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Abstract—This paper studies machine repairable system with
flexible service policy. There are two repairmen and finite
quantity repairable machines in the system, The machines do
some kind of production work and may fail at any time. Two
repairmen are responsible for repairing the failure machines.
When at least two machines are failure in the system, every
repairman repair one failure machine separately. On the other
hand, when only one machine is the failure, the two repairmen
repair the one failure machine collectively at the same time.
For such a machine repairable system, we derive the steady-
state and transient-state indexes of the system. Numerical
experiments have been done to show the system performances.

Index Terms—machine repairable system, Markov process,
flexible repair policy, steady-state availability, reliability.

I. INTRODUCTION

THE machine repairing system can be applied to a variety
of real situations, such as computer network, telecom-

munications, aircraft maintenance, and many others[1]. A
multi-server machine repair problem with warm standbys
under synchronous multiple vacation policies was investi-
gated by Ke and Wu[2]. Wang, Liou, and Lin [3] studied the
issue of the M/M/R machine repair problem with imperfect
coverage and service pressure condition. Liou, Wang, and
Liou [4] considered the controllable M/M/2 machine repair
problem under the triadic (0, Q, N, M) policy. Wang et al.
[5] utilized a recursive method based on the supplementary
variable technique to develop steady-state analytical solutions
in the M/G/1 machine repair problem with multiple im-
perfect coverage. The recursive and supplementary variable
technique was used by Ke et al. [6] to analyze the steady-
state behavior of machine repairable system with switching
failure and warm standby support. Ye and Liu [7] considered
an M/M/1 queue with two vacation policies. Kafhali and
Hanini [8] make two mathematical models based on queueing
theory to evaluate the performance of VoIP traffic in a
single cell IEEE 802.16e Networks. Recently, Li and Li [9]
considered an M/M/1 retrial queue with working vacation,
orbit search and balking. They obtained the necessary and
sufficient condition for the system to be stable, the stationary
probability distribution and the performance measures of the
system.

An unreliable multi-server queue with a controllable repair
policy was considered by Wu et al. [10]. Fitouhi et al. [11]
developed a two-machine continuous flow manufacturing
system with a buffer of finite capacity. The queueing analysis
of a multi-component machine repairable system comprising
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of operating as well as standby machines and a skilled
repairman has been investigated by Meena et al. [12]. Chen et
al. [13] analyzed the system reliability of the retrial machine
repairable system with M operating units, S warm standby
units and a single repair server with N -policy. Wang [14]
deals with a modified M/M/R machine repair problem of
M operating units with two types of spares, and R servers
in the repair facility under steady-state conditions. Spares
are considered to be either cold-standby, warm-standby or
hot-standby. The servers have two service rates for repair of
slow and fast. Ramasamy et al. [15] discussed the steady-
state analysis of a heterogeneous server queuing system
called the Geo/G/2 queue. Tsai et al. [16] studied an open
queueing network with operating service stations suffering
breakdowns.

In most of the existing studies of machine repairable
systems with multi-repairman, the repair policy is only one
repairman at a time can work on one failure machine, that
means one repairman can repair only one failure machine,
and one failure machine can be repaired by only one repair-
man at the same time. We call this repair policy as One-to-
One (OTO) repair policy. Nevertheless, Many-to-One (MTO)
repair policy is used in many multi-repairman machine
repairable systems for efficiency reasons. MTO repair policy
is that one repairman can repair only one failure machine,
but one failure machine can be repaired by several repairmen
at the same time. Actually, MTO service policy is common
in realistic multi-repairman machine repairable system. For
instance, a large transport logistics centre may has many
forklifts, a truck can be serviced by two or more forklifts at
the same time. In addition, multi-core processor technology
has been used in computer technology widely, two or more
computing cores may work together on one task at the same
time. These cases indicate MTO service or repair policy is
used in many service or repair systems, but until now it is
difficult to find any study that deals with MTO repair policy
in a multi-repairman machine repairable system.

II. MODEL DESCRIPTION

We consider a machine repairable system which has two
repairmen and N(≥ 2) identical machines. Every machine
may fail and the failure rate is λ. The two repairmen are
responsible for repairing the failure machines. One repairman
can repair only one failure machine at the same time, but one
failure machine can be repaired by two repairmen together
at the same time. This repair policy is called as Two-to-One
(TTO) repair policy.

