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Abstract—In this paper, based on the regularized Hermitian
and skew-Hermitian splitting (RHSS) iterative method, a speical
RHSS (SRHSS) iterative method is established for solving the
augmented system derived by Tikhonov regularization for ill-
posed problems and image restoration. Then, we theoretically
analyze the convergence properties of the SRHSS method.
Moreover, optimal iteration parameters which minimize the
spectral radius of the iteration matrix of the SRHSS method are
also derived in detail. Numerical experiments on a Fredholm
integral equation of the first kind and image restoration show
that the SRHSS iteration method significantly outperforms the
newly developed ones in iteration counts and computing times
and image recovering quality.

Index Terms—regularized Hermitian and skew-Hermitian
splitting, Tikhonov regularization, ill-posed problems, image
restoration, iteration method.

I. INTRODUCTION

W ITH the rapid development of computer technology
and multimedia technology, a large number of images

are generated for information expression and transmission.
Thus, to find a specific image and obtain the desired infor-
mation effectively in a massive image dataset, some image
techniques have been developed, such as image retrieval
[36], image segmentation [23], [31], image restoration [18],
[32], [35] and so on. Image restoration is one of the most
fundamental issues in imaging science and plays an impor-
tant role in many mid-level and high-level image processing
applications. On account of the imperfection of an imaging
system, a recorded image may be inevitably degraded during
the process of image capture, transmission, and storage. It
is well known that image restoration belongs to a general
class of problems which are rigorously classified as ill-
posed problems. Besides, ill-posed problems occur frequently
enough in science and engineering, such as signal processing
and Fredholm integral equations of the first kind [21], to
make it worthwhile to provide efficient and numerically
stable methods. In this paper, we consider the ill-conditioned
linear system as follows

Af = g, A ∈ Rn2×n2

, f, g ∈ Rn2

, (1)
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arising from the discretization of some linear inverse problem
[9] or of the linearized system of some nonlinear inverse
problem [11], [6]. The matrix A has a large condition number
and may be rank-deficient, and the right-hand side vector g
typically is contaminated by an error, which can be expressed
as

g = ĝ + e,

where ĝ is an unknown error-free vector associated with g
and e represents the error in g. We will refer to e as noise. In
image restoration applications, f and A in (1) represent the
desired true image and the blurring matrix whose structure
depends on the discrete point spread function (PSF) and the
used boundary conditions (BCs), respectively. ĝ stands for an
unavailable blur-contaminated, but noise-free, image, while g
is an available image that has been contaminated by both blur
and noise. The noise may stem from measurement and/or
discretization errors. Throughout this paper, ∥ · ∥ denotes
the Euclidean vector norm or the associated induced matrix
norm.

The large condition number of the matrix A makes that the
solution of ill-posed inverse problem is usually very sensitive
to high-frequency perturbations in the measurement data
g. So the straightforward least-squares solution of minimal
Euclidean norm of (1) generally does not yield a meaningful
approximate solution of the system (1). Rather, the ill-
conditioning implies that standard methods in numerical
linear algebra for solving (1), such as LU, Cholesky, or QR
factorization, cannot be used in a straightforward manner
to compute such a solution. To tackle the ill-posed nature
of the problems, regularization techniques are usually used
to obtain a stable and accurate solution [11]. A common
approach to determine a useful approximate solution of (1)
is to employ Tikhonov regularization [30], [33], [34], which
converts the solution of the system (1) into the solution of
the regularized least-squares system

min
f

∥Af − g∥22 + µ2∥Lf∥22, (2)

where constant µ > 0 is the so-called regularization pa-
rameter (generally small, i.e., 0 < µ < 1) and the matrix
L is typically either the identity matrix or a discrete ap-
proximation of the derivative operation. The solution of this
system (2) is considered as an approximation of the solution
of noise-free linear system Af = ĝ. In this work, we limit
our discussion to L being the identity matrix. The other cases
can be obtained by using the similar technique. As is well
known, the solution of (2) with L = I (the identity matrix)
can be obtained by solving its normal equation

(ATA+ µ2I)f = AT g. (3)

Moreover, the problem (3) can be equivalently transformed
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into the following 2n2-by-2n2 augmented system(
I A

−AT µ2I

)(
e
f

)
=

(
g
0

)
, (4)

where the variable e denotes the additive noise, i.e., e =
g − Af . By recasting equivalently the original system (1),
employing the Tikhonov regularization method, into the 2n2-
by-2n2 linear system (4), the behaviour of ill-conditioned of
latter system can be greatly improved.

It can be seen that the linear system (4) is a non-Hermitian
positive-definite system. Solving the non-Hermitian positive-
definite system efficiently, Bai et al. in [5] initially proposed
the Hermitian and skew-Hermitian splitting (HSS) method,
and it was demonstrated that the HSS iteration method
converges unconditionally to the unique solution of the linear
system. Due to the elegant mathematical properties, the HSS
iteration method has attracted much attention and there are
many papers devoted to the various aspects of this method,
see [7], [17], [25]. Recently, Lv et al. in [26] applied the HSS
iteration method to the ill-posed image restoration problem
and established a special HSS (SHSS) iterative method.
Its convergence properties and the optimal value of the
iteration parameter were discussed. Later, inspired by the
idea of [26], Cheng et al. in [8] derived a new special HSS
(NSHSS) iterative method and made comparisons between
the proposed new method and the SHSS one. In order to
improve the convergence rate of the HSS method, Benzi in
[7] developed a generalization of the HSS (GHSS) iteration
method. After that, Aghazadeh et al. [1] extended the idea
of the GHSS method and introduced a restricted version of
the GHSS (RGHSS) iterative method for image restoration.
In [2], based on a new splitting of the Hermitian part of
the coefficient matrix for the GHSS method, Aminikhah and
Yousefi newly presented a new special generalized Hermitian
and skew-Hermitian splitting (SGHSS) method for solving
ill-posed inverse problems. Then, Fan et al. in [12] presented
a class of upper and lower triangular (ULT) splitting iteration
method, of which convergence rate and optimal iteration
parameters were derived. Lately, Bai et al. in [4] proposed a
class of regularized Hermitian and skew-Hermitian splitting
(RHSS) methods for the solution of large and sparse linear
systems in saddle-point form by introducing a Hermitian pos-
itive semidefinite matrix, which further improves the conver-
gence behavior of the HSS iteration method. Besides, in [3],
Bai et al. extended the RHSS iteration method for standard
saddle-point problems to stabilized saddle-point problems
and developed the corresponding unconditional convergence
theory for the resulting methods, and also showed that the
RHSS iteration method significantly outperforms the HSS
one. On this account, enlightened by the aforementioned
iterative methods, we apply the RHSS iteration method to im-
age restoration and ill-posed problems and propose a speical
regularized Hermitian and skew-Hermitian splitting (SRHSS)
iterative method to further accelerate the convergence rate of
the SHSS method. It is expected that the SRHSS method
may converge faster than some existing ones. Moreover, we
investigate the convergence properties and obtain the optimal
parameters that minimize the spectral radius of the iteration
matrix of the SRHSS method.

The arrangement of this paper is organized as follows.
In Section II, the HSS, SHSS and RHSS iterative methods

for solving linear systems are introduced briefly. A special
regularized Hermitian and skew-Hermitian splitting (SRHSS)
iterative method is presented in Section III. The convergence
behavior of the SRHSS iterative method and its optimal
parameters are also investigated analytically here. To demon-
strate the efficiency of these proposed method, numerical ex-
periments from the ill-posed problems and image restoration
are provided in Section IV. Finally, in Section V we end this
paper with some brief conclusions.

