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Abstract—In this paper, we study the following Lotka-
Volterra commensal symbiosis model with non-selective
Michaelis-Menten type harvesting
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where r1, r2, K1, K2, α, q1, q2, E, m1,m2, m3 and m4

are all positive constants. Extinction, partial survival and
global attractivity of the positive equilibrium are investigated,
respectively. The results obtained here essentially improve and
generalize the main results of Baoguo Chen (The influence of
commensalism to a Lotka-Volterra commensal symbiosis model
with Michaelis-Menten type harvesting, Advances in Difference
Equations, 2019, 2019: 43).

Index Terms—Commensal symbiosis model, Michaelis-
Menten type harvesting, Non-selective harvesting, Global at-
tractivity.

I. I NTRODUCTION

DURING the last decade, many scholars ([1]-[16]) inves-
tigated the dynamic behaviors of the mutualism model,

some substantial progress on persistent, extinction and sta-
bility of the mutualism system has been made. However,
only recently did scholars ([17]-[25]) paid attention to the
commensalism model. By means of commensalism, it means
that in a long-term biological interaction in which members
of one species gain benefits while those of the other species
neither are benefited nor are harmed. Sun and Sun ([17]) first
time proposed the following commensalism system
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(1.1)

wherer1, r2, K1, K2, α are all positive constants. One could
refer to [17] for more detail about the biological meaning of
the coefficients. The system admits four equilibria:

E1(0, 0), E2(K1, 0), E3(0, K2), E4(K1 + αK2, K2).
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The authors showed thatE1, E2 and E3 are all unstable
equilibria, andE4 is a stable node.

It is well known that harvesting of species is necessary for
human being to obtain a resource. Recently, many scholars
([23],[32],[39],[40]) argued that the nonlinear harvesting (or
named as Michealis-Menten type harvesting is more realistic.
In [23], Baoguo Chen tried to study the influence of human
harvesting to the commensalism model, and he incorporated
the Michaelis-Menten type harvesting term to the first species
in system (1.1), this leads to the following model:
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where r1, r2, K1, K2, α, q, E, m1, m2 are all positive
constants,r1, r2, K1, K2, α, have the same meaning as that
of the system (1.1),E is the fishing effort used to harvest
andq is the catchablity coefficient,m1 andm2 are suitable
constants. One could refer to [23], [25]-[38] for more detail
discussion about the influence of harvesting to the ecological
model.

Concerned with the stability property of the positive
equilibrium, Baoguo Chen obtained the following result
(Theorem 3.1 in [23]):

Theorem A. Assume that

r1

(
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K2
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q
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(1.3)

and
qm2

Em2
1

<
r1
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(1.4)

hold, then the positive equilibriumE4(x
∗, y∗) of system (1.2)

is globally stable.

Now let’s consider the following example.

Example 1.1.
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,
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)
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(1.5)

Here, corresponding to system (1.2), we taker1 = 1, r2 =
1, E = 1, q = 1, α = K1 = K2 = m1 = 1,m2 = 3. In this
case, by simple computation, it follows that
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>
q

m1

=
1

1
(1.6)

and
3

1
=

qm2

Em2
1

>
r1

K1

= 1 (1.7)
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hold, that is, condition (1.3) in Theorem A holds, however,
condition (1.4) does not hold. Numeric simulation (Fig. 1)
shows that the positive equilibrium of system (1.5) is globally
stable.

Fig. 1. Dynamic behaviors of the system (1.5), the initial
condition (x(0), y(0)) = (3, 0.5), (2, 2), (0.5, 0.2) and (0.5, 2),
respectively.

Example 1.1 implies that condition (1.4) may have room
to improve or maybe it is not a necessary one. It is necessary
to revisit the stability property of the positive equilibrium of
system (1.2).

On the other hand, in system (1.2), the author assume that
the second species is not of commercial importance, this,
generally speaking, is not the real case. If we further assume
that both speciesx andy are of commercial importance, then,
we will establish the following Lotka-Volterra commensal
symbiosis model with non-selective Michaelis-Menten type
harvesting.
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wherer1, r2, K1, K2, α, q1, q2, E, m1,m2,m3 andm4 are
all positive constants. One could easily see that ifq2 = 0,
then system (1.8) is degenerate to system (1.2). It is natural
to investigate the dynamic behaviors of the system (1.8) and
to find out the difference between the selective harvesting
and non-selective harvesting.

