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Abstract—In this paper, an M/G/1 G-queue with server
breakdown, working vacations and Bernoulli vacation inter-
ruption is considered. In the normal busy period, the arrival of
a negative customer not only takes away the positive customer
being in service, but also causes the server break down. During
the repair time, the system is out of service until the repair
is completed. And during the working vacation period, the
vacation will be interrupted with probability p (0 ≤ p ≤ 1) or
continues with probability p = 1 − p, if there are customers
in the system at a service completion instant. By applying
the matrix-analytic method and the supplementary variable
technique, the probability generating functions of the queue
length and the server state are obtained. Finally, the sensitivity
analysis and cost analysis of the model are presented.

Index Terms—G-queue, working vacation, Bernoulli vacation
interruption, embedded Markov chain, supplementary variable
method.

I. INTRODUCTION

WORKING vacation queues are the extension of clas-
sical vacation queues. Servi and Finn [1] first studied

an M/M/1 queue with working vacations. For the working
vacation policy, the server can still work at a lower rate
during the vacation. This low-speed service strategy utilizes
the server effectively. Thus, the working vacation plays an
important role in many practical applications such as e-
commerce, production management and service industries.
In recent years, many scholars have made extensive research
on the queueing systems with working vacations and ob-
tained plenteous theoretical results. Wu and Takagi [2] dealt
with an M/G/1 queue with multiple working vacations and
derived the distributions for the queue size in the steady
state. On the basis of the classical vacation decomposition
in M/G/1 queue, Li and Tian [3] analyzed the M/G/1
queue with exponential working vacation and obtained a
conditional stochastic decomposition result. Recently, Gao
and Yao [4], Zhang and Zhou [5], Jailaxmi et al. [6] and
Kasim and Gupur [7] also considered the queueing systems
with working vacation.

In order to improve the operating efficiency of the system,
Li and Tian [8] introduced the working vacation interruption
policy. In a working vacation period, if the system is non-
empty at a service completion instant, a new normal busy
period starts. If the system is still empty, on the other hand,
the server continues the vacation. Subsequently, Zhang and
Shi [9] proposed Bernoulli vacation interruption model. The
Bernoulli vacation interruption policy is related to many
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service systems. After each service completion, the vacation
is interrupted with probability p if the system is non-empty,
or continues with probability 1−p. In addition, Gao and Liu
[10] treated an M/G/1 queue with single working vacation
and vacation interruption under Bernoulli schedule. They got
a variety of stationary performance measures for this system
and gave a conditional stochastic decomposition result. Li
et al. [11] discussed an M/G/1 retrial model with Bernoulli
working vacation interruption. Using the matrix analytic
method, Li et al. [12] investigated a GI/M/1 queue with
single working vacation and Bernoulli vacation interruption.
In this system, they obtained the steady-state distributions
for the queue length.

Erol et al. [13] put forward the queueing model with
negative customers in 1991. The queues with negative cus-
tomer arrivals are called G-queues. A negative customer will
vanish automatically if it arrives to the queue when the server
is idle or down or on vacation. During the normal busy
period, the arrival of a negative customer either removes all
customers in the system or removes only one customer from
the head or the end of the system. Negative customers cannot
accumulate in a queue and do not receive service. Usually,
the negative customer also cause the server break down.
And queueing systems with negative customers and server
breakdown have many applications in telecommunication
and computer network systems. For example, in computer
networks, the system will be infected if the virus enters
the system and it will be restored as good as new after
data backing-up the infected file. In recent years, queueing
models with negative customers and server breakdown have
been well studied. Considered the practical problems of bank
performance, Harrison et al. [14] studied reliability modeling
using G-queues. Wang and Zhang [15] combined negative
customers with repairable systems and studied a single-
server discrete-time retrial G-queue with server breakdowns
and repair. Some other results about G-queues can be found
in Inoue and Takine [16] and Xu et al. [17].

