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Structurally Parametric Synthesis and Position
Analysis of a RoboMech Class
Parallel Manipulator with Two End-Effectors

Zhumadil Baigunchekov, member IAENG, Batyr Naurushev, Zhadyra Zhumasheva,
Azamat Mustafa, Rustem Kairov and Bekzat Amanov

Abstract— In this paper, the methods of structurally
parametric synthesis and position analysis of a RoboMech class
parallel manipulator with two end-effectors are presented. This
parallel manipulator is formed by connecting the two moving
output objects with the fixed base by two passive, one active
and two negative closing kinematic chains. Geometrical
parameters of the active and negative closing kinematic chains
are determined by the Chebyshev and least-square
approximations. Position analysis is made on base of the
conditional generalized coordinates method.

Index Terms—Parallel manipulator, end-effector,
structurally parametric synthesis, position analysis

I. INTRODUCTION

Depending on the type of technological operation, the
robot manipulator can operate in two modes: a simultaneous
manipulation of two objects and a sequential manipulation
of one object.

In the simultaneous manipulation of two objects, two
serial manipulators ABC and DEF handle two objects in the
initial positions P; and P, (Fig. 1a), then two objects are
moved to the specified position Ps (Fig. 1b). Further, the
manipulators return to their initial positions.

a CP, F.p, b) P, B,

Fig. 1. Two serial manipulators ABC and DEF.

In the sequential manipulation of one object, the first
serial manipulator ABC handles the object in the position Py
(Fig. 1a), then the object is moved to the intermediate
position Pz, where the object is transferred to the gripper of
the second serial manipulator DEF (Fig. 1b). Further, the
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object is moved by the second serial manipulator DEF to the
specified position P, (Fig. 1b).

For example, a printing machine operates in the mode of
sequential manipulation of one object. In this machine, a
blank sheet of paper is fed by the first manipulator onto the
printing table, and the second manipulator picks up the sheet
after printing. This cyclical process occurs in a short period
of time. Therefore, in such automatic machines, instead of
two serial manipulators, it is advisable to use one
manipulator (mechanism) with two end-effectors and one
DOF. The parallel manipulators (PM) of a class RoboMech
belong to such manipulators. PM having the property of
manipulation robots such as a reproducing the specified
laws of motions of the end-effectors, and the property of
mechanisms such as a setting the laws of motions the
actuators which simplify the control system and increase
speed, are called PM of a class RoboMech [1-3].

The methods of structural and parametric synthesis of a
RoboMech Class PM are presented in [4]. In this paper, the
structurally parametric optimization and position analysis of
a RoboMech class PM with two end-effectors are
developed. There are many methods of structural and
kinematic (parametric or dimensional) synthesis of
mechanisms [5-7], where the Kkinematic synthesis of
mechanisms is carried out for their given structural schemes.
In this case, it is possible that a given structural scheme of
the mechanism may not provide the specified laws of
motions of the end-effectors. Therefore, it is necessary to
carry out the kinematic synthesis together with the structural
synthesis. The methods of structurally parametric synthesis
and position analysis allow to simultaneously determine the
optimal structural schemes of PM and the geometrical
parameters of their links according to the given laws of
motions of the end-effectors and actuators. Many works are
dedicated for kinematic analysis of planar mechanisms [8-
11]. There are works [12,13] on kinematic analysis of the
third class mechanism, but they can’t applicable for
kinematic analysis of the fourth class mechanism.

Il. STRUCTURAL OPTIMIZATION

According to the developed principle of forming
mechanisms and manipulators [1,2], the PM with two end-
effectors is formed by connecting two output objects with a
fixed base using closing kinematic chains (CKC), which can
be active, passive and negative. If we connect these two
output objects with the fixed base by two passive CKC ABC
and DEF, having zero DOF, we obtain two serial
manipulators (Fig. 2). In the paper [14], a PM of the fifth
class with two end-effectors and two DOF (Fig. 2) was
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formed from these two serial manipulators by connecting
the links 2 and 4 by the negative CKC GH of type RR, then
by connecting the link GH with a fixed base by the negative
CKC IK of type RR, and by connecting the links IK and DE
by the negative CKC LM of type RR, where R is a revolute
kinematic pair. Each of the binary links of type RR has one
negative DOF. The disadvantages of this PM is a small
workspace because the links 2 and 4 of two serial
manipulators ABC and DEF are connected by one link GH.