When the system has at least two failure machines, each
repairman repair one failure machine respectively. Otherwise,
when single one machine is failure in the system, the two
repairmen repair the one failure machine together at the same
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time. If another machine breaks down before the completion
of the repair for the single one failure machine, one of the two
repairmen turns to repairing the new coming failure machine
immediately.

When a failure machine is repaired by one repairmen, the
repair time is exponential distribution with the parameter of
µ. On the other hand, when a failure machine is repaired by
two repairmen together, the repair time density function is

f(x) =

{
2µqe−2µqt, t > 0,
0, other,

where q(> 0) is a constant value. Generally, it is faster for
two repairmen to repair one failure machine at the same time
compared to a single repairman to repair one failure at the
same time. Though the repair with two repairmen for one
failure machine at the same time is faster, the two repairmen
may produce interaction when they work together, so we
introduce the interactional parameter q.

III. STEAD-STATE PERFORMANCES

Let X(t) be the number of failure machines in the system
at time t, then {X(t), t ≥ 0} is a Markov process with state
space

Ω = {i, 0 ≤ i ≤ N}.

We let P{X(t) = i} ≡ pi(t) denote the transient-state
probability that the system state is i at time t moment, and
let pi denote the steady-state probability that the system state
is i. Then we have

pi =

{
lim
t→∞

pi(t), i = 0, 1, 2, · · · , N,

0, others,
(1)

then
N∑
i=0

pi = 1. (2)

The system state transfer rate matrix is as follows [14]:

Q =


−Nλ Nλ
2µq −(N − 1)λ− 2µq (N − 1)λ

. . . . . . . . .
2µ −2µ

 ,

then the balance equations of system are as follows [17]:
Nλp0 − 2µqp1 = 0,
Nλp0 − [(N − 1)λ+ 2µq]p1 + 2µp2 = 0,

· · · · · ·
2λpN−2 − (λ+ 2µ)pN−1 + 2µpN = 0,
−λpN−1 + 2µpN = 0.

(3)

Solving Eq. (3) yields

pk =
N !

q(N − k)!
(
λ

2µ
)kp0, (1 ≥ k ≥ N). (4)

Using normalizing condition of Eq. (2) we obtain

p0 =
q

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

.

Thus, we have

pk =

N !
(N−k)! (

λ
2µ )

k

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

, (1 ≥ k ≥ N)

Then, the steady-state probability that the repairmen are idle
denoted by PRI is

PRI = p0 =
q

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

.

The steady-state probability of no failure machine is waiting
denoted by PNW is

PNW = p0 + p1 + p2 =
q + Nλ

2µ +N(N − 1)( λ
2µ )

2

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

.

The steady-state availability of the system denoted by PAV

is

PAV = 1− pN = 1−
N !( λ

2µ )
N

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

.

The expected number of the failure machines denoted by
E[FM ] ≡ is

E[FM ] =
N∑

k=1

kpk =

N∑
k=1

k N !
(N−k)! (

λ
2µ )

k

q +
N∑
i=1

N !
(N−i)! (

λ
2µ )

i

.

IV. TRANSIENT-STATE PERFORMANCES

We define

P (t) = (p0(t), p1(t), · · · , pN (t)),

and
P ′(t) = (p′0(t), p

′
1(t), · · · , p′N (t)),

where p′i(t) is the differential function of pi(t). The transient-
state probability differential equations in matrix form and the
initial distribution are as follows:{

P ′(t) = P (t)Q,
P (0) = (p0(0), p1(0), · · · , pN (0)),

where 0 ≤ pi(0) ≤ 1, and
N∑
i=0

pi(0) = 1.