Considered the model of stochastic production and in-
ventory systems with multi-purpose production facilities,
Zhang and Liu [18] studied an M/G/1 G-queue with server
breakdown, working vacations and vacation interruption.
Positive and negative customers represent the generation
and cancellation of orders, respectively. The cancellation of
orders in normal production period results in the cessation
of major production and the start of optional jobs. If there
are orders after the disaster caused by negative customer,
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the production facility will perform the major production.
Otherwise, it will perform the optional jobs. In addition,
the production equipment returns to main production after
the completion of optional operations. This motivates us to
analyze the queueing model that is applied to such practical
production system. In order to improve the efficiency of
the main production equipment, we can selectively decide
whether to start the main production of the production equip-
ment after the optional operation is completed. Therefore,
combined with Bernoulli interruption strategy, we consider
an M/G/1 G-queue with server breakdown, working vaca-
tions and Bernoulli vacation interruption.

This paper is organized as follows. Section II gives a
brief description of the model. In Section III, we obtain the
stability conditions by the matrix-analytic method. In Section
IV, we deal with the joint distribution of the serve state
and the number of customers. Some performance measures
of this model are also discussed. Numerical results are
presented in Section V. Finally, Section VI concludes the
paper.

II. DESCRIPTION OF THE QUEUEING SYSTEM

In this paper, we consider an M/G/1 G-queue with server
breakdown, working vacations and Bernoulli vacation inter-
ruption. The detailed description of this model is given as
follows:
1) There are two types of customers arriving in the system,
positive customers and negative customers. The inter-arrival
times of positive and negative customers are exponentially
distributed with parameter λ+ and λ−, respectively.
2) In the normal busy period, the arrival of negative customer
not only takes away the positive customer being served
but also breaks the server down. If the negative customer
arrives when the server is in the working vacation period or
under the repair period, the negative customer will disappear
automatically and has no impact on the system.
3) The server takes a working vacation of random length V
once the system becomes empty. And vacation duration V

follows an exponential distribution with parameter θ. Upon
the completion of a service in the vacation period, if there
are customers in the system, the vacation can be interrupted
with probability p (0 ≤ p ≤ 1) or continues with probability
p̄ = 1− p. Meanwhile, when a vacation ends, if the system
is empty, another new vacation is taken.
4) The failed server is repaired immediately and it is assumed
as good as new after repair. If the system has no customer
after the repair is completed, the server takes a working
vacation. Otherwise, it starts a new busy period.
5) During the normal busy period, the normal service time Sb
has a distribution function Sb (x), Laplace-Stieltjes transfor-
m (LST)

∼
Sb (s) and nth moments βn, n ≥ 1. Clearly, β1 =

E (Sb)
∆
= 1/µb. During the working vacation period, positive

customers can be served at a lower rate and the service time
Sv has a distribution function Sv (x), LST

∼
Sv (s) and nth

moments ηn, n ≥ 1. And η1 = E (Sv)
∆
= 1/µv . During

the repair period, the repairing time R has a distribution
function R(t), LST

∼
R (s) and nth moments γn, n ≥ 1.

Clearly, γ1 = E (R).
We assume that inter-arrival times, service times, working

vacation times and repair times are mutually independent.
Further, it is assumed that Sb (0) = 0, Sb (∞) = 1,Sv (0) =

0,Sv (∞) = 1, R (0) = 0, R (∞) = 1, and Sb (x), Sv (x)

and R (x) are continuous at x = 0. The functions µb (x),
µv (x) and α (x) are the conditional completion rates for
normal service, lower service and repair, respectively, i.e.

µb (x) dx =
dSb (x)

1− Sb (x)
,

µv (x) dx =
dSv (x)

1− Sv (x)
,

α (x) dx =
dR (x)

1−R (x)
.

Throughout the rest of the paper, for a distribution func-
tion F (x), we define F̄ (x) = 1 − F (x) to be the tail of
F (x). We also denote F̃ (s) =

∫∞
0
e−sxdF (x), F̄ ∗(s) =∫∞

0
e−sxF̄ (x)dx. Clearly, we have F̄ ∗ (s) = 1−F̃ (s)

s .
Let N (t) represent the number of positive customers in

the system at time t and I (t) denote the state of server at
time t. Define

I(t) =



0, the server is in a working vacation

period at time t,

1, the server is during a normal service

period at time t,

2, the server is under the repair period

at time t.

