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Dynamic Behaviors of a Lotka-\olterra
Commensal Symbiosis Model with Non-selective
Michaelis-Menten Type Harvesting

Zhenliang Zhu Runxin Wu Fengde Chen Zhong Li

Abstract—In this paper, we study the following Lotka- The authors showed thaf,, F; and E3 are all unstable
Volterra commensal symbiosis model with non-selective equilibria, andE, is a stable node.

Michaelis-Menten type harvesting It is well known that harvesting of species is necessary for

dx x Yy @ Ex human being to obtain a resource. Recently, many scholars
- rlx(l K + QE)  miE 4 mez’ ([23],[32],[39],[40]) argued that the nonlinear harvesting (or
dy y @Ey named as Michealis-Menten type harvesting is more realistic.
a my(l o E) T msE + may’ In [23], Baoguo Chen tried to study the influence of human

harvesting to the commensalism model, and he incorporated
where ry, ro, K1, Ko, a, q1, g2, FE, mi,ma, M3 and mgy the Mich lis-M t t h i t to the first .
are all positive constants. Extinction, partial survival and 1€ Michaelis-Mententype harvesting term to the Tirst species

global attractivity of the positive equilibrium are investigated, N system (1.1), this leads to the following model:
respectively. The results obtained here essentially improve and ..

generalize the main results of Baoguo Chen (The influence of — = rlx(l _z + ai) — qux,
commensalism to a Lotka-Volterra commensal symbiosis model 4 Ky - K maBEtmar (g
with Michaelis-Menten type harvesting, Advances in Difference @ — sz(l _ ﬂ)

Equations, 2019, 2019: 43). dt Ky’

Index Terms—Commensal symbiosis model, Michaelis- wherery, 72, K1, Ks, o, q, E, my, mo are all positive
Menten type harvesting, Non-selective harvesting, Global at- constantsy, r2, K1, Ko, «, have the same meaning as that
tractivity. of the system (1.1)F is the fishing effort used to harvest

andgq is the catchablity coefficienin, andms are suitable
I. INTRODUCTION constants. One could refer to [23], [25]-[38] for more detail

) discussion about the influence of harvesting to the ecological
URING the last decade, many scholars ([1]-[16]) invess,ogel.

tigated the dynamic behaviors of the mutualism model, concerned with the stability property of the positive

some substantial progress on persistent, extinction and %auilibrium, Baoguo Chen obtained the following result
bility of the mutualism system has been made. HOWGV?"Fheorem 3.1 in [23)):

only recently did scholars ([17]-[25]) paid attention to the
commensalism model. By means of commensalism, it meah@eorem A.  Assume that

that in a long-term biological interaction in which members , (1 i a&) S 4 (1.3)
of one species gain benefits while those of the other species ! Ky my '
neither are benefited nor are harmed. Sun and Sun ([17]) fisgig
time proposed the following commensalism system gm2 T (1.4)
Em% Kl
dx r Y . -
T 7“1:6(1 e + QE)’ hold, then the positive equilibriutfiy(«*, y*) of system (1.2)
dy (1 Y ) (1.1) s globally stable.
- = Ty - T ) . .
dt ? K, Now let’s consider the following example.

wherery, ro, K1, Ko,  are all positive constants. One COU|dExampIe 11.
refer to [17] for more detail about the biological meaning of

the coefficients. The system admits four equilibria: Ccll_f - x(l o y) _ %,
+ o 1.5
E1(0,0), E2(K1,0), B5(0, Ks), E4(K1 + oK, Ka). dy (1-5)

at y(l_y)'

i | autt ) __Her rr ndin m (1.2), w 1 =
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hold, that is, condition (1.3) in Theorem A holds, however, Il. DYNAMIC BEHAVIORS OF THE SECOND SPECIES
condition (1.4) does not hold. Numeric simulation (Fig. 1) gefore we begin to study the dynamic behaviors of the
shows that the positive equilibrium of system (1.5) is gIobaIIgystem (1.8), we would like to investigate the positivity of

stable. the solutions of system (1.8). Indeed, we have the following
result.