We assume that all machines are available at the initial
time t = 0. The transient-state reliability of the machines
denoted by RM (t), and RM (t)) is the probability that there
is at least one machine is available till time t(> 0) from the
initial time. Letting the state of all machines are failure is
absorbing state, we obtain a new Markov process, and its
transition rate matrix is

Q̂ =


−Nλ Nλ
2µq −(N − 1)λ− 2µq (N − 1)λ

. . . . . . . . .
0 0

 .
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Under the initial distribution is p̂0(0) = 1, p̂1(0) =
0, · · · , p̂N (0) = 0, the machine transient-state reliability is

RM (t) =
N−1∑
i=0

p̂i(t),

where p̂0(t), p̂2(t), · · · , p̂N−1(t) are solutions of equations as
follows:

p̂′0(t) = −Nλp̂0(t) + 2µqp̂1(t),
p̂′1(t) = Nλp̂0(t)− [(N − 1)λ+ 2µq)]p̂1(t) + 2µp̂2(t),

· · · · · ·
p̂′N−1(t) = 2λpN−2(t)− (λ+ 2µ)pN−1(t)
p̂0(0) = 1, p̂2(0) = 0, · · · , p̂N−1(0) = 0.

(5)

V. THE INTENSIVE ANALYSIS OF SPECIFIC CASES

A. N = 2

1) OTO (N = 2) system: For OTO system of N = 2,
the state space is {0, 1, 2}, and the system state transfer rate
matrix of OTO (N = 2) system is as follows:

Q =

 −2λ 2λ 0
µ −λ− µ λ
0 2µ −2µ

 .

Then, the transient-state probability differential equations of
OTO (N = 2) system is p′0(t) = −2λp0(t) + µp1(t),

p′1(t) = 2λp0(t)− (λ+ µ)p1(t) + 2µp2(t),
p′2(t) = λp1(t)− 2µp2(t).

(6)

Setting the initial distribution as p0(0) = 1, p1(0) = 0 and
p2(0) = 0, and letting λ = 1, µ = 1.2, the solutions of Eq.
(6) are as follows: p0(t) = 0.297521 + 0.206612e−4.4t + 0.495868e−2.2t,

p1(t) = 0.495868− 0.413223e−4.4t − 0.0826446e−2.2t,
p2(t) = 0.206612 + 0.206612e−4.4t − 0.413223e−2.2t.

(7)
Figure 1 is the curves of the solutions of Eq. (7). From Eq.
(1) and Eq. (7) we obtain

p0 = 0.297521, p1 = 0.495868, p2 = 0.206612.

Then we obtain the performances of OTO (N = 2) system
as follows:

PRI = 0.298, PNW = 1, PAV = 0.793, E[FM ] = 0.909.

Here, we derive the transient-state reliability of the ma-
chines denoted by R2M (t). We assume that all machines
are available at the initial time t = 0, R2M (t)) is the
probability that there is at least one machine is available
till time t(> 0) from the initial time. Letting the state of all
machines are failure is an absorbing state, we obtain a new
Markov process, and its transition rate matrix is

Q̂ =

 −2λ 2λ 0
µ −λ− µ λ
0 0 0

 .

Under the initial distribution of p̂0(0) = 1, p̂1(0) = 0 and
p̂2(0) = 0, the machine transient-state reliability is

R2M (t) = p̂0(t) + p̂1(t),

1 2 3 4 5 6
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Figure 1. The transient-state probability of OTO (N = 2) system
for N = 2, λ = 1 and µ = 1.2.

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

p

p2HtL

p1HtL

p0HtL

Figure 2. The transient-state probability of TTO (N = 2) system
for N = 2, q = 0.8, λ = 1 and µ = 1.2.

where p̂0(t) and p̂1(t) are solutions of the equations as
follows:  p̂′0(t) = −2λp̂0(t) + µp̂1(t),

p̂′1(t) = 2λp̂0(t)− (λ+ µ)p̂1(t),
p̂0(0) = 1, p̂1(0) = 0.

(8)

Solving Eq. (8) by mathematic calculate software, we obtain

p̂0(t) =
λ− etΨλ− µ+Ψ+ etΨ(µ+Ψ)

2Ψe
1
2 t(3λ+µ+Ψ)

,

p̂1(t) =
2
(
−1 + etΨ )λ

Ψe
1
2 t(3λ+µ+Ψ)

,

where Ψ =
√

λ2 + 6λµ+ µ2. Then

R2M (t) =
−3λ− µ+Ψ+ etΨ(3λ+ µ+Ψ)

2Ψe
1
2 t(3λ+µ+Ψ)

.