0 X
Fig. 2. PM with two end-effectors of the fifth class.

The workspace of the PM with two end-effectors can be
increased by connecting the links 2 and 4 of the serial
manipulators ABC and DEF by the active CKC GHKI with
active kinematic pair K. As a result, we obtain PM
ABGHKIED with three DOF, where the links AB, KH and
DE are input links (Fig. 3). For formation of a RoboMech
class PM with one DOF, we connect the links 1 and 5, as
well as the links 3 and 6 by the negative CKC ML and NQ
of type RR. As a result, we obtain a structural scheme of a
RoboMech class PM with two end-effectors, which has the
following structural formula

IV(1,2,5,8) < 1(0,8) — 1V(3,4,6,9). Q)
Therefore, the formed RoboMech class PM consists of an

input link 7 and two fourth class Assur groups, or two
Stephenson Il mechanisms with the common input link 7.

0 7777 Y

Fig. 3. PM of a class RoboMech with two end-effectors.

Thus, this RoboMech class PM with two end-effectors is
formed by connecting of two output objects with a fixed
base by two passive CKC ABC and DEF, one active CKC
GHKI and two negatives CKC LM and NQ.

Since the active and negative CKC impose geometrical
constraints on the motions of the output objects, then the
formed PM of a RoboMech class with two end-effectors
works at certain values of the geometrical parameters
(synthesis parameters) of the links. Passive CKC do not
impose geometrical constraints on the motions of output
objects, therefore, their synthesis parameters vary taking
into account the imposed geometrical constraints of the
connecting active and negative CKC. Consequently, the
problem of parametric synthesis of the whole RoboMech
class PM with two end-effectors is reduced to the
subproblems of parametric synthesis of its structural
modules (passive, active and negative CKC). Such modular
representation of structural - parametric synthesis simplifies
the problem of designing of PM. Let consider the parametric
synthesis of the structural modules of the RoboMech class
PM with two end-effectors.

I1l. PARAMETRIC OPTIMIZATION OF STRUCTURAL MODULES
Given N discrete values of the grippers centers C and F
coordinates Xc,,Yc, and Xg, Xg (i=12..,N).

The synthesis parameters of two passive CKC ABC and
DEF (or serial manipulators) are
XA,YA,IAB,IBC and XD,YD, IDE"EF y Where XA,YAand XD,YD
are coordinates of the pivot joints A and D in the absolute
coordinate system OXY; Iag.lgc,Ipe. |gE are lengths of the

links AB,BC,DE,EF. The synthesis parameters of the
passive CKC are varied using the « LP, sequence» [15].

The synthesis parameters of the active CKC GHKI are
2) (2 & @ () (7
¢ ),y(G),Xf ),yg ),X|(_|),y$_|),XK,YK,IHG,IH| , Where

X6
xéz),y(GZ),xl(A),y(,4),xg),yg) are coordinates of the joints

G, I, H in the moving coordinate systems
BX, Yo, EXqYs, KX;y7, fixed to the links BC, EF, KH,

respectively; Xy ,Yk are coordinates of the pivot joint K in
the absolute coordinate system OXY; lyg, |y, are lengths of

the links HG, HI.
Write the vector loop-closure equations of OKHGBO and
OKHIEO

Rk +T (@)’ +1e), =R, +Teand, @)

Ry +T(z)r +lehny, = Rg + (e ), €))

T
where Ry :[XK,YK]T, r,(_|7):[xl(_|7),y|(.|7)} ,

_ T
|(Ho), Z[IHG CosPHG); +IHG Sm(”(HG)i:| :
T
Rei =[Xsi Yai] .