The paper is arranged as follows. We will investigate the
dynamic behaviors of the second species in the section 2,
and then, depending on the different assumption, we will
investigate the dynamic behaviors of the system (1.8) in
section 3 and section 4, respectively. Some examples together
with their numeric simulations are presented in Section 5 to
show the feasibility of the main results. We end this paper
with a brief discussion.

II. DYNAMIC BEHAVIORS OF THE SECOND SPECIES

Before we begin to study the dynamic behaviors of the
system (1.8), we would like to investigate the positivity of
the solutions of system (1.8). Indeed, we have the following
result.

Lemma 2.1. The solutions of system (1.8) with positive
initial value is positive for allt ≥ 0.
Proof. Let (x(t), y(t)) be any solution of system (1.8) with
x(0) > 0, y(0) > 0, then from (1.8), we have

x(t) = x(0) exp
{

∫

t

0

r1

(

1−
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K1

+ α
y(s)

K1

)

−
q1E

m1E +m2x(s)
ds
}

> 0,

y(t) = y(0) exp
{

∫

t

0

r2

(

1−
y(s)

K2

)

−
q2E

m3E +m4y(s)
ds
}

> 0.

This ends the proof of Lemma 2.1.

As a direct corollary of Lemma 2.2 of Chen[33], we have

Lemma 2.2. If a > 0, b > 0 and ẋ ≥ x(b−ax), whent ≥ 0
and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥
b

a
.

If a > 0, b > 0 andẋ ≤ x(b−ax), whent ≥ 0 andx(0) > 0,
we have

lim sup
t→+∞

x(t) ≤
b

a
.

The aim of this section is to investigate the dynamic
behaviors of the second species in system (1.8), since the
second equation of system (1.8) is independent of the first
species, it may be easily to investigate.

For the sake of convenience, we restate the second
equation of system (1.8) again.

dy

dt
= r2y

(

1−
y

K2

)

−
q2Ey

m3E +m4y
. (2.1)

Lemma 2.3.Assume that

r2 >
q2

m3

(2.2)

holds, then

F1(y) = r2

(

1−
y

K2

)

−
q2E

m3E +m4y
= 0 (2.3)

admits a unique positive solution

y1 =
−A2 +

√

A2
2 − 4A1A3

2A1

, (2.4)

where
A1 = m4r2,

A2 = Em3r2 −K2m4r2,

A3 = EK2q2 − EK2m3r2.

(2.5)

Proof. Since

F1(y) = r2

(

1−
y

K2

)

−
q2E

m3E +m4y

= −
G1(y)

K2(Em3 +m4y)
,

(2.6)

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_19

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



where
G1(y) = A1y

2 +A2y +A3.

Noting thatG1(y) is the quadratic function, and under the
assumption of Lemma 2.2,G1(0) = A3 < 0. Hence, from
the properties of quadratic function, one hasG1(y) < 0 for
y ∈ (0, y1) and G1(y) > 0 for y ∈ (y1,+∞). That is,
G1(y) = 0 admits unique positive solutiony1 ∈ (0,+∞).
From (2.6) one could see thatF1(y) = 0 also admits unique
positive solutiony1 ∈ (0,+∞), F1(y) > 0 for y ∈ (0, y1)
andF1(y) < 0 for y ∈ (y1,+∞). This ends the proof of
Lemma 2.2.