2) TTO (N = 2) system: For TTO system of N = 2,
the state space is {0, 1, 2}, and the system state transfer rate
matrix of TTO (N = 2) system is as follows:

Q =

 −2λ 2λ 0
2qµ −λ− 2qµ λ
0 2µ −2µ

 .
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Then, the transient-state probability differential equations of
TTO (N = 2) system is p′0(t) = −2λp0(t) + 2qµp1(t),

p′1(t) = 2λp0(t)− (λ+ 2qµ)p1(t) + 2µp2(t),
p′2(t) = λp1(t)− 2µp2(t).

(9)

Setting the initial distribution as p0(0) = 1, p1(0) = 0 and
p2(0) = 0, and letting λ = 1, µ = 1.2, and q = 0.8, the
solutions of Eq. (9) are as follows: p0(t) = 0.403927 + 0.233622e−5.07t + 0.362451e−2.25t,

p1(t) = 0.420757− 0.37353e−5.07t − 0.0472277e−2.25t,
p2(t) = 0.175316 + 0.139908e−5.07t − 0.315224e−2.25t.

(10)
From Eq. (1) and Eq. (10) we obtain

p0 = 0.403927, p1 = 0.420757, p2 = 0.175316.

Then we obtain the performances of TTO (N = 2) system
as follows:

PRI = 0.404, PNW = 1, PAV = 0.825, E[FM ] = 0.771.

Comparing with OTO (N=2) system, both PRI and PAV

increase, but E[FM ] decreases.
Figure 2 is the curves of the solutions of Eq. (10).

Comparing Figure 1 and Figure 2, p0(t) of TTO (N = 2)
system is significantly greater than that of OTO (N = 2)
system.

As the above OTO (N = 2) system, we derive the
transient-state reliability of the machines denoted by R̃2M (t).
We assume that all machines are available at the initial time
t = 0, R̃2M (t)) is the probability that there is at least one
machine is available till time t(> 0) from the initial time.
Setting the state of all machines are failure as an absorbing
state, we obtain a new Markov process, and its transition rate
matrix is

Q̃ =

 −2λ 2λ 0
2µq −λ− 2µq λ
0 0 0

 .

Under the initial distribution of p̃0(0) = 1, p̃1(0) = 0 and
p̃2(0) = 0, the machine transient-state reliability is

R̃2M (t) = p̃0(t) + p̃1(t),

where p̃0(t) and p̃1(t) are solutions of equations as follows: p̃′0(t) = −2λp̃0(t) + 2µqp̃1(t),
p̃′1(t) = 2λp̃0(t)− (λ+ 2µq)p̃1(t),
p̃0(0) = 1, p̃1(0) = 0.

(11)

Solving Eq. (11) by mathematic calculate software, we
obtain

p̃0(t) =
ΦCosh

[
1
2 tΦ

]
− (λ− 2qµ)Sinh

[
1
2 tΦ

]
Φe

1
2 t(3λ+2qµ)

,

p̃1(t) =
2
(
−1 + etΦ

)
λ

Φe
1
2 t(3λ+2qµ+Φ)

,

where Φ =
√

λ2 + 12qλµ+ 4q2µ2. Then

R̃2M (t) =
−3λ− 2qµ+Φ+ etΦ(3λ+ 2qµ+Φ)

2Φe
1
2 t(3λ+2qµ+Φ)

.
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Figure 3. The machine reliability of OTO (N = 2) system
(R2M (t)) and TTO (N = 2) system (R̃2M (t))

(N = 2, λ = 1, µ = 1.2, q = 0.8).
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Figure 4. Effect of parameter q with t on the machine reliability
(R̃2M (t)) of TTO (N = 2) system (N = 2, λ = 1, µ = 1.2).

Figure 3 is the curves of the machine reliability of OTO
(N = 2) system (R2M (t)) and TTO (N = 2) system
(R̃2M (t)) with the parameters λ = 1, µ = 1.2. We note that
the machine reliability of TTO (N = 2) system (R̃2M (t)) is
greater than that of OTO (N = 2) system (R2M (t)). Figure
4 displays the effect of the parameter q with three different
values of t on the machine reliability of TTO (N = 2)
system. We see that the machine reliability increases with
q increases, but decreases with t increases.