@ [y D [T
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_ T
Ly, = [IHI COSP(H); i Sin ¢(HI)-J ,
Re. =[in,YEi]T,r,”_[ <4>,y|<4)} ,

I'(«)is an orthogonal rotation matrix

I(a) = |:Cf)s(a) —sin(a)}

sin() cos(a) |

The angles ¢,; and ¢4 in the Egs (2) and (3), which

determine the positions of the links BC and EF of the
passive CKC ABC and DEF, are calculated from the
analysis of positions of these CKC by the expressions

Y. =Y,
-1 'G Bi
P =t T ———C, (4)
' Xc, — X,
Y —Y
-1 'R Ei
Pai =tg ————, (5)
' XF —Xg,
where
Xpi X COS ;i
Bi A SIN @y
XEi X COS @ai
Ei D SIN @3

The angles ¢y; and ¢35 in Egs (6) and (7) are determined
by the expressions

Yo -Y 12c. +135 —13
— Ci YA | og1.AC TlAB BC’ ®)
Xc; = Xa 2ac; -1as
Ye -, 13- +13g —12
o =tg i tcos 2O 22 (9)
Xk ~Xp 2lpF, -lpe
where
_ 1
2

lac; = (XCi _XA)2+(YCi _YA)Z ’

=|(xg ~Xo) +(%5 Yo

N

Eliminating the unknown angles ¢ gy and @y )i,
from Eqgs (2) and (3) yields

2
|:RK +T(gri)ry) —Rg, —F(cozi)réﬂ ~l3c =0, (10)

2
[Re +Tomr ~Re, ~Tlor® | =13 =0, @)

Egs (10) and (11) are the equations of geometrical
constraints imposed on the motion of two output objects.
The geometric meaning of Egs (10) and (11) are the

equations of two circles with radiuses lyg and Iy, in
relative motions of the planes Bx,Y, and BX,Y, relative to

the plane Kx;y;. The problem of determining the

geometrical parameters of the links at which such
geometrical constraints are approximately realized is the
problem of parametric synthesis of the active CKC GHKI.

The left parts of Eqs (10) and (11) are denoted by

AqPand  Aqf?, which are functions of weighted
differences

2 =[Ri + T ~Rg, ~T(oa)@ | Ve, (12)

2
A _[RK +T(pr)ry) ~Rg, —r(¢4i)r|(4)} -1 =0. (13)

After converting these equations and the following
change of variables

KRRk TN

1 2 2
by =108 Y8 A A 1)
4
Pg Y$4)
1 2 2 2 2
|010=E(X,2<+Y£+X(H7) +y D7 x4y 7_42

the functions Aqg; and Agy; are represented as linear forms

(H (k) .
by groups p; and p, of synthesis parameters

Aq{ij)=2(g§ij) pt) - 901.) (i=123),  (14)
s =2 oo -off |, k=229, @)
where
-Xpg ol r
Q) L(gyi) : Pa Lleyi) 0 Pe
g]_| = _YBl e _E' p5 + B : p7 y
L[ 1070 T o] [00TT| |0
01| Xg — Pt 0]
T : i : Ps
) (@2) - N
g5 = 0 Y P |- 0l p7 |,
0 0 i1l 4 00 0
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10] | PL—Xg, 10
@ T (o) 0 || Teri—2i) P
g3i T ) _YBi [ R T Ps |
0 01| 4 00 1|0

1 1,2 2 P4
963 :_E(x Ve, )_[XBi ’YBi]'r(¢2i)'{p5:|+

+[XBi ’YBi]T((p7i)'{Eﬂ+[p4’ p5]~F((07i _%i)'{ij,

@__1l(y2 _y2 e
o __E(XBi _YBi)_[pl_XBi'pz _YBi]'F(¢7i){p7j|‘

@) _ 1(y2 2 P4
Sou = Z(XBi g, )_[XBi ~P1Yg - pZ]'r(%i)'{PJ’