Theorem 2.1.Assume that

r2 <
q2E

m3E +m4K2

(2.7)

holds, then in system (2.1), speciesy will finally be driven
to extinction, i.e.,

lim
t→+∞

y(t) = 0. (2.8)

Proof. From (2.7), for any enough small positive constant
ε > 0, the inequality

r2 <
q2E

m3E +m4(K2 + ε)
(2.9)

holds. From (2.1) we have

dy

dt
≤ r2y

(

1−
y

K2

)

. (2.10)

Applying Lemma 2.1 to (2.10) leads to

lim
t→+∞

y(t) ≤ K2. (2.11)

For ε > 0 enough small which satisfies (2.9), it follows from
(2.11) that there exists an enough largeT1 > 0 such that

y(t) < K2 + ε for all t ≥ T1. (2.12)

For t ≥ T1, from (2.1) and (2.12), one has

dy

dt
≤ r2y

(

1−
q2E

r2
(

m3E +m4(K2 + ε)
)

)

. (2.13)

Hence,
y(t) ≤ y(T1) exp

{

Γ(t− T1)
}

, (2.14)

where

Γ = r2

(

1−
q2E

r2
(

m3E +m4(K2 + ε)
)

)

.

This, together with (2.9) leads to

lim
t→+∞

y(t) = 0. (2.15)

This ends the proof of Theorem 2.1.

Theorem 2.2 Assume that (2.2) holds, then system (2.1)
admits a unique positive equilibrium which is globally stable.

Proof. Let

F2(y) = r2

(

1−
y

K2

)

−
q2E

m3E +m4y
(2.16)

From the proof of Lemma 2.2, one could easily see that
(1)There is a uniquey1, such thatF2(y1) = 0, wherey1 is
defined by (2.4);

(2)For all y1 > y > 0, F2(y) > 0;
(3)For all y > y1 > 0, F2(y) < 0.
Hence, it immediately follows from Theorem 2.1 in [30] that
the unique positive equilibriumy1 of system (2.1) is globally
stable.

The proof of Theorem 2.2 is finished.

III. D YNAMIC BEHAVIORS OF SYSTEM (1.8), CASE:

r2 <
q2E

m3E +m4K2

The aim of this section is to investigate the dynamic
behaviors of system (1.8) under the assumption

r2 <
q2E

m3E +m4K2

(3.1)

holds. In this case, as was shown in Theorem 2.1, the second
species in system (1.8) will finally be driven to extinction.

Lemma 3.1.Assume that

r1 >
q1

m1

(3.2)

holds, then for any enough small positive constantǫ,

F3(x) = r1

(

1−
x

K1

+ α
ǫ

K1

)

−
q1E

m1E +m2x
= 0 (3.3)

admits a unique positive solution

x1 =
−B2 +

√

B2
2 − 4B1B3

2B1

, (3.4)

where

B1 = m2r2,

B2 = −α ǫm2 r1 + Em1 r1 −K1m2 r1,

B3 = −Eαm1 r1 ǫ − EK1m1 r1 + q1 EK1.

(3.5)

Proof. Since

F3(x) = r1

(

1−
x

K1

+ α
ǫ

K1

)

−
q1E

m1E +m2x

= −
G2(x)

K1(Em1 +m2x)
,

(3.6)
where

G2(x) = B1x
2 +B2x+B3. (3.7)

Noting that inequality (3.2) implies that

r1

(

1 + α
ε

K1

)

>
q1

m1

(3.8)

holds, therefore,

B3 = −Eαm1 r1 ǫ − EK1m1 r1 + q1 EK1 < 0. (3.9)

Noting thatG2(x) is the quadratic function, and under the
assumption of Lemma 3.1,G2(0) = B3 < 0. Hence, from
the properties of quadratic function, one hasG2(x) < 0 for
x ∈ (0, x1) and G2(x) > 0 for x ∈ (x1,+∞). That is,
G2(x) = 0 admits unique positive solutionx1 ∈ (0,+∞).
From (3.6) one could see thatF3(x) = 0 also admits unique
positive solutionx1 ∈ (0,+∞), F3(x) > 0 for x ∈ (0, x1)
andF3(x) < 0 for x ∈ (x1,+∞). This ends the proof of
Lemma 3.1.

Lemma 3.2.Assume that (3.2) holds, then

F4(x) = r1

(

1−
x

K1

)

−
q1E

m1E +m2x
= 0 (3.10)
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admits a unique positive solution

x2 =
−C2 +

√

C2
2 − 4C1C3

2C1

, (3.11)

where

C1 = m2r1,

C2 = Em1 r1 −K1 m2 r1,

C3 = −EK1m1 r1 + q1 EK1.