II. BRIEF DESCRIPTIONS OF THE HSS, SHSS AND RHSS

Naturally, any matrix K can be split into as the form K =
H + S, where H = 1

2 (K +K∗) and S = 1
2 (K −K∗) are

Hermitian and skew-Hermitian parts of K, respectively, and
K∗ denotes the conjugate transpose of the matrix K. On the
basis of the Hermitian and skew-Hermitian (HS) splitting, the
HSS iteration method was first proposed by Bai et al. in [5]
for solving non-Hermitian positive definite linear systems.
By choosing an initial vector x(0), for k = 1, 2, · · · until
convergence of x(k), the HSS iteration method is given as
follows:{

(αI +H)x(k+ 1
2 ) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI −H)x(k+ 1
2 ) + b

, (5)

where α a given positive constant. They proved that the
HSS iteration method converges unconditionally to the u-
nique solution of linear system. Moreover, they extended
the HSS convergence theory for (non-Hermitian) positive
definite matrices to a large class of positive semidefinite
matrices. In 2013, based on the HSS iteration method, Lv et
al. [26] established a special HSS (SHSS) iteration method
by substituting α = 1 into the second step of the HSS one
to solve the system (4) for image restoration problem. The
brief outline about the SHSS method is presented as follows.
Let

K =

(
I A

−AT µ2I

)
, x =

(
e
f

)
, b =

(
g
0

)
, (6)

then the linear system (4) can be rewritten as Kx = b, where
K is a non-Hermitian matrix. Then the matrix K can be split
into its Hermitian and skew-Hermitian parts as

K = H + S =

(
I 0
0 µ2I

)
+

(
0 A

−AT 0

)
,

where the Hermitian part H is a special diagonal matrix and
the skew-Hermitian part S has a special structure. Lv et al. in
[26] made full use of the special structures of the Hermitian
part H and the skew-Hermitian part S and proposed a special
HSS (SHSS) iterative method for solving the augmented
system (4) as follows:{

(αI +H)x(k+ 1
2 ) = (αI − S)x(k) + b

(I + S)x(k+1) = (I −H)x(k+ 1
2 ) + b

,

which improves the convergence rate of the HSS iteration
method. The convergence properties of the SHSS method
were investigated with a detailed theoretical analysis and the
optimal parameter was found. In order to further improve
the convergence behavior of the HSS iteration method for
the saddle-point linear system, Bai et al. in [4] utilized the
regularized Hermitian and skew-Hermitian (RHS) splitting
and established a regularized HSS (RHSS) iteration method
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by introducing a Hermitian positive semidefinite matrix,
called the regularization matrix, in the HS splitting. For the
following linear system in saddle-point form(

B E
−E∗ 0

)(
y
z

)
=

(
f
g

)
, (7)

where B ∈ Cp×p and E ∈ Cp×q are Hermitian positive
definite matrix and rectangular matrix of full column rank,
respectively, the RHS splitting is as follows:(

B E
−E∗ 0

)
=

(
B 0
0 Q

)
+

(
0 E

−E∗ −Q

)
= H+ + S−

=

(
B 0
0 −Q

)
+

(
0 E

−E∗ Q

)
= H− + S+

with a given Hermitian positive semidefinite matrix Q. Note
that when Q = 0, the RHS splitting automatically reduces
to the HS splitting. Based on the RHS splitting, authors
led to an equivalent reformulation, which is called RHSS
iterative method, for the saddle-point linear system. They
proved that the RHSS iteration method converges uncon-
ditionally to the unique solution of the saddle-point linear
system. Subsequently, in [3] Bai et al. extended the RHSS
iteration method and established the RHSS iterative method
for stabilized saddle-point problems. Numerical experiments
verified that the RHSS method significantly outperforms the
HSS method in terms of both iteration steps and computing
times and can be a useful tool for solving certain types of
large sparse stabilized saddle-point problems.

Note that the RHSS iteration method is a valuable devel-
opment and quality improvement of the HSS one, and with
numerical experiments it was shown that the RHSS iteration
method can be more efficient and robust than the HSS
one. Based on the idea of the RHSS iteration method and
motivated by [4] and [3], we develop a new special splitting
of the coefficient matrix K of the augmented system (4) and
propose a speical regularized Hermitian and skew-Hermitian
splitting (SRHSS) iterative method for solving the system
(4). It is expected that the SRHSS method may converge
faster than some exiting ones. Moreover, the iteration matrix
of the SRHSS iterative method has some similar properties
with that of the SHSS one, for example, the iteration matrix
of the SRHSS method has at least n2 zero eigenvalues and
the remaining n2 eigenvalues of the iteration matrix are
determined by the parameter α and the regularization matrix
Q. It is convenient to select the appropriate α and Q to make
the spectral radius of iteration matrix of the SRHSS method
smaller. For details, see below.

III. THE SPECIAL RHSS METHOD AND ITS
CONVERGENCE ANALYSIS

In this section, we derive the speical RHSS (SRHSS)
iteration method for solving the augmented system (4). The
convergence properties of the SRHSS method are analyzed
and its optimal iteration parameters are given. Inspired by the
ideas of [4], we first develop a new splitting of the coefficient
matrix K of the augmented system (4). To this end, for a
given symmetric positive definite matrix Q ∈ Rn2×n2

we
can split the coefficient matrix K of the augmented system

(4), obtaining the speical regularized Hermitian and skew-
Hermitian (SRHS) splitting:

K =

(
I 0
0 µ2I +Q

)
+

(
0 A

−AT −Q

)
= H1 + S1

=

(
I 0
0 Q

)
+

(
0 A

−AT µ2I −Q

)
= H2 + S2. (8)

Here the matrix Q plays a regularization role in the splitting
(8), so it is called the regularization matrix. It can be
observed from the splitting forms (8) that the first one in
(8) is the same with the one of the RHSS method with
ω = 1 for stabilized saddle-point problems [3]. Whereas, the
second one in (8) is different from that of (2.1) in [3]. Such
the splitting may lead to establish a special iterative method
for (4) and the spectral radius of its iteration matrix may
be smaller. Based on the SRHS splitting, in this paper we
present a special regularized Hermitian and skew-Hermitian
splitting iterative method to solve (4). Utilizing the idea of
the SHSS iterative method in [26], the splitting (8) of the
matrix K naturally leads to equivalent reformulations of the
augmented system (4) as following:{

(αI +H1)x
(k+ 1

2 ) = (αI − S1)x
(k) + b

(I + S2)x
(k+1) = (I −H2)x

(k+ 1
2 ) + b

, (9)

where α > 0 is a prescribed iteration parameter and I
is the identity matrix. The iteration method (9) is referred
to as the special regularized Hermitian and skew-Hermitian
(SRHSS) iteration method. Note that H2 has n2 ones in the
diagonal and I−H2 must have n2 zeros in the diagonal. This
will make that the iteration matrix of the SRHSS iteration
method has at least n2 zero eigenvalues and the remaining
n2 eigenvalues of the iteration matrix are determined by the
parameter α and regularization matrix Q, which may make
the spectral radius of the iteration matrix smaller. And the
SRHSS method can have a fast convergence rate by choosing
the appropriate parameter α and the matrix Q.