—Xg olr 0
Q) I T(¢4i) Pe L(ey;) 0 Pe
9% =| Vg |- ol Pe |t 1 P7 s
L1000 o 0|0
[ 0 XE —P ;0
o | (0a) | olly ' T(pri —4i) : Ps
9 = | 'Ei —P2 |- |1 P7 s
0 0 i1l 4 0 0 1|0
[ 0 pl_xE' ;0
o |T (@) 0 v || Tlori-os): s
9 =| 7| P27TE o a2 P
0 01| , 0 0 1|0

1 1i,o 2 Ps
g(()z)i :_E(XEi +YEi)_[in’YEi]'F((pm)'{pJ”L

+[XEi ,YEi].F((p7i)'|:Ej:|+[p8’ pg].r((/)ﬁ _(p4i).|:zj:|]

2 2
Xg -YE

2 1
9(()2)i = 2(

)_[pl—XEiipZ —YEi]'r(%i)'Bj’

9 __L(y2 _y2 Dg
o :_E(XEi g )_[XEi ~PuY - pZ]'r(‘/’ﬂ){PJ'

The linear representability of the geometrical constraints
Egs (14) and (15) with respect to the groups pé” and pgk)
of synthesis parameters allows to formulate the following
approximation problems of parametric synthesis:

-Chebyshev approximation,
- least-square approximation

to determine the groups pij) and pgk) of synthesis

parameters.

In the Chebyshev approximation problem, the vectors of
synthesis parameters are determined from the minimum of
the functionals

) )y _ () () PR ()

St (p1 )_inﬁ‘Aqu (pl )‘*Tﬁ? S (p1 ), (16)
) Ky _ ® (K oK) (K
S;7 (py )_iTl%( Aqu (53] _)?(ZL? Sy7(p3"): (7)

In the least-square approximation problem, the vectors of
synthesis parameters are determined from the minimum of
the functionals

N S \2

sD60)-3[2a, | »mpsel)
i=1 P1

Oy S OY e ®

83 (3 )=Z(Aq2i] - mins” ("), (19)
i=1 )

Since the synthesis parameters of the active CKC GHKI
are simultaneously included in functionals (16-19), their
values are determined by joint consideration of the
functionals (16) and (17), and also (18) and (19).

The linear representability of Eqs (12) and (13) in the
forms (14) and (15) allows for solving the Chebyshev
approximation problem (16) and (17), to apply the kinematic
inversion method, which is an iterative process, at each step

of which one group of synthesis of the parameters pij) and

p(zk) is defined. In this case, the problem of linear

programming is solved by four parameters. To do this, we
introduce a new variable p;; =¢, where ¢ is a required

accuracy of the approximation. Then the minimax problems
(16) and (17) are reduced to the following linear
programming problem: determine the minimum of the sum

T

o=C -X—mino, (20)
X

T

where C=[0,...,0,1]T , X [pj(k), pll}

with the following

restrictions
j(k
{gmk_» _al" )}gu(k»
12)i "7 01(2)i
P11

i) (21)
02} -t
2] pu

The sequence of the obtained values of the functions
Sl((Jz()k)) (p(‘(k))) will decrease and have a limit as a sequence

bounded below, because Sl((jz()k))(p(j(k))) >0 for any p(j(k)) .

Let consider the solution of the least-square
approximation problem (18) and (19) for the synthesis of the
considered active CKC GHKI. From the necessary

conditions for the minimum of functions Sl((jz()k)) by groups

pi(jz(;()) of synthesis parameters
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j(k
as{ i) i, )
— =
oPif)

we obtain the systems of linear equations in the forms

j(k j(k i(K)
Hi(JZ() ) 'pi(Jz() ) hi(’z() D (ik=123). (23)

Solving the systems of equations (23) for each group of
synthesis parameters for given values of the remaining
parameter groups, we determine their values

(00) _ UL (10,

P12y = H12) 1(2) (24)

It is not difficult to show that the Hessian Hi(jz(;)) is

positively defined together with the main minors. Then the
solutions of the systems (23) correspond to the minimum of

IO}

the functions 1(2) Consequently, the least-square

approximation problem for parametric synthesis is reduced
to the linear iteration method, at each step of which the
systems of linear equations are solved.