Lemma 2.1. The solutions of system (1.8) with positive
initial value is positive for allt > 0.

Proof. Let (z(t),y(t)) be any solution of system (1.8) with
z(0) > 0,y(0) > 0, then from (1.8), we have

z(t) = IL'(O)eXp{/Ot (17 I((1)+a[((1))

ok
—_——d }>
mlE—i—mgx s g

(s)
y(0) eXp{/ (1 - yl((z)

E
2 ds} > 0.
~maE + may(s

<

—~
~

~—

-

1

This ends the proof of Lemma 2.1.

As a direct corollary of Lemma 2.2 of Chen[33], we have

Lemma 2.2. If ¢ > 0,b > 0 and% > x(b—ax), whent > 0
and z(0) > 0, we have

- b
Fig. 1. Dynamic behaviors of the system (1.5), the initial ltlglﬁ{,ifm( ) = E
condition (z(0),y(0)) = (3,0.5), (2,2), (0.5,0.2) and (0.5, 2),
respectively. Ifa >0,b>0ands < z(b—ax), whent > 0 andz(0) > 0,
we have

. b

limsup z(t) < —

a’

Example 1.1 implies that condition (1.4) may have room t=+oo
to improve or maybe it is not a necessary one. It is necessary The aim of this section is to investigate the dynamic
to revisit the stability property of the positive equilibrium ofbehaviors of the second species in system (1.8), since the
system (1.2). second equation of system (1.8) is independent of the first

On the other hand, in system (1.2), the author assume tbpecies, it may be easily to investigate.
the second species is not of commercial importance, this,For the sake of convenience, we restate the second
generally speaking, is not the real case. If we further assueguation of system (1.8) again.
that both species andy are of commercial importance, then,

we will establish the following Lotka-Volterra commensal dy _ sz(l _ i) _ ﬂ_ (2.1)
symbiosis model with non-selective Michaelis-Menten type dt K maE +may
harvesting. Lemma 2.3.Assume that
q2
dx y @ FEx T2 > (2:2)
%~ (- Erow) " mE e ’
1 1o B TIEE g gy holds, then

dy Y By E

L= (1) - P p(i-L)-—22_ o s

dt Ky msE + myy 1(y) = i, s + ey (2.3)
wherery, 79, K1, Ko, o, q1, g2, E, m1, ma, ms andm, are admits a unique positive solution
all positive constants. One could easily see tha;glf_: 0, Ay + /A2 —4A A,
then system (1.8) is degenerate to system (1.2). It is natural Y1 = 54 , (2.4)
to investigate the dynamic behaviors of the system (1.8) and !
to find out the difference between the selective harvestitgiere A -

1 = 472,

and non-selective harvesting.
The paper is arranged as follows. We will investigate the Ay = FEmgre — Komyrs, (2.5)
dynamic behaviors of the second species in the section 2,

and then, depending on the different assumption, we will A3 = FERK3q2 = ERzmars.

investigate the dynamic behaviors of the system (1.8) iRroof. Since

section 3 and section 4, respectively. Some examples together y @F

with their numeric simulations are presented in Section 5 to 1Y) = (1 B E)  msE 4 may

show the feasibility of the main results. We end this paper B G1(y) (2.6)
with a brief discussion. T Ky(Ems +may)’
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where (2)For ally; >y >0, Fa(y) > 0;
Gi(y) = A1y® + Agy + As. (3)For ally > y; > 0, Fa(y) < 0.
Hence, it immediately follows from Theorem 2.1 in [30] that
She unigue positive equilibriuny of system (2.1) is globally
stable.
The proof of Theorem 2.2 is finished.