The SRHSS iteration method (9) can be rewritten as a
standard stationary iteration scheme as follows

x(k+1) = L(α;Q)x(k) + c, k = 0, 1, 2, · · · ,
where{

L(α;Q) = (I + S2)−1(I −H2)(αI +H1)−1(αI − S1)
c = (I + S2)−1[(1 + α)I +H1 −H2](αI +H1)−1b

. (10)

Note that L(α;Q) is the iteration matrix of the SRHSS
method. We know that the SRHSS method is convergent
if and only if the spectral radius of its iteration matrix
L(α;Q) is less than one (i.e., ρ(L(α;Q)) < 1). Next, we
study the convergence of the SRHSS iteration method and
derive its optimal parameters minimizing the spectral radius
of the iteration matrix. Firstly, the eigenvalues of the iteration
matrix of the iteration scheme (9) are given as follows:

Theorem 3.1: Let K ∈ R2n2×2n2

be defined as in
(6) and α be a positive scalar. Assume Q ∈ Rn2×n2

is a symmetric positive definite matrix such that this
matrix (1 + µ2)I + ATA − Q is symmetric positive
definite. If λ is an eigenvalue of the iteration matrix
L(α;Q) of the SRHSS method, then λ = 0 with algebraic
multiplicity at least n2, and other n2 eigenvalues of the
matrix L(α;Q) are those of the matrix Ψ, where Ψ = (I −
Q)
[
(α+ µ2)I +Q

]−1 (
αI +Q−ATA

) [
(1 + µ2)I +ATA

−Q]
−1.
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Proof. Since L(α;Q) defined as in (10) is similar to

L̂(α;Q) = (I −H2)(αI +H1)
−1(αI − S1)(I + S2)

−1.

That is, L̂(α;Q) and L(α;Q) have same spectrum. Next,
we only need to consider the spectral radius of the matrix
L̂(α;Q). After some calculations, it follows that

I −H2 =

(
0 0
0 I −Q

)
,

(αI +H1)
−1 =

(
1

α+1I 0

0
[
(α+ µ2)I +Q

]−1

)
,

αI − S1 =

(
αI −A
AT αI +Q

)
,

(I + S2)
−1 =

(
I −AΦ−1AT −AΦ−1

Φ−1AT Φ−1

)
,

where Φ = (1+µ2)I+ATA−Q. From the above formulas,
one may deduce the following equation

L̂(α;Q)

= (I −H2)(αI +H1)
−1(αI − S1)(I + S2)

−1

=

(
0 0
0 I −Q

)(
1

α+1
I 0

0
[
(α+ µ2)I +Q

]−1

)
×
(

αI −A
AT αI +Q

)(
I −AΦ−1AT −AΦ−1

Φ−1AT Φ−1

)
=

(
0 0
0 (I −Q)[(α+ µ2)I +Q]−1

)
×
(

αI − (α+ 1)AΦ−1AT −(α+ 1)AΦ−1

AT +ΥΦ−1AT ΥΦ−1

)
=

(
0 0
Θ Ψ

)
,

where Ψ = (I −Q)
[
(α+ µ2)I +Q

]−1 (
αI +Q−ATA

)[
(1 + µ2)I +ATA−Q

]−1
and Υ = −ATA+αI+Q. Here

we do not need to write the precise form of Θ because it is
not the focus in the following argument. From the structure
of the matrix L̂(α;Q) and the similarity invariance of the
matrix spectrum, it can be seen that λ = 0 is the eigenvalue
of the iteration matrix L(α;Q) with algebraic multiplicity at
least n2, and other n2 eigenvalues of the matrix L(α;Q) are
those of the matrix Ψ. This completes the proof.

With Theorem 3.1, we can get the following important
theorem which shows the convergence of the SRHSS iter-
ation method with the regularization matrix Q = sI for
solving the augmented system (4) and derives the optimal
parameters minimizing the spectral radius of the iteration
matrix L(α;Q). In particular, we choose the regularization
matrix Q = sI with 0 < s < 1+u2 and s ̸= 1. The condition
0 < s < 1+u2 ensures that the matrix (1+µ2)I+ATA−Q
is symmetric positive definite. And if s = 1, then I−H2 = 0,
and the second equation of (9) is solved without x(k+ 1

2 ). So
for Q = sI , we always assume that 0 < s < 1 + u2 and
s ̸= 1.

Theorem 3.2: Let K ∈ R2n2×2n2

be defined as in (6),
σi (i = 1, 2, · · · , n2) be the singular values of A with σ1 ≥
σ2 ≥ · · · ≥ σn2 and regularization matrix Q = sI in (9) with
0 < s < 1+u2 and s ̸= 1, then iteration matrix L(α;Q) has
zero eigenvalues of algebraic multiplicity at least n2, and the

remaining n2 eigenvalues satisfy the relation

(1− s)(α+ s− σ2
i )

(α+ µ2 + s)(1 + µ2 − s+ σ2
i )
, i = 1, 2, · · · , n2.

In addition, iteration matrix L(α;Q) has the following prop-
erties:
(i) If s ≤ σ2

n2 , we have ρ(L(α;Q)) < 1 with the parameters
α and s lying on the following regions

(α, s) ∈
4∪

i=1

Di,

where

D1 := {(α, s)|0 < α ≤ α̂(s), 0 < s < 1, f1(α, s) < 0},
D2 := {(α, s)|0 < α ≤ α̂(s), 1 < s < 1 + µ2},
D3 := {(α, s)|α ≥ α̂(s), 1 < s < 1 + µ2, f2(α, s) < 0},
D4 := {(α, s)|α ≥ α̂(s), 0 < s < 1}

with the functions α̂(s), f1(α, s) and f2(α, s) being defined
by

α̂(s) =
(1 + u2 − 2s)(σ2

1 + σ2

n2 ) + 2σ2
1σ

2

n2 − 2s(1 + u2 − s)

2(1 + u2 − s) + σ2
1 + σ2

n2

,

f1(α, s) = (1 − s)(σ
2
1 − 2α − 2s − µ

2
) − (α + µ

2
+ s)(µ

2
+ σ

2
1),

f2(α, s) = (s − 1)(2α + 2s + µ
2 − σ

2

n2 ) − (α + µ
2
+ s)(µ

2
+ σ

2

n2 ).

In this case, the optimal parameter α∗ which minimizes the
spectral radius L(α;Q) is

α∗ = α̂(s∗)

=
(1 + u2 − 2s∗)(σ2

1 + σ2
n2 ) + 2σ2

1σ
2
n2 − 2s∗(1 + u2 − s∗)

2(1 + u2 − s∗) + σ2
1 + σ2

n2

.

(ii) If σ2
1 ≤ s. When 0 < s < 1, we obtain ρ(L(α;Q)) < 1

for ∀α > 0. Otherwise, for 1 < s < 1 + µ2, we have
ρ(L(α;Q)) < 1 with the parameters α and s satisfying
f2(α, s) < 0. In this case, the optimal parameter α∗ → 0.
(iii) If σ2

n2 ≤ s ≤ σ2
1 . As for α̂(s) > 0 and α̂(s) ≤ 0, the

convergent conditions and optimal iteration parameter α are
same with those in case (i) and case (ii), respectively.

Furthermore, the optimal parameter s∗ of the SRHSS
method should be s∗ → 1.
Proof. From Theorem 3.1, it is not difficult to verify that
L(α;Q) has n2 zero eigenvalues and the other n2 eigenvalues
satisfy the relation

(1− s)(α+ s− σ2
i )

(α+ µ2 + s)(1 + µ2 − s+ σ2
i )

with σi (i = 1, 2, · · · , n2) being the singular values of
the matrix A. It follows from the above expression of the
eigenvalues that the spectral radius of the iterative matrix
L(α;Q) is as follows

ρ(L(α;Q)) =
|1− s|

α+ µ2 + s
max

σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

, (11)

where σ(A) denotes the set of the singular values of the
matrix A. Next, we study the conditions of α and s such that
ρ(L(α;Q)) < 1 by distinguishing three cases as follows.