At time t ≥ 0, we define the random variable ξ (t)

as follows: if I (t) = 0, ξ (t) denotes the elapsed lower
service time; if I (t) = 1, ξ (t) represents the elapsed normal
service time; if I (t) = 2, ξ (t) stands for the elapsed
repair time. Then, X (t) = {I (t) , N (t) , ξ (t) , t ≥ 0} is a
Markov process. And the state space of the process is Ω =

{(0, 0)} ∪ {(2, 0, x)} ∪ {(i, n, x) , i = 0, 1, 2, n ≥ 1, x ≥ 0}.
Let {tn, n = 1, 2, 3 · · ·} be the sequence of epochs at which
a normal service or a lower service or a repair completion
or a breakdown occurs and Yn = {I (t+n ) , N (t+n )}. Then,
the sequence of random variables {Yn;n ≥ 1} forms an
embedded Markov chain with state space {(0, 0)}∪{(2, 0)}∪
{(i, k) , i = 0, 1, 2, k ≥ 1}.

III. STABLE CONDITION AND STATIONARY
DISTRIBUTION

To develop the transition matrix of {Yn, n ≥ 1}, we intro-
duce a few definitions:
a) Define

ak =

∫ ∞
0

(λ+x)
k

k!
e−λ

+xe−λ
−xdSb (x) , k ≥ 0.

Then, {ak; k ≥ 0} is the probability that k positive customer-
s arrive during Sb and no negative customer arrives. We have

A (z)
∆
=
∞∑
k=0

akz
k = S̃b

[
λ+ (1− z) + λ−

]
,
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A (1) = S̃b
(
λ−
)
, A′ (1) = λ+

∫ ∞
0

xe−λ
−xdSb (x),

A′′ (1) =
(
λ+
)2 ∫ ∞

0

x2e−λ
−xdSb (x).

b) Define

bk =

∫ ∞
0

(λ+x)
k

k!
e−λ

+xλ−e−λ
−x [1− Sb (x)] dx, k ≥ 0.

Thus, {bk; k ≥ 0} is the probability that k positive customers
arrive before the negative customer arrives and no service
complete. We can get

B (z)
∆
=
∞∑
k=0

bkz
k =

λ−

λ+ (1− z) + λ−
[1−A (z)],

B (1) = 1−A (1) , B′ (1) =
λ+

λ−
[1−A (1)]−A′ (1) ,

B′′ (1) = 2

(
λ+

λ−

)2

[1−A (1)]− 2

(
λ+

λ−

)
A′ (1)−A′′ (1) .

c) Define

ck =

∫ ∞
0

(λ+x)
k

k!
e−λ

+xe−θxdSv (x) , k ≥ 0.

Then {ck; k ≥ 0} represents the probability that V ≥ Sv and
k positive customers arrive during Sv . And we have

C (z)
∆
=
∞∑
k=0

ckz
k = S̃v

[
λ+ (1− z) + θ

]
,

C (1) = S̃v (θ) , C ′ (1) = λ+

∫ ∞
0

xe−λ
−xdSv (x),

C ′′ (1) =
(
λ+
)2 ∫ ∞

0

x2e−λ
−xdSv (x).

d) Define

dk =

∫ ∞
0

(λ+x)
k

k!
e−λ

+xθe−θx [1− Sv (x)] dx, k ≥ 0.

Hence, {dk; k ≥ 0} explains the probability that V ≤ Sv
and k positive customers arrive during V . And we can get

D (z)
∆
=
∞∑
k=0

dkz
k =

θ

λ+ (1− z) + θ
[1− C (z)],

D (1) = 1− C (1) , D′ (1) =
λ+

θ
[1− C (1)]− C ′ (1) ,

D′′ (1) = 2

(
λ+

θ

)2

[1− C (1)]− 2

(
λ+

θ

)
C ′ (1)−C ′′ (1) .

e) Define

fk =

∫ ∞
0

(λ+x)
k

k!
e−λ

+xdR (x) , k ≥ 0.

Thus, {fk; k ≥ 0} is the probability that k positive customers
arrive during R. We have

F (z)
∆
=
∞∑
k=0

fkz
k = R̃

[
λ+ (1− z)

]
, F (1) = 1,

F ′ (1) = λ+E (R) , F ′′ (1) =
(
λ+
)2 ∫ ∞

0

x2dR (x).

f) Define

gk =
k∑
j=0

djak−j , k ≥ 0.