(3.12)

Proof. The proof of Lemma 3.2 is similar to that of the
proof of Lemma 3.1, we omit the detail here. Set

F4(x) = r1

(

1−
x

K1

)

−
q1E

m1E +m2x
.

We only mention here thatF4(x) = 0 also admits unique
positive solutionx2 ∈ (0,+∞), also,F4(x) > 0 for x ∈

(0, x2) and F4(x) < 0 for x ∈ (x2,+∞). This ends the
proof of Lemma 3.2.

Concerned with the partial survival of the system (1.8),
we have

Theorem 3.1.Assume that (3.1) and (3.2) hold, then(x2, 0)
of system (1.8) is globally stable, i.e.,

lim
t→+∞

x(t) = x2, lim
t→+∞

y(t) = 0,

wherex2 is defined by (3.11).

Proof. Under the assumption (3.1), Theorem 2.1 shows that
the second species will be driven to extinction, i.e.,

lim
t→+∞

y(t) = 0. (3.13)

For any enough small positive constantε > 0, it follows
from (3.13) that there exists aT1 > 0 such that

y(t) < ε for all t ≥ T1. (3.14)

For t ≥ T1, form the first equation of (1.8) and (3.14), one
has

dx

dt
≤ r1x

(

1−
x

K1

+ α
ε

K1

)

−
q1Ex

m1E +m2x
.

(3.15)
Now let’s consider the equation

du

dt
= r1u

(

1−
u

K1

+ α
ε

K1

)

−
q1Eu

m1E +m2u
,

(3.16)
It follows from Lemma 3.1 that system (3.16) admits a
unique positive equilibriumu = x1, also, let

F3(u) = r1

(

1−
u

K1

+ α
ε

K1

)

−
q1E

m1E +m2u
,

then F3(u) > 0 for u ∈ (0, x1) and F3(u) < 0 for
u ∈ (x1,+∞). Hence, it immediately follows from Theorem
2.1 in [30] that the unique positive equilibriumu = x1 of
system (3.16) is globally stable. By applying the comparison
principle, it follows from (3.15) and (3.16) that

lim sup
t→+∞

x(t) ≤ x1. (3.17)

Noting that from (3.4), (3.5), (3.11) and (3.12), one could
see that

x1 → x2 as ε → 0.

Sinceε > 0 is an arbitrary small positive constant, letting
ε → 0 in (3.17) leads to

lim sup
t→+∞

x(t) ≤ x2. (3.18)

From the first equation of system (1.8), we also have

dx

dt
≥ r1x

(

1−
x

K1

)

−
q1Ex

m1E +m2x
.

From this, by applying Lemma 3.2 and the comparison
principle, similarly to the analysis of (3.15)-(3.18), we have

lim inf
t→+∞

x(t) ≥ x2. (3.19)

(3.18) together with (3.19) leads to

lim
t→+∞

x(t) = x2. (3.20)

(3.13) and (3.20) shows that the conclusion of Theorem 3.1
holds. This ends the proof of Theorem 3.1.

Concerned with the extinction of the system (1.8), we have

Theorem 3.2.In addition to (3.1), assume further that

r1 <
q1E

m1E +m2K1

(3.21)

holds, then the boundary equilibrium(0, 0) of system (1.1) is
globally stable. That is, both speciesx and y will be driven
to extinction.

Proof. It follows from (3.21) that for enough smallε, the
following inequality holds

r1

(

1 +
αε

K1

)

<
q1E

m1E +m2(K1 + ε)
. (3.22)

It follows from (3.1) and Theorem 2.1 that

lim
t→+∞

y(t) = 0. (3.23)

For ε > 0 enough small, which satisfies (3.22), there exists
a T2 > T1 such that

y(t) < ε for all t ≥ T2. (3.24)

For t ≥ T2, it follows from the first equation of (1.8) that

dx

dt
≤ r1x

(

1−
x

K1

+ α
ε

K1

)

. (3.25)

Applying Lemma 2.1 to (3.25) leads to

lim sup
t→+∞

x(t) ≤ K1

(

1 + α
ε

K1

)

. (3.26)

Settingε → 0 in (3.26) leads to

lim sup
t→+∞

x(t) ≤ K1. (3.27)

Hence, forε > 0 which satisfies (3.22), there exists aT3 >

T2 such that

x(t) < K1 + ε for all t ≥ T3. (3.28)

Again, for t > T3, from (3.28) and the first equation of
system (1.8), we have

dx

dt
≤ r1x

(

1−
x

K1

+ α
ε

K1

)

−
q1Ex

m1E +m2(K1 + ε)

< r1x
(

1 + α
ε

K1

−
q1E

m1E +m2(K1 + ε)

)

.