B. N = 3

1) OTO (N = 3)system: For OTO (N = 3) system of
N = 3, the state space is {0, 1, 2, 3}, and the system state
transfer rate matrix is as follows:

Q =


−3λ 3λ
µ −2λ− µ 2λ

2µ −λ− 2µ λ
2µ −2µ

 .
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Then, the transient-state probability differential equations of
OTO system is

p′0(t) = −3λp0(t) + 2µp1(t),
p′1(t) = 3λp0(t)− (2λ+ µ)p1(t) + 2µp2(t),
p′2(t) = 2λp1(t)− (λ+ 2µ)p2(t) + 2µp3(t),
p′3(t) = λp2(t)− 2µp3(t).

(12)

Setting the initial distribution as p0(0) = 1, p1(0) =
0, p2(0) = 0 and p3(0) = 0, and letting λ = 1 and µ = 1.2,
the solutions of Eq. (12) are as follows:

p0(t) = 0.16 + 0.14e−6.33t + 0.42e−3.82t + 0.29e−1.84t,
p1(t) = 0.39− 0.38e−6.34t − 0.28e−3.82t + 0.28e−1.84t,
p2(t) = 0.32 + 0.33e−6.34t − 0.45e−3.82t − 0.20e−1.84t,
p3(t) = 0.13− 0.08e−6.34t + 0.32e−3.82t − 0.37e−1.84t.

(13)
From Eq. (1) and Eq. (13) we obtain

p0 = 0.16, p1 = 0.39, p2 = 0.32, p3 = 0.13.

Then we obtain the performances of OTO (N = 3) system
are as follows:

PRI = 0.16, PNW = PAV = 0.87, E[FM ] = 1.42.

For the machine transient-state reliability, we set the state
of all machines are failure as an absorbing state, then we
obtain a new Markov process, and its transition rate matrix
is as follows:

Q̂ =


−3λ 3λ
µ −2λ− µ 2λ

2µ −λ− 2µ λ
0 0

 .

Under the initial distribution of p̂0(0) = 1, p̂1(0) =
0, p̂2(0) = 0 and p̂3(0) = 0, the machine transient-state
reliability is

R3M (t) = p̂0(t) + p̂1(t) + p̂2(t),

where p̂0(t), p̂1(t) and p̂2(t) are solutions of equations as
follows:

p̂′0(t) = −3λp̂0(t) + µp̂1(t),
p̂′1(t) = 3λp̂0(t)− (2λ+ µ)p̂1(t) + 2µp̂2(t),
p̂′2(t) = 2λp̂1(t)− (λ+ 2µ)p̂2(t),
p̂0(0) = 1, p̂1(0) = 0, p̂2(0) = 0.

(14)

Letting λ = 1 and µ = 1.2, and solving Eq. (14) by
mathematic calculate software, we obtain

p̂0(t) = 0.18e−6.12t + 0.57e−3.17t + 0.25e−0.31t,

p̂1(t) = −0.48e−6.12t − 0.081e−3.17t + 0.56e−0.31t,

p̂2(t) = 0.35e−6.12t − 0.71e−3.17t + 0.36e−0.31t,

Then

R3M (t) = 0.06e−6.12t − 0.23e−3.12t + 1.17e−0.31t.

2) TTO (N = 3) system: For TTO (N = 3) system,
the system state space is {0, 1, 2, 3}, and the system state
transfer rate matrix is as follows:

Q =


−3λ 3λ
2µq −2λ− 2µq 2λ

2µ −λ− 2µ λ
2µ −2µ

 .

Then, the transient-state probability differential equations are
as follows:

p′0(t) = −3λp0(t) + 2µqp1(t),
p′1(t) = 3λp0(t)− (2λ+ 2µq)p1(t) + 2µp2(t),
p′2(t) = 2λp1(t)− (λ+ 2µ)p2(t) + 2µp3(t),
p′3(t) = λp2(t)− 2µp3(t).

(15)

Setting the initial distribution as p0(0) = 1, p1(0) =
0, p2(0) = 0 and p3(0) = 0, and letting λ = 1, µ = 1.2
and q = 0.8, the solutions of Eq. (15) are as follows:

p0(t) = 0.23 + 0.19e−6.96t + 0.29e−4.02t + 0.29e−1.74t,
p1(t) = 0.35− 0.39e−6.96t − 0.16e−4.02t + 0.19e−1.74t,
p2(t) = 0.30 + 0.26e−6.96t − 0.36e−4.02t − 0.19e−1.74t,
p3(t) = 0.12− 0.06e−6.96t + 0.22e−4.02t − 0.29e−1.74t.