Hence, {gk; k ≥ 0} represents the probability that V ≤ Sv
and k positive customers arrive during V plus Sb. We have

G (z)
∆
=
∞∑
k=0

gkz
k = D (z)A (z),

G (1) = D (1)A (1) , G′ (1) = D′ (1)A (1)+D (1)A′ (1) ,

G′′ (1) = D′′ (1)A (1) + 2D′ (1)A′ (1) +D (1)A′′ (1) .

g) Define

qk =
k∑
j=0

djbk−j , k ≥ 0.

Then {qk; k ≥ 0} explains the probability that V ≤ Sv and
the new started service does not complete before the negative
customer arrives, and k positive customers arrive during the
whole period. We can get

Q (z)
∆
=
∞∑
k=0

qkz
k = D (z)B (z),

Q (1) = D (1)B (1) , Q′ (1) = D′ (1)B (1)+D (1)B′ (1) ,

Q′′ (1) = D′′ (1)B (1) + 2D′ (1)B′ (1) +D (1)B′′ (1) .

Using the lexicographical sequence for the states, we can
establish the following block-Jacobi matrix as the transition
probability matrix of {Yn;n ≥ 1}

W0 W1 W2 · · ·
H0 A1 A2 · · ·

A0 A1 · · ·
. . . . . .

 ,

where

W0 =

(
c0 + g0 q0

f0 0

)
, H0 =

 c0 + g0 q0

a0 b0

0 0

 ,

A0 =

 p̄c0 pc0 + g0 q0

0 a0 b0

0 0 0

 ,

Wk =

(
p̄ck pck + gk qk

0 fk 0

)
, k ≥ 1,

Ak =

 p̄ck pck + gk qk

0 ak bk

0 fk−1 0

 , k ≥ 1.

We can easily check that

W0e0+
∞∑
k=1

Wke = e0, H0e+
∞∑
k=1

Ake = e,
∞∑
k=0

Ake = e,

where e0 =
(

1 1
)T
, e =

(
1 1 1

)T
.

Theorem 1. The embedded Markov chain {Yn;n ≥ 1} is
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ergodic if and only if[
1− S̃b

(
λ−
)] [λ+

λ−
+ λ+E (R)

]
< 1.

Proof: It is not difficult to see that {Yn;n ≥ 1} is an
irreducible and aperiodic Markov chain, so we just need to
prove that {Yn;n ≥ 1} is positive recurrent if and only if[

1− S̃b
(
λ−
)] [λ+

λ−
+ λ+E (R)

]
< 1.

Since

A =
∞∑
k=0

Ak =

 pC (1) pC (1) +G (1) Q (1)

0 A (1) B (1)

0 F (1) 0


is a reducible stochastic matrix.
Denote

A0(2) =

(
a0 b0

0 0

)
, Ak(2) =

(
ak bk

fk−1 0

)
, k ≥ 1,

and

A(2) =
∞∑
k=0

Ak(2) =

(
A (1) B (1)

F (1) 0

)
,

then A(2) is the degenerative stochastic matrix and the invari-
ant probability vector of matrix A(2) is π =

(
π1 π2

)
,

where
π1 =

1

1 +B (1)
, π2 =

B (1)

1 +B (1)
.

The vector β is defined by

β =
∞∑
k=1

kAk(2)e0.

Thus β is explicitly given by

β =
(

λ+

λ−

[
1− S̃b (λ−)

]
, 1 + λ+E (R)

)T
.

It is obvious from chapter 2 of Neuts [19] that the embedded
Markov chain {Yn;n ≥ 1} is positive recurrent if and only
if

πβ < 1⇔
[
1− S̃b

(
λ−
)] [λ+

λ−
+ λ+E (R)

]
< 1.

And with the Burke’s theorem [20], the steady state proba-
bilities of the Markov process X (t) exist if and only if the
stable condition

[
1− S̃b (λ−)

] [
λ+

λ− + λ+E (R)
]
< 1 holds.

Now we define the limiting probability and limiting prob-
ability densities:

P0,0 = lim
t→∞

P (I (t) = 0, N (t) = 0) ,

P0,n (x) dx = lim
t→∞

P (I (t) = 0, N (t) = n,

x ≤ ξ (t) < x+ dx), n ≥ 1,

P1,n (x) dx = lim
t→∞

P (I (t) = 1, N (t) = n,

x ≤ ξ (t) < x+ dx), n ≥ 1,

P2,n (x) dx = lim
t→∞

P (I (t) = 2, N (t) = n,

x ≤ ξ (t) < x+ dx), n ≥ 0.