(i) If 0 < s ≤ σ2
n2 , then s − σ2

i ≤ 0, i = 1, 2, · · · , n2. It
follows from the properties of the function that there exists
an α̂(s) such that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=


σ2
1−(α+s)

1+µ2−s+σ2
1
, α ≤ α̂(s),

α+s−σ2

n2

1+µ2−s+σ2

n2
, α ≥ α̂(s).
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From (11), we get

ρ(L(α;Q)) =


|1−s|

α+µ2+s

σ2
1−(α+s)

1+µ2−s+σ2
1

, α ≤ α̂(s),

|1−s|
α+µ2+s

α+s−σ2

n2

1+µ2−s+σ2

n2

, α ≥ α̂(s).
(12)

We divide the region D = {(α, s)|α > 0, 0 < s < 1 +

µ2; s ̸= 1} into four subregions D =
4∪

i=1

D̄i, where

D̄1 := {(α, s)|0 < α ≤ α̂(s), 0 < s < 1},
D̄2 := {(α, s)|0 < α ≤ α̂(s), 1 < s < 1 + µ2},
D̄3 := {(α, s)|α ≥ α̂(s), 1 < s < 1 + µ2},
D̄4 := {(α, s)|α ≥ α̂(s), 0 < s < 1}.

From the form of the function ρ(L(α;Q)), we have
(I) For (α, s) ∈ D1, we deduce that ρ(L(α;Q)) =

(1−s)(σ2
1−α−s)

(α+µ2+s)(1+µ2−s+σ2
1)

. It follows from straightforward
derivations that ρ(L(α;Q)) < 1 can be simplified to

f1(α, s) = (1− s)(σ2
1 − 2α− 2s− µ2)

−(α+ µ2 + s)(µ2 + σ2
1) < 0.

(II) For (α, s) ∈ D2, in terms of (12), it is not difficult to
check that

ρ(L(α;Q)) =
s− 1

s+ α+ µ2

σ2
1 − α− s

σ2
1 + 1 + µ2 − s

< 1.

(III) For (α, s) ∈ D3, we can easily express (12) as

ρ(L(α;Q)) =
(s−1)(α+s−σ2

n2 )

(α+µ2+s)(1+µ2−s+σ2

n2 )
. By direct computa-

tions, ρ(L(α;Q)) < 1 directly leads to the following result

f2(α, s) = (s− 1)(2α+ 2s+ µ2 − σ2
n2)

−(α+ µ2 + s)(µ2 + σ2
n2) < 0.

(IV) For (α, s) ∈ D4, ρ(L(α;Q)) =
(1−s)(α+s−σ2

n2 )

(α+µ2+s)(1+µ2−s+σ2

n2 )

< 1 is equivalent to

−(µ2 + σ2
n2)(1 + α+ µ2) < 0,

which holds naturally.
According to (12), ρ(L(α;Q)) can be given as follows:

ρ(L(α;Q)) = max

{
|1− s|

α+ µ2 + s

σ2
1 − (α+ s)

1 + µ2 − s+ σ2
1

,

|1− s|
α+ µ2 + s

α+ s− σ2
n2

1 + µ2 − s+ σ2
n2

}
.

It is well known that the convergence rate of the SRHSS
iteration method with Q = sI is determined by the spectral
radius of its iteration matrix. Hence it makes sense to choose
the parameters to minimize the spectral radius of iteration
matrix L(α;Q). If optimal parameter α∗ is such minimum
point, then it should satisfy the following equation

|1− s|
α+ µ2 + s

σ2
1 − (α+ s)

1 + µ2 − s+ σ2
1

=
|1− s|

α+ µ2 + s

α+ s− σ2
n2

1 + µ2 − s+ σ2
n2

.

The solution α∗ of the above equation is given as follows:

α∗ =
(1 + u2 − 2s)(σ2

1 + σ2
n2 ) + 2σ2

1σ
2
n2 − 2s(1 + u2 − s)

2(1 + u2 − s) + σ2
1 + σ2

n2

. (13)

Now we validate that α∗ > 0 in (13). It can be seen that
the denominator 2(1 + u2 − s) + σ2

1 + σ2
n2 > 0 under the

condition s < 1+µ2. Inasmuch as σ2
1 ≥ σ2

n2 ≥ s, we derive

(1 + u2 − 2s)(σ2
1 + σ2

n2) + 2σ2
1σ

2
n2 − 2s(1 + u2 − s)

≥ 2s(1 + u2 − 2s) + 2s2 − 2s(1 + u2 − s)

= 0,

which shows α∗ > 0 in (13).
(ii) If σ2

1 ≤ s, then s − σ2
i ≥ 0, i = 1, 2, · · ·n2. In this

case, it is not difficult to check that

ρ(L(α;Q)) =
|1− s|

α+ µ2 + s
max

σi∈σ(A)

α+ s− σ2
i

1 + µ2 − s+ σ2
i

=
|1− s|

α+ µ2 + s

α+ s− σ2
n2

1 + µ2 − s+ σ2
n2

. (14)

When 0 < s < 1, from the above expression, we have
ρ(L(α;Q)) = 1−s

α+µ2+s

α+s−σ2

n2

1+µ2−s+σ2

n2
. It can be seen that

ρ(L(α;Q)) < 1 always holds for ∀α > 0. If 1 < s < 1+µ2,
the spectral radius of the matrix L(α;Q) is ρ(L(α;Q)) =

s−1
α+µ2+s

α+s−σ2

n2

1+µ2−s+σ2

n2
. Similar to the derivations in (III) of

case (i), ρ(L(α;Q)) < 1 if and only if the parameters α and
s satisfy f2(α, s) < 0, where f2(α, s) is defined as in case
(i).

Now, the optimal parameter α∗ is discussed. It follows
from (14) that

α∗ = argmin
α

ρ(L(α;Q))

=
|1− s|

1 + µ2 − s+ σ2
n2

argmin
α

α+ s− σ2
n2

α+ µ2 + s

=
|1− s|

1 + µ2 − s+ σ2
n2

argmin
α

{
1−

µ2 + σ2
n2

α+ µ2 + s

}
.

Then global optimal parameter α∗ can be found, that is,
α∗ → 0. The optimal parameter α∗ → 0 can be achieved
for the situation 0 < s < 1 because the convergence interval
of the parameter α is (0,+∞). And as 1 < s < 1 + µ2, for
a fixed sufficiently small α we can select parameter s such
that the adopted parameters α and s satisfy f2(α, s) < 0.

(iii) If σ2
n2 ≤ s ≤ σ2

1 . Without loss of generality, we
assume that there exists an k such that s − σ2

1 ≤ · · · ≤
s−σ2

k ≤ 0 < s−σ2
k+1 ≤ · · · ≤ s−σ2

n2 . Similar to discussion
of the case (i), for i ≤ k, there exists an α̂k(s) such that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=


σ2
1−(α+s)

1+µ2−s+σ2
1

, α ≤ α̂k(s),

α+s−σ2
k

1+µ2−s+σ2
k

, α ≥ α̂k(s),
(15)

where α̂k(s) =
(1+u2−2s)(σ2

1+σ2
k)+2σ2

1σ
2
k−2s(1+u2−s)

2(1+u2−s)+σ2
1+σ2

k

. Fur-
thermore, for i ≥ k + 1, it can be seen that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=
α+ s− σ2

n2

1 + µ2 − s+ σ2
n2

. (16)

Therefore, for α ≤ α̂k(s), combining (15) and (16) yeilds

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

= max

{
σ2
1 − (α+ s)

1 + µ2 − s+ σ2
1

,
α+ s− σ2

n2

1 + µ2 − s+ σ2
n2

}
. (17)
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As for α̂(s) > 0, in terms of (17), we obtain that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=


σ2
1−(α+s)

1+µ2−s+σ2
1
, α ≤ α̂(s),

α+s−σ2

n2

1+µ2−s+σ2

n2
, α̂(s) ≤ α ≤ α̂k(s).