(3.29)
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Hence
x(t) < x(T3) exp

{

∆(t− T3)
}

, (3.30)

where

∆ = r1

(

1 + α
ε

K1

)

−
q1E

m1E +m2(K1 + ε)
.

Therefore, from (3.22) one has

lim
t→+∞

x(t) = 0. (3.31)

(3.23) together with (3.31) shows that both speciesx andy
will be driven to extinction. This ends the proof of Theorem
3.2.

IV. DYNAMIC BEHAVIORS OF SYSTEM (1.8), CASE:
r2 >

q2

m3

Under the assumption

r2 >
q2

m3

(4.1)

holds, it follows from Theorem 2.2 that system (2.1) admits a
unique positive equilibriumy = y1, which is globally stable,
wherey1 is defined by (2.4).

Consider the equation

du1

dt
= r1u1

(

1−
u1

K1

+ α
y1 + ε

K1

)

−
q1Eu1

m1E +m2u1

.

(4.2)
whereε > 0 is enough small positive constant.

Lemma 4.1.Assume that

r1

(

1 + α
y1

K1

)

>
q1

m1

(4.3)

holds. Then system (4.2) admits a unique positive equilibrium
u∗

1ε, which is globally asymptotically stable, where

u∗

1ε =
−D2 +

√

D2
2 − 4D1D3

2D1

. (4.4)

D1 = m2r1,

D2 = Em1r1 − (y1 + ε)αm2r1 −K1m2r1,

D3 = EK1q1 − EK1m1r1 − E(y1 + ε)αm1r1.
(4.5)

Proof. It follows from (4.3) that for enough small positive
constantε > 0, the inequality

r1

(

1 + α
y1 + ε

K1

)

>
q1

m1

(4.6)

holds, by applying (4.6), the rest of the proof of Lemma 4.1
is similar to the proof of Lemma 2.2 and Theorem 2.2, we
omit the detail here.

Consider the equation

dv1

dt
= r1v1

(

1−
v1

K1

+ α
y1 − ε

K1

)

−
q1Ev1

m1E +m2v1
.

(4.7)
whereε > 0 is enough small positive constant.

Lemma 4.2.Assume that

r1

(

1 + α
y1

K1

)

>
q1

m1

(4.8)

holds. Then system (4.7) admits a unique positive equilibrium
v∗1ε, which is globally asymptotically stable, where

v∗1ε =
−E2 +

√

E2
2 − 4E1E3

2E1

. (4.9)

E1 = m2r1, E2 = Em1r1 − (y1 − ε)αm2r1 −K1m2r1,

E3 = EK1q − EK1m1r1 − E(y1 − ε)αm1r1.
(4.10)

Proof. It follows from (4.8) that for enough small positive
constantε > 0, the inequality

r1

(

1 + α
y1 − ε

K1

)

>
q1

m1

(4.11)

holds, by applying (4.11), the rest of the proof of Lemma
4.2 is similar to the proof of Lemma 2.2 and Theorem 2.2,
we omit the detail here.

Concerned with the global stability of the positive equi-
librium of system (1.8), we have the following result.