IV. STEADY STATE ANALYSIS

The following system of equations that govern the dynam-
ics of the system are obtained by the method of supplemen-
tary variable technique.

λ+P0,0 =

∫ ∞
0

P0,1 (x)µv (x) dx+

∫ ∞
0

P1,1 (x)µb (x) dx

+

∫ ∞
0

P2,0 (x)α (x) dx, (1)

dP0,n (x)

dx
=−

[
λ+ + θ + µv (x)

]
P0,n (x)

+ (1− δn,1)λ+P0,n−1 (x) , n ≥ 1, (2)
dP1,n (x)

dx
=−

[
λ+ + λ− + µb (x)

]
P1,n (x)

+ (1− δn,1)λ+P1,n−1 (x) , n ≥ 1, (3)
dP2,n (x)

dx
=−

[
λ+ + α (x)

]
P2,n (x)

+ (1− δn,0)λ+P2,n−1 (x) , n ≥ 0, (4)

where δn,0 and δn,1 are the Kronecker’s symbol.
The boundary conditions are

P0,n (0) =

∫ ∞
0

P0,n+1 (x)µv (x) p̄dx

+ δn,1λ
+P0,0, n ≥ 1, (5)

P1,n (0) =

∫ ∞
0

P1,n+1 (x)µb (x) dx

+ θ

∫ ∞
0

P0,n (x) dx

+ p

∫ ∞
0

P0,n+1 (x)µv (x) dx

+

∫ ∞
0

P2,n (x)α (x) dx, n ≥ 1, (6)

P2,n (0) = λ−
∫ ∞

0

P1,n+1 (x) dx, n ≥ 0, (7)

and the normalization condition is

P0,0 +
∞∑
n=1

∫ ∞
0

P0,n (x) dx+
∞∑
n=1

∫ ∞
0

P1,n (x) dx

+
∞∑
n=0

∫ ∞
0

P2,n (x) dx = 1. (8)

By introducing the generating functions

Pi (x, z) =
∞∑
n=b

Pi,n (x) zn, i = 0, 1, b = 1; i = 2, b = 0,

from (2)-(4), we can have

P0 (x, z) = [1− Sv (x)] e−[λ+(1−z)+θ]xP0 (0, z) , (9)

P1 (x, z) = [1− Sb (x)] e−[λ+(1−z)+λ−]xP1 (0, z) , (10)

P2 (x, z) = [1−R (x)] e−[λ+(1−z)]xP2 (0, z) . (11)

By (1), (5)-(7), after some computations, we can have

λ+P0,0 = C (0)P0,1 (0) +A (0)P1,1 (0) + F (0)P2,0 (0) ,

(12)

P0 (0, z) =
zp̄C (0)P0,1 (0)− z2λ+P0,0

f (z)
, (13)
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P1 (0, z) =
h (z)

g (z)
P0 (0, z) +

z (1− z)
g (z)

λ+P0,0, (14)

P2 (0, z) =
B (z)

z
P1 (0, z) , (15)

where

g(z) , F (z)B(z) +A(z)− z,
f (z) , p̄C (z)− z,
h (z) , z − C (z)− zD (z) .

In order to obtain Pi(0, z), i = 0, 1, 2, we give the
following lemma to analyze the roots of g(z) = F (z)B(z)+

A(z)− z = 0 in the range 0 < z < 1.

Lemma 1. If
[
1− S̃b (λ−)

] [
λ+

λ− + λ+E (R)
]
< 1, the

equation g (z) = 0 has no root in the interval (0, 1) and
has a root z = 1.

Proof: It is obvious that g (1) = 0 and g (0) > 0.
For any 0 < z < 1, we have

g
′
(z) = F

′
(z)B (z) + F (z)B

′
(z) +A

′
(z)− 1,

g
′
(1) = λ+E (R) [1−A (1)] +

λ+

λ−
[1−A (1)]− 1

=
[
1− S̃b

(
λ−
)] [λ+

λ−
+ λ+E (R)

]
− 1 < 0,

g
′′

(z) = F
′′

(z)B (z) + F
′
(z)B

′
(z) + F (z)B

′′
(z)

+A
′′

(z) > 0.

