // X

(15)

The following identifications are then manufactured by:
N ⊕N = N ⊕ iN = N ⊗R C
Hence, TN above TX is identified with π∗(N ⊕ N) =
π∗(N ⊗R C)
We then have the Thom homomorphism:

K(TX)→ K(TN) (16)

But TN is an open set of Rn, so we have the natural
morphism of excision:

K(TN)→ K(TRn) (17)
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The composition of these two arrows furnishes the mor-
phism:

j! : K(TX)→ K(TRn) (18)

Finally, since T (Rn) is of even dimension, one can invoke
the isomorphism of Thom by means of a complexification
or what amounts to the same periodicity of Bott TRn
compactified is the sphere of dimension 2n on then the
natural arrow:

i! : K(pt)→ K(TRn) (19)

Finally, the topological index is the composition:

i−1
! ◦ j! (20)

Al fine, we show that the topological index can be ex-
pressed in terms of characteristic classes in particular, the
character of Chern

If σ(P ) denotes the symbol of the operator P , the topo-
logical index is the quantity:

indt(P ) = (−1)nch([σ(P )]).td(TX ⊗ C)[TX] (21)

Index theorem

indt(P ) = inda(P ) (22)

A. Initial Proof philosophy

The initial proof is based on the construction of two
embeddings:
j! And i! In a RN : for N well chosen, then the two arrows:

Arrow 1: Kcpt(T
∗X)

j!−→ Kcpt(TRN )

Arrow 2: Kcpt(TRN )
i−1
!−→ Kcpt(pt) ' Z

This demonstration, initial proof given by Atiyah and Singer,
is based on the Thom isomorphism and the Bott periodicity
in K-theory.

B. Heat kernel approach

Another direction to demonstrate the index theorem is
to evoke the heat kernel for the Laplacian operator on
a compact Riemannian manifold. Solve the heat equation
in euclidian space is easy, however, its resolution in any
Riemann manifold is not : it uses the development of the
heat kernel. From a mathematical point of view, this method
was developed by Bott and Patodi at the end of the sixties.
It depicts the square root of classical geometry from the
Clifford algebras and the Dirac operator. This method was
put back to the day after the introduction in the mid-seventies
of supersymmetry. The method developed by Bott and Patodi
was taken up by Bismut [3] and Azencott, who demonstrates
the theorem by stochastic methods.

1) Heat equation on Rn: Let ∆ euclidian Laplacian, the
heat equation, is given by:

(∂t + ∆x)kt(x, y) = 0 (23)

solve it his easy, the solution is:

kt(x, y) =
1

n
√

4πt
exp(−‖x− y‖

2

4t
) (24)

2) Heat equation on a manifold M : Let M a manifold of
dimension n, E vectorial bundle on M , ∆, a Laplacian on
M , we can consider more generally, P a selfadjoint operator
from Γ(E) to Γ(E) then, heat equation is given by:

(∂t + ∆)ut = 0 (25)

solve it is not easy, search solution ut(x) = e−∆tu(x) in
integral form:

ut(x) =

∫
M

Kt(x, y)u(y)dy (26)

where Kt is the heat kernel, also solution of (11), little
calculation give:

Kt(x, y) =
∞∑
k=1

e−λktuk(x)⊗ u∗k(y) (27)

(uk)k=1∞ de L2(E): orthonormal basis of eigenvector as-
sociated to eigenvalues, 0 ≤ λ1 ≤ .... ≤ λk → ∞. we can
define his trace:

tr(e−t∆) =

∫
M

trace(Kt(x, x)dx =
∑
k≥0

e−λkt (28)

3) supergeometry: Using the supergeometric language,
Clifford allows to define a square root of differential form,
Dirac operator, the square root of Laplacian, A mathemat-
ical decomposition in boson fermions show that Laplacian
operator can break in two parts: DD†, D † D, D is dirac
operator and D† its adjoint:

∆ =

(
0 D†
D 0

)(
0 D†
D 0

)
=

(
D †D 0

0 DD†

) (29)