(18)

The fact α̂(s) ≤ α̂k(s) is easy validated and we omit it here.
If α̂(s) ≤ 0, it follows from (17) that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=
α+ s− σ2

n2

1 + µ2 − s+ σ2
n2

, 0 < α ≤ α̂k(s). (19)

When α ≥ α̂k(s), by virtue of (15) and (16), it holds that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

= max

{
α+ s− σ2

k

1 + µ2 − s+ σ2
k

,
α+ s− σ2

n2

1 + µ2 − s+ σ2
n2

}
=

α+ s− σ2
n2

1 + µ2 − s+ σ2
n2

. (20)

So, for α̂(s) > 0, it follows from (18) and (20) that

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=


σ2
1−(α+s)

1+µ2−s+σ2
1
, α ≤ α̂(s),

α+s−σ2

n2

1+µ2−s+σ2

n2
, α ≥ α̂(s),

consequently,

ρ(L(α;Q)) =


|1−s|

α+µ2+s
σ2
1−(α+s)

1+µ2−s+σ2
1
, α ≤ α̂(s),

|1−s|
α+µ2+s

α+s−σ2

n2

1+µ2−s+σ2

n2
, α ≥ α̂(s).

In the case, the convergent conditions and optimal iteration
parameter α are same with those in case (i). And for α̂(s) ≤
0, the form is given by

max
σi∈σ(A)

|α+ s− σ2
i |

1 + µ2 − s+ σ2
i

=
α+ s− σ2

n2

1 + µ2 − s+ σ2
n2

,

by virtue of (19) and (20). In this case ρ(L(α;Q)) =
|1−s|

α+µ2+s

α+s−σ2

n2

1+µ2−s+σ2

n2
, so the convergent conditions and op-

timal iteration parameter α are same with those in case (ii).
Furthermore, it follows from the expression of the spectral

radius ρ(L(α;Q)) in (11) that the optimal parameter s∗ of
the SRHSS method should be s∗ → 1, making the spectral
radius ρ(L(α;Q)) fully small to obtain a rapid convergence
rate. By the above analysis, the conclusions of this theorem
is obtained.

As in the Theorem 3.2, the convergence results and the
optimal parameters of the SRHSS iteration method are given
by the following theorem when the parameter matrix is
defined as Q = sI + ATA with 0 < s < 1 + u2, ensuring
that the matrix (1 + µ2)I +ATA−Q is symmetric positive
definite.

Theorem 3.3: Let K ∈ R2n2×2n2

be defined as in (6),
σi (i = 1, 2, · · · , n2) be the singular values of A with σ1 ≥
σ2 ≥ · · · ≥ σn2 and regularization matrix in (9) be chosen
as Q = sI + ATA with 0 < s < 1 + u2. Then iteration
matrix L(α;Q) has zero eigenvalues of algebraic multiplicity
at least n2, and the remaining n2 eigenvalues satisfy the
relation

(1− s− σ2
i )(α+ s)

(α+ µ2 + s+ σ2
i )(1 + µ2 − s)

, i = 1, 2, · · · , n2.

In addition, iteration matrix L(α;Q) has the following prop-
erties:
(i) If 0 < s ≤ 1−σ2

1 , then ρ(L(α;Q)) < 1 holds for ∀α > 0.
(ii) If s ≥ 1− σ2

n2 , ρ(L(α;Q)) < 1 if one of the following
conditions holds true

• s ∈
[
1− σ2

n2 ,
2+µ2−σ2

1

2

]
and α ∈ (0,+∞) or s ∈(

2+µ2−σ2
1

2 , 1 + u2
)

with (1 + µ2)(µ2 + σ2
1)− 2s(σ2

1 +

s− 1) > 0 and α ∈ (0, h(s)) as µ2 + 2σ2
n2 − σ2

1 ≥ 0;
• s ∈

[
1− σ2

n2 , 1 + u2
)

with (1+µ2)(µ2+σ2
1)−2s(σ2

1+
s− 1) > 0 and α ∈ (0, h(s)) as µ2 + 2σ2

n2 − σ2
1 ≤ 0,

where h(s) =
(1+µ2)(µ2+σ2

1)−2s(σ2
1+s−1)

σ1+s−2−µ2 .
(iii) If 1− σ2

1 ≤ s ≤ 1− σ2
n2 , ρ(L(α;Q)) < 1 holds true if

and only if the conditions in the cases (i) and (ii) are both
satisfied.

Besides, the global optimal parameters α∗ and s∗ of the
SRHSS method with Q = sI + ATA are given by α∗ → 0
and s∗ → 0.
Proof. It follows from Theorem 3.1 that L(α;Q) has n2 zero
eigenvalues and the other n2 eigenvalues are as follows:

(1− s− σ2
i )(α+ s)

(α+ µ2 + s+ σ2
i )(1 + µ2 − s)

, i = 1, 2, · · · , n2,

in consequence, we have

ρ(L(α;Q)) =
α+ s

1 + µ2 − s
max

σi∈σ(A)

|1− s− σ2
i |

α+ µ2 + s+ σ2
i

, (21)

where σ(A) denotes the set of the singular values of the
matrix A. To prove the convergence, we have to show that
ρ(L(α;Q)) < 1.
(i) Now if 1−σ2

1 ≥ s, then 1−s−σ2
i ≥ 0 (i = 1, 2, · · · , n2),

and we immediately have

ρ(L(α;Q)) =
α+ s

1 + µ2 − s
max

σi∈σ(A)

1− s− σ2
i

α+ µ2 + s+ σ2
i

=
α+ s

1 + µ2 − s

1− s− σ2
n2

α+ µ2 + s+ σ2
n2

=
α+ s

α+ µ2 + s+ σ2
n2

1− s− σ2
n2

1 + µ2 − s
.

It’s easy to verify ρ(L(α;Q)) < 1 for ∀α > 0.
(ii) Now if s ≥ 1 − σ2

n2 , it holds that 1 − s − σ2
i ≤ 0 (i =

1, 2, · · · , n2) and therefore

ρ(L(α;Q)) =
α+ s

1 + µ2 − s
max

σi∈σ(A)

σ2
i + s− 1

α+ µ2 + s+ σ2
i

=
α+ s

1 + µ2 − s

σ2
1 + s− 1

α+ µ2 + s+ σ2
1

. (22)

Setting ρ(L(α;Q)) < 1 leads to the following equivalent
condition:

(α+ s)(σ2
1 + 2s− 2− µ2)− (1 + µ2 − s)(µ2 + σ2

1) < 0. (23)

To solve the above equation in terms of α, we should
consider the sign of the coefficient σ2

1 + 2s− 2− µ2. When
σ2
1+2s−2−µ2 ≤ 0, i.e., s ≤ 2+µ2−σ2

1

2 , then Inequality (23)
holds true for all α > 0 due to 1 + µ2 − s > 0. Therefore,
if s ≥ 1− σ2

n2 and s ≤ 2+µ2−σ2
1

2 , we have ρ(L(α;Q)) < 1
for ∀α > 0. The condition µ2 + 2σ2

n2 − σ2
1 ≥ 0 can

result in 1 − σ2
n2 ≤ 2+µ2−σ2

1

2 . That is, under the condition
µ2 + 2σ2

n2 − σ2
1 ≥ 0, if 1 − σ2

n2 ≤ s ≤ 2+µ2−σ2
1

2 , then
ρ(L(α;Q)) < 1 holds true for ∀α > 0.
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When s >
2+µ2−σ2

1

2 , then σ2
1 + 2s− 2− µ2 > 0. Solving

for α in (23) leads to

α <
(1 + µ2)(µ2 + σ2

1)− 2s(σ2
1 + s− 1)

σ1 + s− 2− µ2
:= h(s). (24)

Keep in mind α > 0, so ρ(L(α;Q)) < 1 holds for α in (24)
under the condition (1+µ2)(µ2+σ2

1)−2s(σ2
1 + s−1) > 0.