Thus, g
′′

(z) > 0 indicats that g
′
(z) < g

′
(1) < 0.

And g
′
(z) < 0 means that g(z) > g(1) = 0.

In the following, we give the second lemma.

Lemma 2. If 0 ≤ p < 1, the equation f(z) = 0 has the
unique root z = β in the interval (0, 1).

Proof: Clearly,

f(0) = p̄C(0) > 0, f(1) = p̄C(1)− 1 < 0.

For any 0 < z < 1, we have

f
′
(z) = p̄C

′
(z)− 1, f

′′
(z) = p̄C

′′
(z) > 0,

which means f(z) is a convex function in the interval (0, 1).
Thus f(0) > 0 and f(1) < 0 indicate that the f(z) = 0 has
the unique root z = β in the interval (0, 1).
By Lemma 2, taking z = β in (13) leads to

βp̄C(0)P0,1(0) = β2λ+P0,0.

Thus, we have

P0(0, z) =
zβ2 − z2

f(z)
λ+P0,0. (16)

Taking (16) into (14), we can obtain

P1(0, z) =
h(z)(zβ − z2)

g(z)f(z)
λ+P0,0 +

z(1− z)
g(z)

λ+P0,0.

(17)

Then we get

P2(0, z) =
h(z)(β − z)B(z)

g(z)f(z)
λ+P0,0 +

(1− z)B(z)

g(z)
λ+P0,0.

(18)

Remark 1. If p = 1, the model reduces to an M/G/1 G-
queue with working vacations and vacation interruption.
Hence f(z) = −z. And takes f(z) = −z into (13)-(15),
we get

P0(0, z) = zλ+P0,0,

P1(0, z) =
h(z) + (1− z)

g(z)
zλ+P0,0

=
z(λ

+

θ + 1)(1− z)D(z)

g(z)
λ+P0,0,

P1(0, z) =
h(z) + (1− z)

g(z)
B(z)λ+P0,0

=
(λ

+

θ + 1)(1− z)D(z)B(z)

g(z)
λ+P0,0.

Obviously, f(z) = −z = 0 has the root z = 0, i.e., β = 0,
which means (16)-(18) also hold for p = 1.

Next we need to introduce the following lemma before
find P0,0, and we omit the proof.

Lemma 3.

f(1) = p̄C(1)− 1, f
′
(1) = p̄C

′
(1)− 1,

f
′′
(1) = p̄C

′′
(1), g(1) = 0, h(1) = 0,

g
′
(1) = F

′
(1)B(1) + F (1)B

′
(1) +A′(1)− 1,

g
′′
(1) = F

′′
(1)B(1) + 2F

′
(1)B

′
(1) + F (1)B

′′
(1) +A

′′
(1),

h
′
(1) = 1− C

′
(1)−D(1)−D

′
(1),

h
′′
(1) = −C

′′
(1)− 2D

′
(1)−D

′′
(1),

S∗b [λ+(1− z) + λ−] =
B(z)

λ−
,

R∗[λ+(1− z)] =
1− F (z)

λ+(1− z)
,

S∗v [λ+(1− z) + θ] =
D(z)

θ
.

Define the marginal generating functions Φi(z) =∫∞
0
Pi(x, z)dx, i = 0, 1, 2. Substituting (16)-(18) into (9)-

(11), respectively. Then the following theorem is obtained
by calculation.

Theorem 2.

Φ0(z) =

∫ ∞
0

P0(x, z)dx

=
zβ − z2

f(z)
S∗v [λ+(1− z) + θ]λ+P0,0,

Φ1(z) =

∫ ∞
0

P1(x, z)dx

=

[
h(z)(zβ − z2)

g(z)f(z)
+
z(1− z)
g(z)

]
S∗b [λ+(1− z) + λ−]

· λ+P0,0,

Φ2(z) =

∫ ∞
0

P2(x, z)dx

=

[
h(z)(β − z)
g(z)f(z)

+
1− z
g(z)

]
B(z)R∗[λ+(1− z)]

· λ+P0,0.

Based on the normalization condition

P0,0 + Φ0(1) + Φ1(1) + Φ2(1) = 1,
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P0,0 is calculated by

P0,0 = (λ+∆)−1,

where

∆ =1 +
(β − 1)S∗v (θ)

f(1)
+

[h
′
(1)(β − 1)− f(1)]S∗b (λ−)

g′(1)f(1)

+
B(1)R∗(0)[h

′
(1)(β − 1)− f(1)]

g′(1)f(1)
.