It is easy to see that the half laplacians: DD† and D †D
have the same non-zero eigenvalues then with ker(DD†) =
ker(D†) and ker(D †D) = ker(D) we have:

Str(et∆) = Tr(e−tDD
†
)− Tr(e−tD

†D) = indexa(D)
(30)

An asymptotic expansion of the heat kernels near 0 leads to
a topological index definition:

4) Asymptotic expansion of the heat kernel: we have the
asymptotic expansion of the heat kernels for giving small t:

Kt(x, x)→ (4πt)−n/2
∞∑
i=0

tiai(x) (31)

by integration we find:

Inda(D) = Tr(e−tDD
†
)− Tr(e−tD

†D) =∫
M

(a+
n/2(x)− a−n/2(x))dx

(32)

To go further, We have to define the Bochner-Lichnerowicz
formula, which makes it possible to enrich the formula of
the classical Laplacian, and to exploit the richness of the
spinorial geometry. This formula allows several approaches
to demonstrate the index theorem. The first is determinist
(Berline, Getzler, Vergne) [4] and the second stochastic
(Bismuth, Azenkott).
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5) Bochner-Licnerowicz formula: Let ∇E be a Clifford
connection on a Clifford E module, D the operator of Dirac
associated, ∆E the Laplacian associated with the Clifford
connection,rM Scalar curvature of M , (it is also possible to
add a twisted curvature over the the spinor bundle S, FE/S ,
so we have the formula of Lichnerowicz:

D2 = ∆E + c(F E/S) +
1

4
rM (33)

6) first strategy to demonstate index theorem: The first
strategy to prove the index formula by the asymptotic ex-
pansion method is to invoke the Mehler formula:

pt(x, r, f) = (4πt)−1/2

(
tr/2

sinh(tr/2)
)1/2exp(−tr/2coth(tr/2x2/4t− tf)

(34)

This formula is the heat kernel for the Laplacian of the
harmonic oscillator:

Hx = − d2

dx2
+
r2x2

16
+ f (35)

We note the similarity of this formula with the Bochner-
Lichnerowicz formula. We see also on the heat kernel an
embryonic character of Todd and an embryonic character of
Chern, two topological invariant: the characteristic classes
theory(Milnor) allows to go further. The theorem is almost
demonstrated. To complete the proof, we use a very technical
calculation consisting of rescaling the heat kernel in the
Lichnerowicz formula and correctly exploiting the Parallel
transport. Then it is possible to find Todd and Chern char-
acters and demonstrate the index theorem.

7) Second strategy to demonstrate index theorem: A sec-
ond strategy is due to Bismuth. To simplify the exposure, we
do not take into account the twisted curvature. We will not
get the formula of the complete index, then the Chern char-
acter is missing. Let K the scalar curvature; we take again
laplacian from Lichnerowicz formula: D2 = −∆ + K/4,
recall that A classical solution of the heat kernel in integral
form is given by:

exp(− tD
2

2
)f(x) =

∫
M

Pt(x, y)f(y)dy (36)

The Bismuth approach consists to substitute left member of
previous equation (36) by:

exp(− tD
2

2
)f(x)↔ Ex(exp(−

∫ t

0

K(xs)ds

8
)τs0f(xs)f(xs)

(37)
this formula represents the expectation of a Brownian motion
(Brownian bridge) starting from x, it’s an adaptation of the
Feynman-Kac formula. We substitute the right member by

∫
M

pt(x, y)Ex,y(exp(−
∫ t

0

K(xs)ds

8
)τ t0f(y)dy) (38)

where pt(x, y) = exp(t(−∆/2) and the second part expec-
tation of a Brownian motion starting to x and ending to y. τ t0
is an adaptation of parallel transport by substitute ordinary
differential equation by a stochastic equation.
To obtain the index, take the supertrace we obtain:

In(D) =

∫
M

Str(Pt(x, x))dx (39)

with:

Str(Pt(x, x) = pt(x, x)Ex,x(exp(−
∫ t

0

K(xs)ds

8
)Str(τ t0))

(40)
It remains to understand the supertrace of the form asso-

ciated with parallel transport in the language of Clifford’s
algebra. Let matrix A:

A =


(

0 −θ1

θ1 0

)
0

0

(
0 −θn
θn 0

)
 (41)

we have the result:

limt→0
Str(EXP (tc(A)

tn/2
= in/2Pf(A) (42)

Pf(A) is the Pfaffian. Using the formula (42) applied to the
supertrace of the right hand side of (40), we express the form
of the parallel transport in term of Pfaffian at the end we can,
thanks to a formula of Levy, recover the character of Todd.

VI. INDEX THEOREM IN PHYSIC: SUPERSYMMETRY

The applications of the index theorem go beyond mathe-
matics. It has applications in theoretical physics and particu-
larly in quantum field theory. We can see, with the following
example, how supersymmetry can be introduced easily. We
can then show that the partition function in the supersymmet-
ric framework is the index of an operator [5]. On the other
hand, the kernel and cokernel in the formula of the analytic
index refer to the vacuum states of the quantum system. In
other words, the theory of supersymmetric ("topological")
fields is a theory with non-exited states.

A. Quantum mechanics on a manifold

1) Bosonic version: If we consider a particle moving on
a manifold M, the quantification of this problem consists in
solving the Shrdinger equation. Mathematically it is to solve
the heat equation on a manifold, the Laplacian ∆ = − 1

2
d2

dθ2

is Hamiltonian H in physic. For simplicity, take the circle
S1 of radius β. The solution of heat equation is here:

Tr(e−βH) =
+∞∑

n=−∞
exp(

−β2π2n2

R2
) (43)

A physical interpretation of this quantity is the partition
function Z(β).

2) Supersymmetric version: Physicists in the mid-sixties
postulate the existence of a new symmetry that Symmetry
of Noether: this is supersymmetry, we shall return in more
detail later. Briefly, in the standard model, there are two types
of particles: the bosons that carry the interactions, and the
fermions that constitute matter. Supersymmetry postulates
that each fermion has a super-partner bosonic correspondent
(and reciprocally). A boson has the vocation of being a
switching variable, that is a pair variable, while a fermion
must be anticommutative, we will say that it is an odd
variable. That explains why we choose the algebra of the
differential forms of degree 1 to construct the fermionic
variables. The most suitable framework for introducing su-
persymmetry is that of Clifford algebras. The idea to add
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fermions artificially will be to inject algebras functions on a
variety In the algebra of differential forms. The differential
forms of even degrees will represent the bosons, while the
differential forms of odd degrees will be the fermions. We
then construct a so-called super-space, we often note ψ, or
θ a fermionic variable. We denote by Q the operator BRST
in mathematics is simply the differential of the De Rham
complex. One can construct its adjoint notedQ. For example,
for the circle S1, to take into account supersymmetry, we
replace the Hilbert space H(S1,C) by a larger space :
H(Ω∗(S1)⊗ C).

HB = Ω0(S1)
Q,Q−→ HF = Ω1(S1) (44)

The Dirac operator D exchanges bosons and fermions and
reciprocally in the case of the circle S1, we simply have:

D = Q+Q (45)

This operator is a square root of the Laplacian, the semi-
Laplacian which restores the energy H of the system:

H =
1

2
(QQ+QQ) =

1

2
∆ (46)

In this context, the partition function on the circle S1

becomes, the index:

ZS(β) = Str(e−βH) = (−1)FTr(e−βH) =

Tr(e−βQQ))− Tr(e−βQQ))
(47)

The two operators QQ, QQ have the same eigenvalues and
on the other hand: the QQ kernels are those of Q and that
of QQ is the Q; The preceding equality thus becomes:

ZS(β) = Str(e−βH) = dimKer(Q)− dimker(Q) (48)