Theorem 4.1.Assume that (4.1) and

r1

(

1 + α
y1

K1

)

>
q1

m1

(4.12)

hold, then system (1.8) admits a unique positive equilibrium
(x∗, y1), which is globally stable, here

x∗ =
−G2 +

√

G2
2 − 4G1G3

2G1

. (4.13)

G1 = m2r1, G2 = Em1r1 − y1αm2r1 −K1m2r1,

G3 = EK1q − EK1m1r1 − Ey1αm1r1.
(4.14)

Proof. Condition (4.12) implies that for enough small
positive constantε > 0, the inequalities

r1

(

1 + α
y1 + ε

K1

)

>
q1

m1

(4.15)

and

r1

(

1 + α
y1 − ε

K1

)

>
q1

m1

(4.16)

hold. It follows from (4.1) and Theorem 2.2 that the second
equation of system (1.8) admits a unique positive equilibrium
y1, which is globally stable, that is,

lim
t→+∞

y(t) = y1. (4.17)

Hence, forε > 0 enough small (ε < 1

2
y1) which satisfies

(4.15) and (4.16), there exists aT4 > 0 such that

y1 − ε < y(t) < y1 + ε for all t ≥ T4. (4.18)

(4.18) together with the first equation of system (1.8) leads
to

dx

dt
≤ r1x

(

1−
x

K1

+ α
y1 + ε

K1

)

−
q1Ex

m1E +m2x
,

(4.19)
and

dx

dt
≥ r1x

(

1−
x

K1

+ α
y1 − ε

K1

)

−
q1Ex

m1E +m2x
.

(4.20)
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Hence, by using the comparison principle, it follows from
Lemma 4.1 and 4.2 that

v∗1ε ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ u∗

1ε. (4.21)

Noting that

v∗1ε → x∗, u∗

1ε → x∗ as ε → 0. (4.22)

Settingε → 0 in (4.21) leads to

lim
t→+∞

x(t) = x∗. (4.23)

(4.17) and (4.23) show that(x∗, y1) is globally attractive.
This ends the proof of Theorem 4.1.

Concerned with the partial survival of the system (1.8),
we have the following result.

Theorem 4.2. In addition to (4.1), further assume that

r1

(

1 +
αy1

K1

)

<
q1E

m1E +m2(K1 + αy1)
, (4.24)

holds, then

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = y1.

i. e., the first species will be driven to extinction due to the
over harvesting, while the second species is permanent.

Proof. From (4.24) we could chooseε > 0 small enough,
such that

r1

(

1 +
α(y1 + ε)

K1

)

<
q1E

m1E +m2

(

K1 + α(y1 + ε) + ε
) .

(4.25)
It follows from (4.1) and Theorem 2.2 that

lim
t→+∞

y(t) = y1. (4.26)

Hence, forε > 0 enough small, which satisfies (4.25), there
exists an enough largeT5 such that

y(t) < y1 + ε for all t ≥ T5. (4.27)

By applying (4.27), similarly to the analysis of (3.25) and
(3.31), we can finally show that

lim
t→+∞

x(t) = 0. (4.28)

This ends the proof of Theorem 4.2.

V. NUMERICAL SIMULATIONS

Example 5.1.Let’s taker1 = 2, E = 1, q1 = q2 = 1, α =
K1 = K2 = m2 = m1 = m3 = m4, r2 = 1

4
. In this case,

by simple computation, one could easily see that

2 = r1 >
q1

m1

=
1

2
(5.1)

and
1

4
= r2 <

q2E

m3E +m4K2

=
1

2
(5.2)

hold, that is, condition (3.1) and (3.2) in Theorem 3.1 hold,
and so, it follows from Theorem 3.1 that the boundary
equilibrium (x2, 0) = (0.7808, 0) of the system is globally
stable. Numeric simulations (Fig. 2, Fig. 3) support this
assertion.

Fig. 2. Dynamic behaviors of the first species of Example 5.1,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Fig. 3. Dynamic behaviors of the second species of Example 5.1,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Example 5.2.Let’s taker1 = 1

4
, E = 1, q1 = q2 = 1, α =

K1 = K2 = m2 = m1 = m3 = m4, r2 = 1

4
. In this case,

by simple computation, one could easily see that

1

4
= r1 <

q1E

m1E +m2K1

=
1

2
(5.3)

and
1

4
= r2 <

q2E

m3E +m4K2

=
1

2
(5.4)

hold, that is, condition (3.1) and (3.21) in Theorem 3.2
hold, and so, it follows from Theorem 3.2 that the boundary
equilibrium (0, 0) of the system is globally stable. Numeric
simulations (Fig. 4, Fig. 5) support this assertion.
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Fig. 4. Dynamic behaviors of the first species of Example 5.2,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Fig. 5. Dynamic behaviors of the second species of Example 5.2,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Example 5.3.Let’s taker1 = 2, E = 1, q1 = q2 = 1, α =
K1 = K2 = m2 = m1 = m3 = m4, r2 = 2. In this case, by
simple computation, one could easily see that