Noting thatG, (y) is the quadratic function, and under th
assumption of Lemma 2.27,(0) = A3 < 0. Hence, from
the properties of quadratic function, one @s(y) < 0 for
y € (0,y1) and G1(y) > 0 for y € (y1,+00). That is,

G1(y) = 0 admits unique positive solutiog, € (0, +00). I1l. DYNAMIC BEHAVIORS OF SYSTEM(1.8), CASE:

From (2.6) one could see thai (y) = 0 also admits unique @E
positive solutiony; € (0, +0), Fi(y) > 0 for y € (0,41) T2 < msE + maKo
and Fi(y) < 0 for y € (y1,400). This ends the proof of The aim of this section is to investigate the dynamic
Lemma 2.2. behaviors of system (1.8) under the assumption
Theorem 2.1.Assume that ry < @B (3.1)
QQE ng + m4K2 '
2 < msE + myKo (2.7) hoId;. In_this case, as was sh_own in The.orem 2.1, t.he ;econd
holds, then in system (2.1), specigsvill finally be driven species in system (1.8) will finally be driven to extinction.
to extinction, i.e., Lemma 3.1.Assume that
. q1
| t)=0. 2. == .
i y(t) =0 (2.8) > (32)
Proof. From (2.7), for any enough small positive constariolds, then for any enough small positive constant
e > 0, the inequality 2 ¢ E
q1
Fulz) — (1__ _)_ ”  —0 (3.3
rg < b (2.9) o= K * aKl m1E + mox (8:3)
m3E +my(Ks + €) admits a unique positive solution
holds. From (2.1) we have _B B2 _ 4B, B
) , oy = 2+ 3 1 3, (3.4)
YW Tgy(l - —). (2.10) 2B
dt Ko where
Applying Lemma 2.1 to (2.10) leads to Bl = maors
tkglooy(t) S KQ' (211) B2 = —QXEMaT1 +Em1 T1 7K1 maTy, (35)
Fore > 0 enough small which satisfies (2.9), it follows from B; = —Eamirie— EK; miri+q EK;.
(2.11) that there exists an enough lafge> 0 such that Proof. Since
y(t) < Ko +¢ for all t>Ty. (2.12) @) = n (1 _r ai) B ak
Fort > Ty, from (2.1) and (2.12), one has g;(w) K, mi1E + moz
@FE - K (Emy + maox)’
Y-, (1 - ) 2.13 L{Bmy +ma
dt — 2y 9 (m3E + m4(K2 + E)) ( ) (36)
Hence where
! GQ(J}) = 311132 + Byx + Bs. (37)
y(t) < y(Ty) exp {I‘(t - Tl)}, (2.14) _ _ _ o
Noting that inequality (3.2) implies that
where e ¢
1 —) n 3.8
F:r2<1f a2b ) Tl( +aK1 >m1 (3.8)
r2(msE +ma(Kz +¢)) holds, therefore,

This, together with (2.9) leads to By = —Eamyre— EKimir +q EK, <0. (3.9)

. y(t) =0. (215)  Noting thatGy(z) is the quadratic function, and under the

assumption of Lemma 3.172(0) = Bs < 0. Hence, from
the properties of quadratic function, one IGig(x) < 0 for
x € (0,21) and Ga(x) > 0 for z € (x1,+00). That is,
Theorem 2.2 Assume that (2.2) holds, then system (2.1),(z) = 0 admits unique positive solutiom; € (0, +00).
admits a unique positive equilibrium which is globally stablerrom (3.6) one could see thak(z) = 0 also admits unique
Proof. Let positive solutionz; € (0, +00), F3(x) > 0 for z € (0,21)
and F3(z) < 0 for z € (x1,+00). This ends the proof of

This ends the proof of Theorem 2.1.

Y g2 F
F: = 1-=)-— 2.16 Lemma 3.1.
Q(y) T2( Kg) ’I’I’L3E +m4y ( )
From the proof of Lemma 2.2, one could easily see that Lemma 3.2. Assume that (3.2) holds, then
(1)There is a unique;, such thatF,(y;) = 0, wherey; is x )
defined by (2.4): Fi(e) = (1- 71) S0 (310)
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admits a unique positive solution Sincee > 0 is an arbitrary small positive constant, letting
— 01in (3.17) leads to
_ —Cy +\/CZ —401Cy a1l : (3.17)
T2 = 20, ’ (3.11) limsup z(t) < zs. (3.18)
t—+oo

where From the first equation of system (1.8), we also have

C1 = mam, dx S (1 x ) qnFx

— rme(l——)—-—.
Cy = Emiri — Kimsg r1, (312) dt  — ! K mi1E + mox
C; = —EKimir +q EK;. From this, by applying Lemma 3.2 and the comparison