In the framework of Riemannian geometry, we know that
each class of cohomology has a harmonic representation. Ψ
verifying Qψ = Qψ = 0 Is in the kernel of the Laplacian,
which physically represents the states of the vacuum. In
other words, when one is interested in the supersymmetric
model, the function of partition depends only on the non-
exited states: the state of the vacuum of a theory. That is the
topological side of the index of operator (here D): ind (D).
In addition, the two kernels: ker(QQ), ker(QQ) represents
the betti numbers: b0 and b1 respectively. So the index of the
Dirac operator on S1 vanish.
The above calculations can be generalized for any compact
variety. The de Rham complex is exploited, the even differen-
tial forms represent the bosons, the odd forms, the fermions.
We find by taking Dirac operator d+d† that the index of this
operator on the manifold is the Euler Poincaré characteristic
of the manifold.

VII. OTHER APPLICATIONS IN MATHEMATICAL PHYSIC.

The Index theorem is a smooth version of Riemann’s Roch
theorem [6] [7]. He has greatly advanced the geometry of
varieties. In four dimensions, for example Donaldson [8]
uses the Su(2) gauge group of physicists to define new
invariants for the four dimensional geometry. He defines the
Donaldson invariants. To define these invariants, we need
spaces of configurations more general than the differentiable
manifolds: we speak of moduli spaces (or space of instantons

for physicists). The elements intervening there are the self-
dual connections defined on the principal bundle of group
Su(2). We can introduce a virtual dimension for this moduli
space. The dimension is calculated using the index the-
orem. In dimension 4 Seiberg and Witten [9] [10] [11]
we also define invariants which carry their names, involving
connections on the group of gauge U(1). The index theorem
also allows the definition of virtual dimension for the space
of the corresponding modules.

A. Supersymmetry and string theory

At the same time, Gromov [12] [13] defined the pseu-
doholomorphic curves. In four dimension, Taube, shows that
the invariants of Seiberg-Witten can be defined from these
complex curves. In supersymmetric field theories, Witten
defines new invariants, the Gromov-Witten invariants. By
defining supersymmetric fields theories, he shows that the
path integral, by definition mathematically incalculable is
in these cases. For this, he uses a localization [14] tech-
nique. The theories of fields are localized around space of
instantons (moduli space). The virtually finite dimension of
these moduli spaces makes it possible to make calculations,
in particular, to make enumerative geometry [15] on the
correlation functions. This technique of localization allows
him to find in four dimensions, the instanton modules of
the Seiberg-Witten theory. In the superstring theory (ten-
dimensional spacetime), the instantons discovered by Witten
on the A side of mirror symmetry, are precisely the pseu-
doholomorphic curves. These considerations greatly advance
the symplectic geometry [16] [17] .

VIII. EXEMPLE: SYMPLECTIC GEOMETRY AND
CORRELATION FUNCTION FOR STRINGS

A. A toy model

In symplectic geometry, there are very few local invari-
ants. This is due to Darboux’s theorem which assumes
that locally all symplectic manifolds are similar, unlike the
Riemanian varieties that can be separated locally by the
curvature. A strategy, due to M. Gromov, for constructing
invariants is to consider sub varieties such as, for exam-
ple, holomorphic curves (function from Riemann surface
to a symplectic manifold); There are parameterized curves:
u : (Σ, j) → (Y, J),checking the conditions of Cauchy
Riemann: du◦j = J ◦du, where j and J are almost complex
structures respectively on Σ and Y , and modelized a sigma-
model in quantum field theory. Counting the holomorphic
functions passing through marked pointson a Riemann sur-
face, makes it possible to determine the correlation functions
in superstring theory, the so-called invariants of Gromov
Witten. Indeed E. Witten showed that a holomorphic function
represents an instanton among all complex parametric curves.
these parametric curves represent the evolution of a strings
in space-time, in theoretical physics. A toy model, consists
in defining the moduli space of the planar curves: (function
:P1(C)→ P2(C) of given degree (this degree corresponds
to a class of cohomology in H2(Y,Z). For example, for
degree one:

M = {u/u : P1(C)→ P2(C)/PGL(2,C) (49)
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PGL(2,C) represents automorphism group of P2(C) , his
dimension is three; the space of the applications u is of
complex dimension 5, therefore, one finds again that the
space of the complex lines has complex dimension 2 For
example, for lines passing through two fixed points, we have
another moduli space:

M′ = {(u, z1, z2)/u : P1(C)→ P2(C), z1 6= z2}/PGL(2,C)
(50)

with the constraint of passing through two points, we find
that this space has the dimension 4 Because you add, two
parameters (two points) each of them is an element of
P2(C). It is possible now to evaluate (u, z1, z2) in other
words, construct:

ev : (u, z1, z2) ∈M′ → (u(z1), u(z2)) ∈ P2(C)×P2(C)
(51)

Here we have the simplest example of what is called a
Gromov-Witten invariant: the evaluation from a degree one
map u through two points give only one line... In physics
this correlation function is called a propagator.
If we now choose a complex curve of degree 2, we define
a conic, we can show that the moduli space considered has
dimension 5: five points determine only one conic. In this
case, the moduli space must be compactified: there is a
sequence of conics which converges towards a couple of line
for example...
Kontsevich [15] has demonstrated a recurrence formula for
counting all planar complex curves of given degree and
thereby solved an enumerative geometry conjecture. The
consideration of mirror symmetry in string theory has made
it possible to demonstrate other conjectures in simple cases.

B. Theorical model

we are now considering an application of a Riemann
surface in any complex manifold. let φ an application of
a Riemann surface in any complex manifold. Note respec-
tively Mg,Mg,n the space of the curves modules (actually
riemann surfaces), and the space of curve with n marked
points. Thee Riemann-Roch formula for Curve give:

dimCH
0(TΣ)− dimCH

1(TΣ) =
∫

Σ
ch(TΣ)td(TΣ)

= 3− 3g
(52)

If φ : Σ → X is a map from Σ to X The Riemann Roch
formula give:

dimCH
0(φ∗TX)− dimCH

1(φ∗TX)

=
∫

Σ
ch(φ∗TX)td(Σ)

= n(1− g) +
∫

Σ
φ∗c1(TX)

(53)

The deformation invariant of the problem are obtained
thanks to the short exact sequence.

0→ TΣ → φ∗TX → NΣ/X → 0 (54)

The long exact sequence associated, gives the index of
the complex: the dimension of the moduli space of the
applications Mg(X,β, n), β degree of the map, n number
of marked point on Σ :

Roughly, the first term manages the deformation of the
Riemann surface, the second the deformation of the φ

the Riemann surface being fixed, and the third term the
deformations of the application. The long exact sequence
associated,combines the two previous formula [9] and [10]
and compute the index of the complex: the dimension of the
compactified moduli space of the applications Mg,n(X,β)
degree of the map, n number of marked point on Σ :

dimvirtMg,n(X,β) =

(dimX)(1− g) +
∫
f∗(Σ)

c1(TX) + 3g − 3 + n
(55)

Taking care not to confuse real and complex dimensions, in
the case of the plane curves of degree one (the straight lines),
we retrieve the dimension of the space of module M′ seen
previously.

IX. TENSORIAL ANALYSIS OF NETWORKS: KRON
METHOD

Gabriel Kron, inspired by Einstein’s work on general rela-
tivity, proposes to study electrical machines from the angle
of tensor analysis [18]. An electrical circuit can then be
decomposed into nodes (vertices of a graph), edges then
meshes.
The most classical invariant to which we think in graph
theory is the characteristic of Euler Poincaré. For a graph,
we can consider the number of cycles decreased by the
number of vertices and increased by a number of edges.
This invariant is not interesting for the study of electrical
circuits because it does not allow to distinguish in the spaces
of vertices, branches and cycles how many are independent.
Only should be taken into account, the linearly independent
edges to transform the currents in the vector space of the
meshes.