2 = r1 >
q1

m1

= 1 (5.5)

and
2 = r2 >

q2

m3

= 1 (5.6)

hold, that is, condition (4.1) and (4.12) in Theorem 4.1
hold, and so, it follows from Theorem 4.1 that the positive
equilibrium (1.508, 0.7071) of the system is globally stable.
Numeric simulations (Fig. 6, Fig. 7) support this assertion.

Fig. 6. Dynamic behaviors of the first species of Example 5.3,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Fig. 7. Dynamic behaviors of the second species of Example 5.3,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Example 5.4.Let’s taker1 = 0.1, E = 1, q1 = q2 = 1, α =
K1 = K2 = m2 = m1 = m3 = m4, r2 = 2. In this case, by
simple computation, one could easily see that

0.17 ≈ r1

(

1 +
αy1

K1

)

<
q1E

m1E +m2(K1 + αy1)
≈ 0.37

(5.7)
and

2 = r2 >
q2

m3

= 1 (5.8)

holds, that is, condition (4.1) and (4.24) in Theorem 4.2
hold, and so, it follows from Theorem 4.2 that the boundary
equilibrium (0, 0.7071) of the system is globally stable.
Numeric simulations (Fig. 8, Fig. 9) support this assertion.
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Fig. 8. Dynamic behaviors of the first species of Example 5.4,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

Fig. 9. Dynamic behaviors of the second species of Example 5.4,
the initial condition(x(0), y(0)) = (2, 0.5), (1, 1), (0.5, 0.2) and
(0.5, 1), respectively.

VI. D ISCUSSION

There are many scholars ([25]-[38]) investigated the
influence of harvesting. Among those works, two directions
becomes very popular. The first one is to incorporate the
Michaelis-Menten type harvesting, see [23], [28], [29], [32].
They argued that the nonlinear one is more suitable, which
could overcome the drawback of the traditional linear ones.
The second one is concerned with the non-selective har-
vesting, see [31], [34]-[38]. They thought it is necessary to
consider the harvesting on both species, since both species
may commercial importance. However, to the best of our
knowledge, to this day, still no scholars propose an ecosystem
with non-selective Michaelis-Menten type harvesting, this

stimulated us to propose the system (1.8).
From Theorem 3.1, 3.2, 4.1 and 4.2, we show that

under some suitable assumption on harvesting coefficients,
all of the forth equilibriaE0(0, 0), E1(x2, 0), E2(0, y1)
andE4(x

∗, y1) are possible globally attractive, such a phe-
nomenon is quite different to the dynamic behaviors of
the commensalism system without harvesting or only with
harvesting on the first species, one could refer to the dynamic
behaviors of the system (1.1) and (1.2) for more detail
information on this direction.

The direct motivation of our paper comes from recent
work of Baoguo Chen[23], in[23], he proposed the system
(1.2), investigated the local and global stability property of
the equilibria, however, as was shown in the introduction
section, their results still have room to improve. In this paper,
by establishing the new lemmas (Lemma 2.2, 3.1, 3.2, 4.1
and 4.2), we finally obtain the results to ensure the global
attractivity of all of the possible equilibria of the system
(1.8). One could easily see that, ifq2 = 0, i.e, without the
harvesting of the second species, then Theorem 4.1 and 4.2
gives the conditions to ensure the existence of the global
attractivity positive equilibrium and the extinction of the first
species, respectively. Theorem 4.1 essentially improve and
generalize the corresponding result of Baoguo Chen[23], by
means of dropping the unnecessary condition (1.4).

To sum up, by introducing the non-selective Michaelis-
Menten type harvesting, the dynamic behaviors of the system
(1.8) becomes complicated. Overfishing may lead to the
extinction of the both species or the extinction of the second
species. Harvesting plays important role on determining the
dynamic behaviors of the system. To ensure the system be
permanent, one needs to limit the capture to a certain range
of intense.
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