Apparently, the probability generating function of the
number of customers in the system is given by

Φ(z) = P0,0 + Φ0(z) + Φ1(z) + Φ2(z).

The probability that the server is in a working vacation
period is given by

Pw = P0,0 + Φ0(1) =
f(1) + λ+(β − 1)S∗v (θ)

f(1)
P0,0.

The probability that the server is in a normal period is given
by

Pb = Φ1(1) =
h′(1)(β − 1)− f(1)

g′(1)f(1)
S∗b (λ−)λ+P0,0.

The probability that the server is in a repair period is given
by

Pr = Φ2(1) =
h′(1)(β − 1)− f(1)

g′(1)f(1)
B(1)R∗(0)λ+P0,0.

Let E[Li] denote the average number of customers in the
system when the server’s state is i, i = 0, 1, 2 and from
Theorem 2, after the calculations we can get

E[L0] = lim
z→1

Φ
′

0(z) = 40λ
+P0,0,

E[L1] = lim
z→1

Φ
′

1(z) = 41λ
+P0,0,

E[L2] = lim
z→1

Φ
′

2(z) = 42λ
+P0,0,

where

40 =
[(β − 2)S∗v (θ) + (β − 1)S∗

′

v (θ)]f(1)

f2(1)

− f ′(1)(β − 1)S∗v (θ)

f2(1)
,

41 =

[
[h′′(1)(β − 1)− 2h′(1)]

2g′(1)f(1)
− g′′(1)

2g′(1)2

]
S∗b (λ−)

−
(β − 1)

[
g′′(1)h′(1)
g′(1) + 2f ′(1)h′(1)

f(1)

]
2g′(1)f(1)

S∗b (λ−)

+

[
h′(1)(β − 1)

g′(1)f(1)
− 1

g′(1)

] [
S∗b (λ−) + S∗

′

b (λ−)
]
,

42 =

[
h′′(1)(β − 1)− 2h′(1)

2g′(1)f(1)
− g′′(1)

2g′(1)2

]
B(1)R∗(0)

−
(β − 1)

[
g′′(1)h′(1)
g′(1) + 2f ′(1)h′(1)

f(1)

]
2g′(1)f(1)

B(1)R∗(0)

+

[
h′(1)(β − 1)

g′(1)f(1)
− 1

g′(1)

]
B′(1)R∗(0)

+

[
h′(1)(β − 1)

g′(1)f(1)
− 1

g′(1)

]
B(1)R∗

′
(0).

Hence, the mean system length (E[L]) is given by

E[L] = lim
z→1

Φ′(z) = E[L0] + E[L1] + E[L2].

Let E[W ] be the expected sojourn time of a customer in the
system, using Little’s formula, we can have E[W ] = E[L]

λ+ .

V. NUMERICAL RESULTS

In this section, we present some numerical examples to
illustrate the effect of the varying parameters on the mean
system length. It is assumed that Sv(x), Sb(x) and R(x) are
exponential distribution functions with rates µv , µb and α,
respectively.

Under the stable condition λ+ + λ−λ+

α < λ−+µb, we set
the value of some parameters in the model to be λ+ = 1.5,
λ− = 1, θ = 1, p = 0.5, α = 1.8, µb = 8, µv = 1 unless
they are selected as independent variables in the numerical
analysis.

A. Sensitivity Analysis

In the first situation, the effect of negative customer arrival
rate λ− on the mean system length E[L] are showed in
Fig.1. It is clear that E[L] increases with the increase of
λ−. The reason is that the arrival of a negative customer
causes the server break down when the system is in a normal
period, and the server does not provide service to the arriving
customers during the repair period. Thus, the probability that
the server is under the repair period increases as the value of
λ− is increasing, and E[L] also increases. Fig.1 also reflects
that the increase of α reduces the value of E[L], this is
because that the expected repair time is 1/α.

��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����

λ�

�
�
�
�

 α = 1 . 6
 α = 1 . 8
 α = 2 . 0

Fig. 1: The effect of λ− on E[L] for different values of α.