A. Kron Invariant

We consider the vector space of the formal chains
constituted by the nodes: n1, n2, ...nN .
Similarly, we consider the vector space of the branches
generated by B: b1, b2..., bB .
we consider linear map: δ de B dans N define by:
δ(bi) =εj .nj with εj = 1 if the end of bi is nj

εj = −1 the origin of bi is nj

εj = 0 if the end of bi is origin of bi
For example for the graph whose branches are:
b1: origin n1 and the end n2

b2: origin n2 and the end n3

b3: origin n1 and the end n3

b4: origin n2 and the end n2

The matrix of linear map is given by:

G =

 −1 0 −1 0
1 −1 0 0
0 1 1 0


The fundamental relation of linear algebra gives:

dim(B) = dimker(δ) + dim(Im(δ)
This relation is the first relation of Kron, in fact the kernels
of δ is the vector space M of meshes of dimension M .
The image of δ, the vector space P of pairs of nodes, of
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dimension P of or the dimensional relation:

B = M + P (56)

We also have the relation:
dimIm(δ) = dim(N )− dim(N /Im(δ)),

the last part of this equality is the quotient of the set
of nodes, by the nodes that go in pairs. This gives the
number of connected components of the graph: the number
of subnetworks. This is the second relation of Kron

P = N − S (57)

these two quantities are topological invariants because it
depends only on the dimension of the spaces and sub-spaces
vector considered. The previous relationships make it
possible to define the right spaces to represent the electric
currents in stationary regime. In particular the Kron method
shows that it is useful to represent the currents of branches
in currents of meshes. We thus have tensorial quantities
(vertices, chains, cycle ...) that we can dualize .... In a
previous paper, we use, starting from the singular homology,
finer topological invariants, to find topologically the law of
the mesh and that of the nodes [19],[20]
The expression of the analytical index of the delta operator,
also makes it possible to find the first topological relation
of Kron:
Let: δ : B → N , we have

Inda(δ) = dim(ker(δ))− dim(coker(δ)) = M − (N − P )
(58)

Thus in linear algebra Inda is just given by:

Inda(δ) = dim(B)− dim(N ) = B −N (59)

these two relations allow to find the relation (56) In the next
section, we show how Kron’s topological relationships are
used to define the adequate representation of an electrical
circuit in the mesh space.

B. Example

Figure 1 shows an example of circuit :two networks such
that each one is controlled by the other. The second network
is powered by the voltage Vdc(t) reported from the first
network, and the load current of the second network is is
injected in the first network depending on a command law.

Figure 1. Network with two connected components

The second network includes a generator E2, given by:
E2 = V dc ∗ fsw. The visible elements in the graph given
Figure 5 are the topological following character :

• 4 physical nodes n1,..,n4 (→ N = 4)
• 5 branches b1,..,b5 (→ B = 5)
• 3 meshes m1,m2,m3 (→M = 3)
• 2 networks R1, R2 (→ R = 2)
• 2 nodes pair (→ P = 2)

1) Choice of a topology:

Figure 2. Topology of previous network

we choosing arbitrarily the initial node N1 on our first
network, , we start of this Node worm node N2, we have
an return of node N2 to N1. We construct by this return
, the first couple P1 who will wear the current source J1,
and will be in final, our current injected in the first network
coming from the second network. We verify the relationship
for node pair: P = N − S = 4 − 2 = 2 and meshes:
M = B − N + S = 5 − 4 + 2 = 3. As in our first
Network, we choosing arbitrarily on our second network the
node N3, as reference from depart. We depart of this node
worm node N4, we have an return from node N4 to node N3

, we construct with this return, the second couple P2, who
will wear normally the current source J2, but all along our
study we assume that J2 is null, because it is rattached to
a branch which comported not a current source. The good
number of nodes, edges, pairs of nodes and mesh provided
by the invariant of Kron makes it possible to transpose the
electrical study of the circuit in the space of the meshes. It is
one of the main objectives of the analysis tensorial network
(TAN)
Remark: another Choice of topolgy is possible:
For the second network, we can choose another topology,
different than that above, we not change the choice of current
and couple, but we can change the choise of the meshes. But
the computations give the same results in both case due to the
invariant theorem. In all our calculs, we choose the topology
presented figure 3.