L principle, similarly to the analysis of (3.15)-(3.18), we have
Proof. The proof of Lemma 3.2 is similar to that of the

proof of Lemma 3.1, we omit the detail here. Set liminfz(t) > 2. (3.19)
T E i
Fy(z) = T1<1 _ 7) - — 514_ — (3.18) together with (3.19) leads to
_ ! ' = lim () = as. (3.20)
We only mention here thafy(x) = 0 also admits unique t—=+oo

positive solutionzs € (0,400), also, Fy(xz) > 0 for z € (3.13) and (3.20) shows that the conclusion of Theorem 3.1
(0,z2) and Fy(x) < 0 for z € (xz2,400). This ends the holds. This ends the proof of Theorem 3.1.

proof of Lemma 3.2. Concerned with the extinction of the system (1.8), we have

Concerned with the partial survival of the system (1.8%neorem 3.2.In addition to (3.1), assume further that
we have W E
1

Theorem 3.1.Assume that (3.1) and (3.2) hold, thér, 0) "SI E + maky (3.21)

of system (1.8) is globally stable, i.e., holds, then the boundary equilibriu(f, 0) of system (1.1) is

lim z(t) =z, lim y(t) =0, globally stable. That is, both speciesandy will be driven
t—+o0 t=+oo to extinction.

wherez, is defined by (3.11). Proof. It follows from (3.21) that for enough small, the
Proof. Under the assumption (3.1), Theorem 2.1 shows thatlowing inequality holds
the second species will be driven to extinction, i.e., E

(14 22) < @ (3.22)

K ’I’I’L1E+’I’I’L2(K1+E).
It follows from (3.1) and Theorem 2.1 that

lim y(¢t) = 0. (3.13)

t——+oo

For any enough small positive constant> 0, it follows

from (3.13) that there exists & > 0 such that (i y(t) =0. (3.23)
y(t) <e for all t > 1T7. (3.14) Fore > 0 enough small, which satisfies (3.22), there exists

, . aT, > Ty such that
For t > T3, form the first equation of (1.8) and (3.14), one 2 !

has y(t) < e for all ¢t > Tb. (3.24)
dx < 7’196(1 -z . ai) __ wkr For ¢ > T, it follows from the first equation of (1.8) that
dt K Ky miE + max dr T €

_ _ (3.15) @< rlx(l -2 a—). (3.25)

Now let's consider the equation dt Ky K,
du (1 u . c ) a1 Eu Applying Lemma 2.1 to (3.25) leads to
—-— = null-—+a—— ) —, e
dt K1 Ky miE+mou limsup z(t) < K <1+a—). 3.26

(3.16) m sup e(t) < K K, (3.26)

It follows from Lemma 3.1 that system (3.16) admits Fettinge — 0 in (3.26) leads to

unique positive equilibriumy = x4, also, let

limsup z(t) < Kj. (3.27)
Fg(u):m(lflJrai) —L, oo
K K miE +mou Hence, fore > 0 which satisfies (3.22), there existslg >
then F3(u) > 0 for u € (0,21) and F3(u) < 0 for T3 such that
u € (x1,+00). Hence, it immediately follows from Theorem 2(t) < K1 +e for all £ > T (3.28)
1 =~ 13. .