In this paper, we consider the Bernoulli vacation in-
terruption strategy, where the vacation can be interrupted
with probability p if the system is non-empty at s service
completion. As shown in Fig.2, the mean system length E[L]

decreased as the vacation interruption probability p increase.
This is due to the fact that the probability of the server in
the normal working state increase with the increasing value
of p, and the service rate µv is smaller than service rate µb.
As expected, it can also be observed from Fig.2 that three
curves are plotted in decreasing order which correspond to
µv = 0.8, 1, 1.2.
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Finally, the effect of µv on E[L] is presented in Fig.3.
As praxis proves, the bigger the value of µv is, the smaller
the mean system length E[L] is. In our system, the server
takes a working vacation once the system becomes empty,
and the expected vacation time is 1/θ. Therefore, from Fig.3,
the increase of θ causes the value of E[L] to decrease. At
the same time, the effect of θ on E[L] is more obvious when
µv is relatively small. With the increase of µv , the influence
of θ on E[L] has a tendency to weaken.

��� ��� ��� ��� ��� ���
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�� v = 0 . 8
�� v = 1 . 0
�� v = 1 . 2

Fig. 2: The effect of p on E[L] for different values of µv .
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Fig. 3: The effect of µv on E[L] for different values of θ.

B. Cost Analysis

In this subsection, in order to minimize the expected
operating cost function per unit time, a cost function is
imposed to search for the optimal service rate µv .

Define the following cost elements:
CL =cost per unit time for each customer present in the

system;
Cµb

=cost per unit time for service during a normal
service period;
Cµv =cost per unit time for service during a lower service

period;
Cθ =cost per unit time during a vacation period;
Cα =cost per unit time during a repair period;
An expected operating cost function per unit time is

established as

min
µv

: f (µv) = CLE[L] + Cµb
µb + Cµv

µv + Cθθ + Cαα.

The operating cost function per unit time is highly non-
linear and complex, so we use parabolic method to solve the

optimization problem. Based on the polynomial approxima-
tion theory, the unique optimum of the quadratic function
agreeing with f(x) at 3-point pattern {x0, x1, x2} occurs at

x̄ =
1

2

f(x0)(x2
1 − x2

2) + f(x1)(x2
2 − x2

0) + f(x2)(x2
0 − x2

1)

f(x0)(x1 − x2) + f(x1)(x2 − x0) + f(x2)(x0 − x1)
.

We assume CL = 35, Cµb
= 40, Cµv

= 30, Cθ = 25,
Cα = 20, and use the parabolic method to find the optimum
value of µv , called µ∗v . Besides, the specific steps of the
parabolic method are summarized in [21].
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Fig. 4: The effect of µv on the expected operating cost per
unit time.

TABLE I: Parabolic Method in Searching the Optimum
Solution.

iterations 0 1 2 3

x0 0.250000 0.250000 0.301880 0.301880

x1 0.400000 0.301880 0.304597 0.303444

x2 0.600000 0.400000 0.400000 0.304597

f(x0) 442.364440 442.364440 442.322712 442.322712

f(x1) 442.450342 442.322712 442.322697 442.322677

f(x2) 443.431831 442.450342 442.450342 442.322697

x̄ 0.301880 0.304597 0.303444 0.303436

f(x̄) 442.322712 442.322697 442.322677 442.322677

tolerance 0.098120 0.003717 0.001153 0.000008

Fig.4 shows that there is an optimal service rate µv
to minimize the cost. After three iterations, the results in
Table.1 are obtained by the parabolic method. And the
error is controlled by ε = 10−5. Obviously, the minimum
expected operating cost per unit time converges to the
solution µ∗v = 0.303436 with a value f(µ∗v) = 442.322677.

VI. CONCLUSION

This paper analyzes an M/G/1 G-queues with serve break-
down, working vacations and Bernoulli vacation interrup-
tion. We derive the embedded Markov chain by the method
of supplementary variable. And the transition probability
matrix of the embedder Markov chain is established. Then
we obtain the condition of stability. The generating functions
of the server state and the number of customers in the
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system are also analyzed. In addition, we discuss various
representative rerformance measures of the model. Finally,
the numerical examples are presented and the effect of the
parameters on the mean system length are reflected. At the
same time, the cost minimization problem is also studied.
For future study, one can extend this model to an MX/G/1

queue, or consider the similar model but with the working
breakdown policy.
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