Let consider the solution of parametric synthesis problem
of the negative CKC LM and NQ. For this, we preliminarily
determine the positions of the synthesized active CKC links
HG and HI

2 2 2
~Yg lGr). +1h —lhe
. tg—l li Gi +COS_1 ( )I . (25)
Yo —Y
-1_'Gi ~ Hi
o5 =t T ———, (26)
' Xg, — Xp,
where
2
X6 | | X ,[cosai —sing X((3)
Y6, VB singyj COS @y y(GZ) ’

. 4
X }{COS% —sin (04i] X"

YE; Sin@4j COS @y yl(4) ’

i
= :[(x,i ~Xg )2 +(Y,i ~Yg, )ZF :
= o ead

Write the vector loop-closure equations of OBGMLAO
and OEINQDO

Re, +T(gs P+l =R +T()r®,  (27)

Ry, + (g +ng = Rp, (e, (28)

where Rg, =[XGi Y6, JT ) Z[Xl(\hr))' yl(\i)]T ’

- T T
I(ML)i :[IML cos@mL). »Ime S'H(/’(ML)J Ra=[XaYa]

T T T
1 1 1 6 6 6
(00T Do ] o[0T
) T
I(NQ)i |:INQ COS¢(NQ)i 7INQ SIn (D(NQ)Ii| s

T
Rp =[XD,YD]T ,rg) =[xg),yg)} :

Eliminating the unknown angles P(ML), and ?(NQ), from
| |
Egs (27) and (28) yields

2
[Ro, + T ~Ra-T(or® | ~1f =0, @9)

2
[Rli + D)y ~Rp —F(%i)r(‘f’} _qu =0. (30

Egs (29) and (30) are the equations of geometrical
constraints imposed on the motions of links 1 and 5, 3 and 6
by the negative CKC ML and NQ. The geometric meanings
of these constraints are the equations of two circles in the
relative motions of the planes of links 1 and 5, 3 and 6 with
radiuses Iy and Iyg. The problem of determining the

geometrical parameters of the links, at which such geometric
constraints are approximately realized, is the problem of
parametric synthesis of two negative CKC ML and NQ.

The left parts of Eqs (29) and (30) are denoted by

Aggzj and Agy; , which are functions of weighted differences
o Ar® R o e® TP 12
Adzi =| Rg; +T(g5i)ry” —Ra —T(e)ry; mL. (1)

2
Ady; :[Rli +T(pe)r) —Rp — Ty )r(‘f)] ~Ifo- (32

After converting these equations and the following
change of variables

1 5
p11] =[X(L)] [PM}:[XI(\A)}
P12 yf_l) P15 y(l\i)

1 2 2 2 2
pia = 200" 4y @y )
©) 5
{pls _ *Q [Mg}z Xﬁj)
P17 yS” ) P20 y(,\?)

1 2 2 2 2
e =506 +§" +x0" vl -1Gn)

the functions (31) and (32) are expressed linearly by two
groups of synthesis parameters
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the parametric synthesis of the considered CKC LM and QN

(2 _ separately is carried out.