Note that s >
2+µ2−σ2

1

2 , s ≥ 1 − σ2
n2 and s < 1 + µ2.

Thus, if µ2 + 2σ2
n2 − σ2

1 ≥ 0, for 2+µ2−σ2
1

2 < s < 1 + µ2

satisfying (1 + µ2)(µ2 + σ2
1) − 2s(σ2

1 + s − 1) > 0 and
0 < α < h(s), we have ρ(L(α;Q)) < 1. Otherwise, if
µ2 + 2σ2

n2 − σ2
1 ≤ 0, for 1 − σ2

n2 ≤ s < 1 + µ2 satisfying
(1 + µ2)(µ2 + σ2

1)− 2s(σ2
1 + s− 1) > 0 and 0 < α < h(s),

we obtain ρ(L(α;Q)) < 1.
(iii) If 1− σ2

1 ≤ s ≤ 1− σ2
n2 . Without loss of generality, we

assume that there exists an k such that 1− s− σ2
1 ≤ · · · ≤

1− s−σ2
k ≤ 0 < 1− s−σ2

k+1 ≤ · · · ≤ 1− s−σ2
n2 . Similar

to discussion of the cases (i) and (ii), we can obtain

ρ(L(α;Q)) = max

{
α+ s

1 + µ2 − s

1− s− σ2
n2

α+ µ2 + s+ σ2
n2

,

α+ s

1 + µ2 − s

σ2
1 + s− 1

α+ µ2 + s+ σ2
1

}
. (25)

It follows form the above expression that ρ(L(α;Q)) < 1 if
and only if

α+ s

1 + µ2 − s

1− s− σ2
n2

α+ µ2 + s+ σ2
n2

< 1 (26)

and
α+ s

1 + µ2 − s

σ2
1 + s− 1

α+ µ2 + s+ σ2
1

< 1. (27)

The discussion and analysis of (26) and (27) are the same
with the those in case (i) and case (ii), respectively. There-
fore, in this case, ρ(L(α;Q)) < 1 holds true if and only if
the conditions in case (i) and case (ii) are both satisfied. For
the optimal parameters α∗ and s∗ minimizing the spectral
radius of the matrix L(α;Q), from (25) , they must satisfy
the following equation

α+ s

1 + µ2 − s

1− s− σ2
n2

α+ µ2 + s+ σ2
n2

=
α+ s

1 + µ2 − s

σ2
1 + s− 1

α+ µ2 + s+ σ2
1

.

By simplification, the above equation becomes

1− s− σ2
n2

α+ µ2 + s+ σ2
n2

=
σ2
1 + s− 1

α+ µ2 + s+ σ2
1

(28)

under the condition that α+s does not tend to 0. The solution
α∗ of Equation (28) is given as follows:

α =
(µ2 + 2s− 1)(σ2

1 + σ2
n2) + 2σ2

1σ
2
n2 + 2(µ2 + s)(s− 1)

2− 2s− σ2
1 − σ2

n2

.

While it may not make ρ(L(α;Q)) small enough.
Furthermore, we discuss the global optimal parameters α

and s for the foregoing cases. From (21), it can be seen that
the spectral radius ρ(L(α;Q)) is monotonic increasing with
respect to α > 0. So in order to find the optimal parameter
α∗ minimizing the spectral radius ρ(L(α;Q)) in (21), the
optimal parameter α∗ should tend to zero. Moreover, we have

lim
a→0

ρ(L(α;Q)) =
s

1 + µ2 − s
max

σi∈σ(A)

|1− s− σ2
i |

µ2 + s+ σ2
i

.

It follows from the above expression that the spectral radius
ρ(L(α;Q)) can be sufficiently close to zero when we adopt

the optimal parameter s∗ → 0 under the condition α∗ → 0.
Therefore, the optimal parameters α∗ and s∗ should be α∗ →
0 and s∗ → 0. By the above analysis, the desired results of
this theorem are obtained.

Remark 3.4: From Theorems 3.2 and 3.3, the spectral
radii of the iteration matrices of the SRHSS method with
parameter matrices Q = sI and Q = sI + ATA could be
sufficiently close to zero under appropriate parameters α and
s, making the versions of the SRHSS iterative method to
obtain rapid convergence rates. On this account, it is expected
that the versions of the SRHSS method with the parameter
matrices Q = sI and Q = sI + ATA may converge faster
than some existing ones, which will be verified by numerical
examples in Section IV.

Similar to the proposed algorithm in [26], the following
algorithms of the proposed versions of the SRHSS method
for augmented system (4) can be obtained. The versions
of the SRHSS method with parameter matrices Q = sI
and Q = sI + ATA are denoted by the SRHSS-Q1 and
SRHSS-Q2 methods, respectively.

Algorithm 3.1: the SRHSS-Q1 method
1. Given an initial value f (0), the initial value of the noise
is taken as e(0) = g − Af (0). Given a very small positive
value τ , and M is the maximum prescribed number of outer
iterations.
2. r(0) = b−Kx(0).
3. For k = 0, 1, 2, · · · , until ∥r(k)∥2

∥r(0)∥2
> τ or k < M ,

4. e(k+
1
2 ) = αe(k)−Af(k)+g

α+1 ;

5. f (k+ 1
2 ) = AT e(k)+(α+s)f(k)

α+µ2+s ;
6.
[
(1 + µ2 − s)I +ATA)

]
f (k+1) = AT g+(1− s)f (k+ 1

2 );
7. e(k+1) = g −Af (k+1);
8. r(k+1) = b−Kx(k+1);
9. end for

Algorithm 3.2: the SRHSS-Q2 method
1. Given an initial value f (0), the initial value of the noise
is taken as e(0) = g − Af (0). Given a very small positive
value τ , and M is the maximum prescribed number of outer
iterations.
2. r(0) = b−Kx(0).
3. For k = 0, 1, 2, · · · , until ∥r(k)∥2

∥r(0)∥2
> τ or k < M ,

4. e(k+
1
2 ) = αe(k)−Af(k)+g

α+1 ;
5.
[
(α+ µ2 + s)I +ATA)

]
f (k+ 1

2 ) = AT e(k) + [(α+ s)+
ATA

]
f (k);

6. f (k+1) =
AT g+[(1−s)I−ATA]f(k+1

2
)

1+µ2−s ;
7. e(k+1) = g −Af (k+1);
8. r(k+1) = b−Kx(k+1);
9. end for

In the sequel, we turn to discuss the operation cost
of applying the SRHSS-Q1 and SRHSS-Q2 iteration
methods to solve (4). Steps 4-5 in Algorithms 3.1 and
3.2 stem from the first-step iterations of the SRHSS-
Q1 and SRHSS-Q2 methods, respectively. They require
the computing of the linear system with the coefficient
matrix (α + µ2 + s)I + ATA and the matrix-vector
multiplications Af (k), AT e(k), Af (k+1) and ATAf (k),
as well as scalar-vector multiplications. Steps 6-7 in
Algorithms 3.1 and 3.2 are derived from the second-step
iterations of the SRHSS-Q1 and SRHSS-Q2 methods,
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respectively, which require the computing of the linear
system with the coefficient matrix (1 + µ2 − s)I + ATA
except matrix-vector multiplications. Note that the matrix
A ∈ Rn2×n2

that arises in image restoration is highly
structured, such as block circulant, block Toeplitz and
block Toeplitz-plus-Hankel matrices and so forth. Hence,
arithmetic operations of matrix-vector multiplications with
the blurring matrix A ∈ Rn2×n2

is O(n2 log n) by fast
Fourier transforms (FFTs). Due to the coefficient matrices
(1 + µ2 − s)I + ATA and (α + µ2 + s)I + ATA with
0 < s < 1 + µ2 are symmetric positive definite, the
Cholesky factorization can be efficiently applied to solve
the two linear sub-systems. Moreover, since for image
restoration A ∈ Rn2×n2

is highly structured, we can employ
the FFTs to solve

[
(1 + µ2 − s)I +ATA)

]
f (k+1) =

AT g + (1 − s)f (k+ 1
2 ) in Step 6 of Algorithm 3.1

and
[
(α+ µ2 + s)I +ATA)

]
f (k+ 1

2 ) = AT e(k) +[
(α+ s)I +ATA

]
fk in Step 5 of Algorithm 3.2.