2) Connection matrix: According to the complete space
of first and second network look at figure 6 and figure 7,
according to the topological character determined before,
we can determined the connection matrix C linking meshes,
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Figure 3. Second network possible topology

nodes pair and branches currents:
i1
i2
i3
i4
i5

 =


1 0 0 0
1 0 0 −1
0 1 1 0
0 1 0 0
0 0 1 0



im1

im2

i3
J1

 (60)

3) Impedance tensor: The impedances tensor in the space
of the branches is:

z =


Re+ Le ∗ p 0 0 0 0

0 1
Ce∗p 0 0 0

0 0 Rs+ Ls ∗ p 0 0
0 0 0 1

Cs∗p 0

0 0 0 0 Rdr


(61)

Applying the bilinear transformation given by: Z = Ct.z.C,
we obtain the impedance tensor in the mesh space. The
source covector in the branch space is given by:

s =
[
E 0 fsw ∗ Vdc 0 0

]
(62)

After transformation we obtain the source covector in the
mesh space:

S = Ct ∗ et =


E

−fsw ∗ Vdc
−fsw ∗ Vdc

0

 (63)

The voltage covector in the branches space is given by:

v =
[

0 Vdc 0 0 0
]

(64)

Following similar transformation (in the mesh space)
gives:

V = Ct ∗ vt =


Vdc
0
0
−Vdc

 (65)

Here Kron method consist to solve the integrodifferential
equation given by:[

E
]

+
[
V
]

=
[
Z
] [

I
]

(66)

Finally we obtain the two matrices W (impedance tensor
matrix in the space of meshes ) and T (sources covector in
the space of meshes)
T is given by:

E(t) + Le

δt im1(t− 1)− δt
Ce

∫ t−1

0
im1(t)dt

+ δt
Ce

∫ t−1

0
J1(t)dt

−fsw(t)Vdc(t)− δt
Cs

∫ t−1

0
im1(t)dt− δt

Cs

∫ t−1

0
im2(t)dt

+Ls

δ im2(t− 1)

−fsw(t)Vdc(t)− δt
Ce

∫ t−1

0
im2(t)dt− δt

Ce

∫ t−1

0
im3(t)dt

−Vdc(t) + δt
Ce ∗

∫ t−1

0
im1(t)dt− δt

Ce ∗
∫ t−1

0
J1(t)dt


(67)

W is given by:

Le

δ + δt
Ce +Re 0 0 − δ

Ce

0 Ls

δ + δ
Cs +Rs δ

Cs 0

0 δ
Cs

δ
Cs +Rdr 0

− δ
Ce 0 0 δ

Ce


(68)

Figure 4. Second network possible topology

The equation was implemented under a python program. It
takes about two minutes without any problem of conver-
gence, despite the fact that the numerical schematic used
is here the simplest one. For example, figure 8 shows the
load current depending on the command law fsw(t).
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X. CONCLUSION

In conclusion, we can say that the index theorem, dis-
covered more than fifty years ago, has been decisive in
many branches of mathematics and physics. In physics a
new branch of mathematics, after analysis, the probabilities
and geometry done are made an entry: This is the topology.
Supersymmetry is at the origin of a new discipline: the
topological field theory . Supersymmetric particles have
not been discovered by physicists. As always mathematical
concepts are advanced, and even if supersymmetry does not
exist, we think that it remains a theoretical tool allowing us to
do mathematical physics properly. The engineering sciences,
also exploits the notion of topological invariant. Practically
invariants can be built from rigorous theoretical concepts,
linear algebra and topology and can provide valuable assis-
tance in the study of electromagnetic compatibility that uses
the contribution of tensor analysis from the Kron method.
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