2.1 in [30] that the unique positive equilibrium = z; of
system (3.16) is globally stable. By applying the comparisdkgain, for ¢ > T3, from (3.28) and the first equation of

principle, it follows from (3.15) and (3.16) that system (1.8), we have
limsup z(t) < z1. (3.17) dx < 12 I nbx
t—+o00 dt - TlJ]( K1 +aK1) m1E+m2(K1+€)
Noting that from (3.4), (3.5), (3.11) and (3.12), one could € aFE
that < Tlx(1+a—— )
see tha Ky miE+mo(Ki+¢)
1 —> g as € — 0. (3.29)
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Hence holds. Then system (4.7) admits a unique positive equilibrium
z(t) < x(T3) exp {A(t — T3)}, (3.30) w7, which is globally asymptotically stable, where
where -E E? —4AE\E
vi, = 2tV By m Ay (4.9)
5 o FE 2E,
A :”(“raf) CmiE +my(Ky +e)
! ! R Ey = mar, Ey=Emir; — (y1 —e)amar; — Kymary,
Therefore, from (3.22) one has
Fs = FEKiq— EKimir1 — E(y1 — e)amqr:.
lim 2(t) = 0. 331) 19 = BEymary = By, = e)omin (4.10)

t——+o0

(3.23) together with (3.31) shows that both speaieand y Proof. It follows from (4.8) that for enough small positive

will be driven to extinction. This ends the proof of Theorem . g
3.2 constant > 0, the inequality

r1(1 + au) > (4.11)
IV. DYNAMIC BEHAVIORS %F SYSTEM(1.8), CaSE: Ky mi
2

ro > — holds, by applying (4.11), the rest of the proof of Lemma

Under the assumption e 4.2is s_imilar to t_he proof of Lemma 2.2 and Theorem 2.2,
7 we omit the detail here.
2
2 > ms (4.1) Concerned with the global stability of the positive equi-

holds, it follows from Theorem 2.2 that system (2.1) admitsl‘iaprium of system (1.8), we have the following result.

unique positive equilibriuny = v, which is globally stable, Theorem 4.1.Assume that (4.1) and
wherey; is defined by (2.4).

Consider the equation r1<1 + a%) > 4 (4.12)
1 my
duy _ r1u1(1 0 SN e E) __abu hold, then system (1.8) admits a unique positive equilibrium
dt K K mi k' + mauy 19) (@.y1), which is globally stable, here
wheree > 0 is enough small positive constant. . —Gy + /G2 — 4G, G5 (4.13)
Lemma 4.1Assume that 2G '
T1 (1 + OL%) > 7’(717,_1 (43) Gl =  Mary, GQ = Emlrl —yramsary — K1m27’1,
1 1
holds. Then system (4.2) admits a unique positive equilibriumGs = EKiqg— EKymir — Eyiamar.
u}., which is globally asymptotically stable, where N o (4.14)
. Proof. Condition (4.12) implies that for enough small
yr = —P2t VD5 — 4D Ds (4.4) Positive constant > 0, the inequalities
le 2D1 : : Y + - q
1 1
Dl = mory, 71 (1 + OéTl) > m_1 (415)
Dy = Emyri — (y1 +e)amary — Kymary, and
Y1 —¢ q1
r (1 ta ) > 4L (4.16)
Ds = EKiqg — EKiymir — E(y1 +¢)amqr;. K,y my

(4.5) hold. It follows from (4.1) and Theorem 2.2 that the second

. _equation of system (1.8) admits a unique positive equilibrium
Proof. It follows from (4.3) that for enough small posmveyl, which is globally stable, that is,

constant > 0, the inequality
lim y(t) =y;-
7’1( y1+s) S Q1 t_>1+ooy() Y1

1+ a>—— 4.6
o - (4.6)

holds, by applying (4.6), the rest of the proof of Lemma 4.
is similar to the proof of Lemma 2.2 and Theorem 2.2, w
omit the detail here. y1 —e <y(t) <y +e¢ for all t > Ty. (4.18)