IV. NUMERICAL EXAMPLES

In this section, three examples are carried out to exam-
ine the feasibility and effectiveness of the SRHSS-Q1 and
SRHSS-Q2 iteration methods for solving ill-posed prob-
lems and image restoration, and show the advantages of
the proposed methods over the SHSS, NSHSS, RGHSS,
SGHSS and the ULT-type ones mentioned in Section I in
terms of the number of iterations (denoted by ‘IT’) and
the total computing times in seconds (denoted by ‘CPU’).
All computations are carried out in MATLAB R2018a on
a personal computer with 1.80-GHz central processing unit
(Intel(R) Core(TM) i7-8565U), 8.00 GB of memory, and
Windows 10 operating system.

While applying the SRHSS iterative method to solve ill-
posed problems, the regularization parameter µ that deter-
mines the quality of the computed solution has to be chosen.
Several methods for estimating the regularization parameter
µ have been described in the literature; see [19], [27], [15]
for details. One of the most popular methods for determining
a suitable value of µ when no accurate bound for ∥e∥ is
available is the Generalized Cross Validation (GCV) method
[10], [15], [16], [24], [28], [13], [14]; So in our computation,
we use the GCV scheme to determine a suitable value for
regularization parameter µ. The regularization parameter is
given by a value which minimizes the GCV function

G(µ) =
∥A(ATA+ µ2I)−1AT g − g∥22

(trace(I −A(ATA+ µ2I)−1)AT )2
.

Determining µ generally requires that the GCV function
is evaluated for several µ-values. In order to evaluate this
function efficiently, some algebraic methods are helpful.
For example the Kronecker product approximation can be
effectively used to approximate the best value of µ [29].
In addition, the parameters of the SHSS, NSHSS, RGHSS,
SGHSS, SRHSS-Q1 and SRHSS-Q2 methods are taken to be
the optimal ones determined by optimum parameter formula
presented in [26], [8], [1], [2] and Theorems 3.2 and 3.3
in this paper, respectively. And the optimal values of the
unknown parameters for the versions of the ULT method
are given in [12]. Moreover, it follows from Theorems 3.2
and 3.3 that the optimal parameters of the versions of the
SRHSS method usually tend to a certain number, then the

optimal parameters are obtained by adding a very small
and appropriate number to the certain number in practical
examples. In actual implementations, the initial guess in
Example 4.1 is the zero vector, and we adopt the initial value
as f (0) = g in Examples 4.2-4.3. All runs are terminated
if the current residual satisfies ∥r(k)∥2/∥r(0)∥2 < 10−6 or
the number of the prescribed iteration steps M = 100 is
exceeded, where r(k) = b−Kx(k) is the residual at the kth
iteration.

Qualitative measures of accuracy and efficiency are inves-
tigated. The accuracy is measured by the relative error (RES)
and the peak signal-to-noise ratio (PSNR) defined by

RES =
∥fnumerical − fexact∥2

∥fexact∥2
,

PSNR = 10log10
2552 × n2

∥fnumerical − fexact∥22
,

where the size of the image is n× n and fnumerical, fexact
are the numerical solutions (or restored images) and exact
solutions (or the original images), respectively. The quantity
PSNR provides a quantitative measure of the quality of the
restored image: a larger PSNR-value usually implies that the
restoration is of higher quality. However, in some cases this
might not agree with visual judgment. We therefore also
display the restored images.

Example 4.1: The collection of examples are from
Hansens Regularization Tools [20]. All the problems are
obtained by discretizing classical example of an ill-posed
problem in Fredholm integral equations of the first kind with
a square integrable kernel∫ b

a

K(s, t)f(t)dt = g(s), c ≤ s ≤ d

and approximating integration with a quadrature rule. In
the tests the kernel K and the solution f are given and
discretized to yield the matrix A and the vector f , then the
discrete right-hand side is determined by ĝ = Af . We con-
sider the test examples shaw,deriv2, foxgood, phillips,
baart and gravity. In all our numerical experiments, the
‘noise’ right-hand side g is generated from the exact data ĝ by
adding the noise in the form g = ĝ+0.001× rand(size(ĝ))
and we set the size n = 500.

We apply Algorithms 3.1 and 3.2 to the six different
inverse problems and compare the SRHSS-type methods with
the SHSS, NSHSS, RGHSS and SGHSS ones in view of
IT, CPU times and RES. The regularization parameter µ of
all test problems is determined by GCV and the numerical
results are reported in Table I.

From Table I, all tested methods can successfully compute
approximate solutions, and either the SRHSS-Q1 method
or SRHSS-Q2 method can achieve smallest relative error
with the least IT and CPU times than other four ones as the
tested iteration methods are terminated. For the test problem
phillips, the versions of the SRHSS method can provide a
regularized solution of the same accuracy as the ones by the
RGHSS and SGHSS methods but require much less IT and
CPU times. Moreover, The exact and numerical solutions are
shown in (a) of Figures 1-6, and in order to better understand
the numerical results in Table I the plots of relative error with
respect to iteration k are depicted in (b) of Figures 1-6 for
the six test problems. Subgraphs (b) of Figures 1-6 show that
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TABLE I: Numerical results of iterative methods of Example 4.1.
Test problem Method Parameters IT CPU RES

SHSS α = 0.8175 100 0.0411 0.7551
shaw(500) NSHSS α = 2.7700e− 6 100 0.0686 0.9994

RGHSS (α, β) = (0.001, 0.001) 100 0.0458 0.5164
µ = 0.0017 SGHSS (ω, τ) = (0.6, 6.1662e− 5) 100 0.0429 0.0398

SRHSS-Q1 (α, s) = (0.001, 0.999) 6 0.0051 0.0481
SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 4) 3 0.0059 0.0464

SHSS α = 0.0051 100 0.0383 0.1231
deriv2(500,3) NSHSS α = 2.2139e− 4 100 0.0408 0.9568

RGHSS (α, β) = (0.0012, 0.001) 36 0.0137 0.1221
µ = 0.0149 SGHSS (ω, τ) = (0.6, 1.9283e− 4) 9 0.0030 0.1221

SRHSS-Q1 (α, s) = (1.0e− 4, 0.9999) 8 0.0031 0.1221
SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 5) 5 0.0125 0.1221

SHSS α = 0.2474 100 0.0562 0.9523
foxgood(500) NSHSS α = 6.6982e− 6 100 0.0433 0.9986

RGHSS (α, β) = (0.001, 0.001) 100 0.0636 0.2439
µ = 0.0026 SGHSS (ω, τ) = (0.6, 6.4163e− 5) 100 0.0396 0.0015

SRHSS-Q1 (α, s) = (1.0e− 4, 0.9999) 4 0.0019 0.0012
SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 5) 3 0.0052 0.0011

SHSS α = 0.9439 100 0.0545 0.6471
phillips(500) NSHSS α = 0.7414 100 0.0419 0.8643

RGHSS (α, β) = (0.0024, 0.001) 17 0.0073 0.0193
µ = 0.0272 SGHSS (ω, τ) = (0.6, 0.0005) 7 0.0033 0.0193