pgl)Z[Pnl P2, Pral’ P3 [Pi4. Prs, Pl

Py =[pis. Pz Pisl’ . P =[Pig. P2o. Prgl” IV. POSITION ANALYSIS
It is known that any Assur group has zero DOF defining
in the forms by Chebyshev’s formula [16]
AqéiJ) _ z(ggil) ,pgl) _ 9(%?):(1 =1,2), (33) W = 3n-2ps, (35)
where n is number of links, ps is number of kinematic pairs
T of the fifth class. Class of kinematic pair is determined by
Al =2(92§) -p&k)—géﬁ%j,(kﬂ,zx (34)  number of constraints imposed on relative motion of its
elements. For example, the revolute and prismatic kinematic
where i pairs are kinematic pairs of the fifth class.
F‘l( ) 0 XGi -Xa I (o - o) 0l [ py The basic conditions for the existence of Assur groups are
g(1_) _ Pi 0. Yo -Ya |- P2 =P 0. Dis that their DOF number should be equal to zero and they
8 001 ! 00*1 ’ should not split into several other groups of the lower
L 5 1 L0 classes. Assur groups having n=2 and ps=3 belong to Assur
groups of the second class (Fig.4a). Assur groups having
n=4 and ps=6 belong to Assur groups of the third (Fig.4b) or
F‘l((p \ 0 xGi Xa _1((p o) 0] [py fourth class (Fig .4c).
@ _ 2/ 0 _ B 20 7/ 0l.
93 O Y YA i ),
0 0 :1 1 0 0 1110
a) 4
O L(x Py —va)
Yosi __E ( G A) +( G A) * Fig.4. Assur groups of the a) second, b) third and c) fourth classes.
+[xei _XA’YGi _YA]'F(¢2i)'{p14:|! Assur groups having n= 6_and ps = 9 belo_ng to Assur
groups of the fourth (Fig.5a), fifth (Fig.5b) or sixth (Fig.5¢)
classes.
1 2 2
o -3 (xa ) ol -
P11
+[XGi ~XaYg, _YA]F((Dli){le,
-1 0] Xli - XD 0 Pig Fig.5 Assur groups of the a) fourth, b) fifth and c) sixth classes.
NN Tles) | vy |- Flosi=s) i 0| 0
! 001 PP 001 SO ’ Classes of the Assur groups from the fourth and higher
- ] : are determined by the number of sides of the variable closed
loop, for example, the contours CDFG, BEFHI and BCEFHI
3 0 _Xli -Xp : Mg in the Assur groups of the fourth, fifth and sixth classes are
0 _ I (o) ‘o YooY i) four-, five- and six-sided, respectively.
94 S S B BT O . T Assur groups of the fourth and higher classes belong to
0 0 ;1 1 i 0 the Assur groups of high classes. Each high class Assur
group also has an order, which is determined by the humber
1 2 2 of external joints. For example, Assur groups of the fourth
g&)i Z_{(Xr - XD) +(Y|~ —YD) } class shown in Figures 4c and 5a are Assur groups of the
2 : : fourth class of the second and third order, respectively, since
Pig the first group (Fig. 4c) has two external kinematic pairs A
+[X| XD’YIi YD} r(%.) {on} and D, and the second group (Fig. 5a) has three external

kinematic pairs A, E, 1.
) ) In Assur groups of the fourth (Fig. 4c), fifth (Fig. 5b) and
(2) _ _l{(xl_ _ XD) +(Y|- —YD) }_ sixth (Fig. 5c¢) classes with a different arrangement of links,
: ! as shown in Fig. 5, they fall into Assur groups of the second
s class with structural formulas
+[xIi ~XpY, —YDJ-F((oSi)-{ }
P17 (L, 4) - 1(2,3), (36)

Further, on the basis of the approximation problems of the
Chebyshev and least-square approximations, outlined above,
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7 1(2,3)
11(1, 6) i
11(4,5)

@37)

11(4,5)
111, 6) J

. (38)
N 1(2,3)

Fig.6. Assur groups of the second class

The class of the mechanism or manipulator is determined
by the highest class of Assur groups that are part of the
mechanism or manipulator. Position analysis of the
mechanisms of the second class are solved analytically.
Position analysis of mechanisms of the third and higher
classes are solved numerically. There are known methods of
position analysis of the third class mechanism [12], which
are reduced to solving the 6th degree polynomials. There
are no methods in the literature for positions analysis of
mechanisms of the fourth and higher classes.