(4.17)
Hence, fore > 0 enough small{ < %yl) which satisfies

4.15) and (4.16), there exists7a > 0 such that

) ) (4.18) together with the first equation of system (1.8) leads
Consider the equation

to
dvy ( vy Y1 —¢€ q1Ev; d E
Sh=ro(1- 2 +a ) - . dx @ mtey  aFr
dt 1 Ky Ky m1E 4+ mav; dt §T1$(1 Ki o Ky m1E +maox’
(4.7) 4.19)
wheree > 0 is enough small positive constant. and
Lemma 4.2Assume that dx T Y1 — € g FEx
—Zrlx(lf—Jra )f .
T1(1+OL£) > a (4 8) dt Ki Ki mi1E + mox
Ky my ' (4.20)
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Hence, by using the comparison principle, it follows from 2}
Lemma 4.1 and 4.2 that
v}, <liminfz(t) < limsup z(t) < uj.. (4.21)
t—+o00 t—+o00
Noting that s
vi, =¥, ul, = 2% as € = 0. (4.22)
Settinge — 0 in (4.21) leads to x(1)
tilgrnoox(t) =z (4.23) N

(4.17) and (4.23) show that:*,y;) is globally attractive.
This ends the proof of Theorem 4.1.

Concerned with the partial survival of the system (1.8),
we have the following result.

0.5 T
Theorem 4.2. In addition to (4.1), further assume that 0 5 1 15 20
ay1 @ F
n(1+98) < . (4.29)
K miE +ma (K1 + ayi) Fig. 2. Dynamic behaviors of the first species of Example 5.1,
the initial condition(x(0), y(0)) = (2,0.5), (1,1), (0.5,0.2) and
holds, then (0.5,1), respectively.
Jim a(t) =0, lim y(t) =y
1
i. e., the first species will be driven to extinction due to the ]
over harvesting, while the second species is permanent.
Proof. From (4.24) we could choose> 0 small enough, 0.8
such that
E
(1 20y 2 .
K; m1E+m2(K1+a(y1+€)+€) ’
(4.25) N
It follows from (4.1) and Theorem 2.2 that
0.4
dim y(t) =y (4.26)
Hence, fore > 0 enough small, which satisfies (4.25), there
exists an enough largg; such that 021
y(t) <y1 +¢ for all t > Ts. (4.27)
By applying (4.27), similarly to the analysis of (3.25) and ° 5 10 15 20
(3.31), we can finally show that !
t~1}+moo z(t) = 0. (4.28) Fig. 3. Dynamic behaviors of the second species of Example 5.1,
, the initial conditi 0),4(0)) = (2,0.5), (1, 1), (0.5,0.2) and
This ends the proof of Theorem 4.2. (0‘?5'7”{;?,2;’36'0{{32?;’?( »w(0) = h (LD )an

V. NUMERICAL SIMULATIONS
Example 5.1.Let's taker; = 2,E = 1,¢1 = ¢o = 1,a = Example 5.2.Lets taker; = L, E=1,¢1 =g =1,a =

K=Ky =mo =my = mg = My,rs = i In this case, K1 = K9 = mo = m1 = m3 = My, Ty = i In this case,

by simple computation, one could easily see that by simple computation, one could easily see that
q1 1 1 (J1E
2=r;>—== 5.1 —=rp <l — == 5.3
T T 2 (5-1) 1~ " S B meK, (5:3)
and 1 E 1 and 1 E 1
q2 q2
4 "2 ng + m4K2 2 ( ) 2 m3E + m4K2 2 ( )

hold, that is, condition (3.1) and (3.2) in Theorem 3.1 holdold, that is, condition (3.1) and (3.21) in Theorem 3.2
and so, it follows from Theorem 3.1 that the boundargold, and so, it follows from Theorem 3.2 that the boundary
equilibrium (z2,0) = (0.7808,0) of the system is globally equilibrium (0,0) of the system is globally stable. Numeric
stable. Numeric simulations (Fig. 2, Fig. 3) support thisimulations (Fig. 4, Fig. 5) support this assertion.
assertion.
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20 30