(16)
From Eq. (1) and Eq. (16) we obtain

p0 = 0.23, p1 = 0.35, p2 = 0.30, p3 = 0.12.

Then we obtain the performances of TTO (N = 3) system
as follows:

PRI = 0.23, PNW = PAV = 0.88, E[FM ] = 1.31.

Comparing with OTO (N=3) system, both PRI and PNW

increase, but E[FM ] decreases. Further, Comparing with
TTO (N=2) system, PRI decreases, but both PNW and
E[FM ] increase.

For the machine transient-state reliability, we set the state
of all machines are failure as an absorbing state, then we
obtain a new Markov process, and its transition rate matrix
is

Q̃ =


−3λ 3λ
2µq −2λ− 2µq 2λ

2µ −λ− 2µ λ
0 0

 .

Under the initial distribution of p̃0(0) = 1, p̃1(0) = 0 and
p̃2(0) = 0, the machine transient-state reliability is as follow:

R̃3M (t) = p̃0(t) + p̃1(t) + p̃2(t),

where p̃0(t), p̃1(t) and p̃2(t) are solutions of the equations
as follows:

p̃′0(t) = −3λp̃0(t) + 2µqp̃1(t),
p̃′1(t) = 3λp̃0(t)− (2λ+ 2µq)p̃1(t) + 2µp̃2(t),
p̃′2(t) = 2λp̃1(t)− (λ+ 2µ)p̃2(t),
p̃0(0) = 1, p̃1(0) = 0.

(17)

Letting λ = 1, µ = 1.2 and q = 0.8, and solving Eq. (17)
by mathematic calculate software, we obtain

p̃0(t) = 0.22e−6.83t + 0.44e−3.22t + 0.34e−0.27t,

p̃1(t) = −0.44e−6.83t − 0.05e−3.22t + 0.49e−0.27t,

p̃2(t) = 0.25e−6.83t − 0.56e−3.22t + 0.31e−0.27t.
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Figure 5. The machine reliability of OTO (N = 3) system
(R3M (t)) and TTO (N = 3) system (R̃3M (t))

(N = 3, λ = 1, µ = 1.2, q = 0.8).
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Figure 6. Effect of parameter q with t on the machine reliability
(R̃3M (t)) of TTO (N = 3) system (N = 3, λ = 1, µ = 1.2).

Then

R̃3M (t) = 0.04e−6.83t − 0.18e−3.22t + 1.14e−0.27t.

Figure 5 is the curves of the machine reliability of OTO
(N = 3) system (R3M (t)) and TTO (N = 3) system
(R̃3M (t)) with the parameters λ = 1, µ = 1.2. We note that
the machine reliability of TTO (N = 3) system (R̃3M (t)) is
greater than that of OTO (N = 3) system (R3M (t)). Figure
6 displays the effect of the parameter q with three different
values of t on the machine reliability of TTO (N = 3)
system. We see that the machine reliability increases with
q increases, but decreases with t increases.

VI. CONCLUSIONS

In this paper, we introduce a flexible repair policy to the
machine repair system with two same repairmen and N(> 1)
identical repairable machines. the stead-state and transient-
state performances have been derived in general form for
the models. We intensively analyse two cases of N = 2 and
N = 3. In every case, the performances of the machine
repairable systems with TTO repair policy are given and
compared with the regular system with OTO repair policy.
The numeric results indicate that the performances of the

system with the flexible repair policy (TTO repair policy) are
better than that of the system with the ordinary repair policy
(OTO repair policy). Further, the numeric results indicate
the interactional parameter q has a significant effect on the
performances of the machine repairable system with TTO
repair policy.

More comprehensive analysis, for the case of OTO
(N = 2), p0 = 0.297520 , for the case of TTO (N =
2), p0 = 0.403927, the difference between the two numbers
is 0.106407. On the other hand, for the case of OTO (N =
3), p0 = 0.16 , for the case of TTO (N = 3), p0 = 0.23, the
difference between the two numbers is 0.07. Since the other
parameters are the same, we can say that the flexible repair
policy has a greater influence on the system of (N = 2),
that means the smaller of N the greater of influence of the
the flexible repair policy.
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