SRHSS-Q1 (α, s) = (0.001, 0.9999) 3 0.0011 0.0192
SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 4) 3 0.0059 0.0192

SHSS α = 0.8390 100 0.0409 0.7235
baart(500) NSHSS α = 6.13083e− 5 100 0.0416 0.9885

RGHSS (α, β) = (0.0011, 0.001) 100 0.0397 0.1941
µ = 0.0078 SGHSS (ω, τ) = (0.6, 9.6784e− 5) 17 0.0073 0.1941

SRHSS-Q1 (α, s) = (0.01, 0.999) 6 0.0020 0.1721
SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 4) 3 0.0093 0.1849

SHSS α = 0.9543 100 0.0443 0.8575
gravity(500,1) NSHSS α = 8.1258e− 5 100 0.0411 0.9841

RGHSS (α, β) = (0.0011, 0.001) 100 0.0375 0.0085
µ = 0.0090 SGHSS (ω, τ) = (0.6, 1.0875e− 4) 25 0.0459 0.0085

SRHSS-Q1 (α, s) = (0.01, 0.99) 5 0.0020 0.0123
SRHSS-Q2 (α, s) = (1.0e− 6, 1.0e− 4) 3 0.0060 0.0083
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Fig. 1: Example 4.1-shaw test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.
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Fig. 2: Example 4.1-deriv2 test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.
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Fig. 3: Example 4.1-foxgood test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.
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Fig. 4: Example 4.1-phillips test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.
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Fig. 5: Example 4.1-baart test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.
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Fig. 6: Example 4.1-gravity test problem: (a) the exact solution and its numerical solution, (b) the relative error versus iteration k.

among these iteration methods the proposed versions of the
SRHSS one are the most effective methods as their residuals
reduce in the fastest rate. Besides, we also implement the
versions of the ULT method [12], requiring more IT and CPU
times than our methods. Because too many lines are not good
for observation, we do not present the results of the versions
of the ULT method in Figures 1-6. As this results show, our
proposed Algorithms 3.1 and 3.2 surpass other ones in terms
of both IT and CPU times for the convergence and are more
effective for solving the ill-posed problems.

Example 4.2: (Image restoration) The original image of
this example is the ‘Grain’ image of dimension 256 × 256
from Matlab’s image processing toolbox, and we choose
PSF = psfDefocus([7, 7], 3) in [22] to blur the image.
The ‘noisy’ right-hand-side g is generated by using MAT-
LAB code g = ĝ + 0.001∥ĝ∥2 w

∥w∥2
, where w is a vector

whose components are normally distributed with zero mean
and unit variance. The true image, PSF and blurred image
in the example are displayed in Figure 7.

Example 4.3: (Image restoration) We consider the restora-
tion of an image that has been contaminated by linear motion
blur and noise. The motion blur is caused by motion of a

rigid object, or equivalently caused by rigid movements of
the image device. The test image represented by 255× 255
pixels and the PSF for motion blur are shown in (a) and
(b) of Figure 8, respectively. The ‘noisy’ right-hand-side g
contaminated by motion blur as well as noise is shown in
(c) of Figure 8, and the added noise is the same as that in
Example 4.2.

The purpose of Examples 4.2 and 4.3 is to illustrate
that the presented versions of the SRHSS iterative method
perform better than the SHSS, RGHSS, SGHSS and the
versions of ULT ones when applied to the restoration of
images. Furthermore, PSNR-values of the blurred images in
Examples 4.2 and 4.3 are 70.5126 and 67.4780, respectively.

In two tests, we enforce the periodic BCs to construct
the blurring matrix A and use the blurred and noise image
as an initial guess. The regularization parameters are easily
computed by the GCV method for all iterative methods with
the periodic BCs. We apply Algorithms 3.1 and 3.2 to deblur
the two images. In Table II we report the numerical results
of the tested methods for the two examples and the restored
images by the nine iterative methods are also exhibited in
Figures 7-8. The reason that we do not display the image
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TABLE II: Numerical results of iterative methods of Examples 4.2 and 4.3.
Test problem Method Parameters IT CPU PSNR

SHSS α = 0.3333 100 3.4064 80.4086
RGHSS (α, β) = (0.001, 0.001) 100 3.4393 86.9805

Example 4.2 SGHSS (ω, τ) = (0.6, 2.2648e− 5) 11 0.3526 86.9849
ULT-IQ1 s = 1.0023 100 4.2084 78.8081

µ = 0.0046 ULT-IQ2 s = 12.0000 100 4.4053 72.5208
ULT-IIQ1 s = 1.0000 100 2.9822 78.8136

PSNR(blurred) ULT-IIQ2 s = 0.0046 100 4.5435 86.4305
=70.5126 SRHSS-Q1 (α, s) = (0.0010, 1.0000) 3 0.0941 86.9849

SRHSS-Q2 (α, s) = (1.e− 5, 1.0e− 5) 3 0.1177 86.9763
SHSS α = 0.3333 100 6.6165 86.3823

RGHSS (α, β) = (0.001, 0.001) 100 4.2418 92.9234
Example 4.3 SGHSS (ω, τ) = (0.6, 2.0369e− 5) 13 0.5157 93.3408

ULT-IQ1 s = 1.0021 100 4.9149 84.2767
µ = 0.0042 ULT-IQ2 s = 12.0000 100 5.3951 72.5803

ULT-IIQ1 s = 1.0000 100 3.6513 84.2211
PSNR(blurred) ULT-IIQ2 s = 0.0041 100 5.8038 84.1818
=67.4780 SRHSS-Q1 (α, s) = (0.001, 1.0000) 2 0.0871 93.3717

SRHSS-Q2 (α, s) = (1.0e− 5, 1.0e− 5) 2 0.1050 93.4368

(a) True Image (b) PSF (c) Blurred image

(d) SHSS (e) RGHSS (f) SGHSS

(g) ULT-I
Q1

(h) ULT-I
Q 2

(i) ULT-II
Q 1

(k) ULT-II
Q

2
(l) SRHSS-Q

1
(m) SRHSS-Q

2

Fig. 7: True image, PSF, blurred image and restoration images with various methods for Example 4.2.
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Fig. 8: True image, PSF, blurred image and restoration images with various methods for Example 4.3.

restoration of the NSHSS method is that the NSHSS method
for the examples is out of effect. From Table II, it can be
observed that all restorations achieved by the SRHSS-Q1

and SRHSS-Q2 methods have a larger PSNR-value than
the SHSS, RGHSS, SGHSS and the versions of ULT ones.
Besides, the versions of the SRHSS method require fewer IT
and CPU times. In short, compared with the results of some
existing methods in Table II, usually the proposed methods
in the paper are able to give better restorations in very few
the iteration steps and a smaller amount of time. Finally,
Figures 7-8 demonstrate that the proposed versions of the
SRHSS method are visually the better.

V. CONCLUSION

This paper puts forward a special regularized Hermitian
and skew-Hermitian splitting iterative method, called the
special RHSS (SRHSS) method, for solving the augmented
system (4) derived by Tikhonov regularization for ill-posed
problems and image restoration. We first construct a new
special splitting (8) of the coefficient matrix K in (6), of

which the first splitting form is the same with the one of
the RHSS method with ω = 1 for stabilized saddle-point
problems [3]. Whereas, the second splitting form in (8) is
different from that of (2.1) in [3]. Based on the new special
splitting, we present a speical regularized Hermitian and
skew-Hermitian splitting (SRHSS) iterative method, which
can converge faster than some existing ones. Moreover,
we investigate analytically the convergence behavior of the
proposed versions of the SRHSS method and the optimal
parameters which ensure a fast convergence rate are derived.
Numerical experiments show that the proposed methods are
effective and can outperform the existing ones in terms of
IT, CPU times and image recovering quality.
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