2.01 2
1.8
1.6
1.4 15
1.2
x(?) x(1)
1.0
0.8 |
0.6
0.4
0.2
: 0.5 % :
0 10
t

0 10 20 30
t
Fig. 4. Dynamic behaviors of the first species of Example 5.2, Fig. 6. Dynamic behaviors of the first species of Example 5.3,
the initial condition(x(0), y(0)) = (2,0.5), (1,1), (0.5,0.2) and the initial condition(x(0), y(0)) = (2,0.5), (1,1), (0.5,0.2) and
(0.5,1), respectively. (0.5,1), respectively.
17 1.0y
0.9
0.8
0.8
0.6 0.7
(1) »(#) 0.6
0.4
0.5
0.4
0.2 1
0.3
0 - - | 0.2 T T 1
0 5 10 15 20 0 5 10 15 20
t t
Fig. 5. Dynamic behaviors of the second species of Example 5.2, Fig. 7. Dynamic behaviors of the second species of Example 5.3,
the initial condition(z(0), y(0)) = (2,0.5), (1, 1), (0.5,0.2) and the initial condition(x(0), y(0)) = (2,0.5), (1, 1), (0.5,0.2) and
(0.5,1), respectively. (0.5,1), respectively.

Example 5.3.Let’s taker; = 2, = 1,q1 = g2 = 1,a = Example 5.4.Let's taker;, = 0.1, E=1,¢1 =g =1,a =
K1 = Ky = my = my = mg = my,r2 = 2. In this case, by K, = K, = my = m; = ms = my, 7, = 2. In this case, by

simple computation, one could easily see that simple computation, one could easily see that
q1
2=r;1>—=1 (55 o7 ~r (1 ayl) n kb -
A7 = +—= < ~ 0.37
m ! K, mi1E +ma(K1 + ayr)
and (5.7)
2=y > 2 =1 (5.6) and "
ms 2:r2>—:1 (58)
ms

hold, that is, condition (4.1) and (4.12) in Theorem 4.1
hold, and so, it follows from Theorem 4.1 that the positiveolds, that is, condition (4.1) and (4.24) in Theorem 4.2
equilibrium (1.508,0.7071) of the system is globally stable.hold, and so, it follows from Theorem 4.2 that the boundary
Numeric simulations (Fig. 6, Fig. 7) support this assertionequilibrium (0,0.7071) of the system is globally stable.
Numeric simulations (Fig. 8, Fig. 9) support this assertion.
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27 stimulated us to propose the system (1.8).

From Theorem 3.1, 3.2, 4.1 and 4.2, we show that
under some suitable assumption on harvesting coefficients,
all of the forth equilibria Ex(0,0), Ei(x2,0), E2(0,y1)
and E4(z*,y1) are possible globally attractive, such a phe-
nomenon is quite different to the dynamic behaviors of
the commensalism system without harvesting or only with
harvesting on the first species, one could refer to the dynamic
behaviors of the system (1.1) and (1.2) for more detalil
information on this direction.

The direct motivation of our paper comes from recent
work of Baoguo Chen[23], in[23], he proposed the system
(1.2), investigated the local and global stability property of
the equilibria, however, as was shown in the introduction
section, their results still have room to improve. In this paper,
by establishing the new lemmas (Lemma 2.2, 3.1, 3.2, 4.1
0 10 20 30 and 4.2), we finally obtain the results to ensure the global
attractivity of all of the possible equilibria of the system
(1.8). One could easily see that,gf = 0, i.e, without the
Fig. 8. Dynamic behaviors of the first species of Example 5.4, harvesting of the second species, then Theorem 4.1 and 4.2
the initial condition(z(0), y(0)) = (2,0.5), (1, 1), (0.5,0.2) and gives the conditions to ensure the existence of the global
(0-5,1), respectively. attractivity positive equilibrium and the extinction of the first
species, respectively. Theorem 4.1 essentially improve and

1.5 1

0.5 A

107 generalize the corresponding result of Baoguo Chen[23], by
means of dropping the unnecessary condition (1.4).

0.9- To sum up, by introducing the non-selective Michaelis-
Menten type harvesting, the dynamic behaviors of the system

0.8 (1.8) becomes complicated. Overfishing may lead to the
extinction of the both species or the extinction of the second

0.7 species. Harvesting plays important role on determining the
dynamic behaviors of the system. To ensure the system be

y(1) 0.6 permanent, one needs to limit the capture to a certain range

of intense.

0.5
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