For position analysis of any class mechanisms including
the mechanisms of high classes we have proposed a simple
numerical method called the method of conditional
generalized coordinates. According to this method after
remove one link by disconnecting the elements of kinematic
pairs in the analyzing group one DOF is appeared, because a
binary link with two revolute kinematic pairs imposes one
geometrical constraint. Indeed, the binary link with two
revolute kinematic pairs has n=1 and ps=2 then according to
the formula (35) we obtain W= -1. If we choose one link of
the analyzing group as a conditional input link due to appear
one DOF then this group is transformed into the mechanism
of the second class the positions of which are determined
analytically relative the variable parameter of the
conditional input link called the conditional generalized
coordinate. In variation of the value of the generalized
coordinate a distance between the centers of the removed
joints is changed. A function of the difference between this
variable distance and the length of the removed link is
derived which is function of one variable parameter — the
conditional generalized coordinate. Then minimizing the
derived function by conventional generalized coordinate its
value is determined. Values of parameters defining the
positions of other links of the analyzing group are
determined simultaneously with the conditional generalized
coordinate.

According to the conditional generalized coordinates
method, after removing the link 4 (Fig.4c), link 3 (Fig.5a),
link 4 (Fig.5b), link 6 (Fig.5c), one DOF appears in the
Assur groups. If we choose the link 1 (Fig. 4c), link 4 (Fig.
5a), link 1 (Fig. 5b), link 1 (Fig. 5c¢) as the conditional input

links due to the DOF that appears, these Assur groups are
transformed into second class mechanisms with structural
formulas

1) — 11(2,3), (39)
1(4) - 11(5,6) — 11(1,2), (40)
I(1) = 11(2,3) - 11(4,5), (41)
1) — 11(2,3) — 11(4,5). (42)

Let consider the position analysis of the fourth class PM
with two end-effectors (Fig. 3) with the structural formula
(1). After removing the links 8 and 9 of the Assur groups of
the fourth class and the second order 1V (1,2,5,8) and IV
(3,4,6,9) and choosing the conditional input links 1 and 3,
this manipulator is converted into a second class mechanism
with the structural formula

1(0,2) — 11(2,5) <~ 1(0,7) — 11(4,6) <~ 1(0,3). (43)

For a given value of the angle ¢,; of the input link 7,
when the values of the conditional generalized coordinates
@, and ¢, are changed, the distances 1, and fNQ

between the centers of the disconnected joints L and M, as
well as N and Q, are changed. Let derive the functions

Y

o) =

(23 =iy, ~linoy, -

(44)

(LM)

(45)

where I, and |, are the lengths of the removed links 8
and 9.
The variable distances I(NQ) and I(LM) in the equations

(44) and (45) are determined by the expressions

I\J\H

lan, = X, =X+ 0 =Y o w9)

5N

~(NQ) _[(X _XQi)2+(YNi _Yoi)z}zv (47)

where the coordinates of the joints M, L, Q, N in the
absolute coordinate system OXY are calculated by the
equations

X, Xe, | [cosg, -—sing,][x®
MI — GI + - ¢5| ¢)5| X ’ (48)
Y, Y, sing,  cosg | | y® |
Xi| [X,] [eosp, -sing,][x®]
= +| . 1 ol (49)
Y, | Y. | [Sing, cosg | Ly
Xo | [X,] [cosg, -sing,][x®
YQi ] L Yo | [sing; cosey || Yq
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X | | X0 | [cosg, —sing ] [x® -
= + . :
Y Y, sing,,  Cosg, y
The coordinates of the joints G and I in the equations (48)
and (51) are determined by the expressions

X i @
o || Xa +l, C?S% + C9S¢Z‘ SIN@a || X" || (52)

YGI YA SN @,; Sin @, COS @, yéZ)

X : (4)
i _ Xy o, COS @, + COS@,;  —=SIN@,; |1 X | (53)

Yn Yo sin g, sing,, Cosg, y,“”

The angles @,;, @5 and @,;, @ in the expressions (52),

(49) and (53), (51) are determined by solving the position
analysis of the groups Il (2,5) and 1l (4.6) for given values

of the conditional generalized coordinates ¢;;and @;. To

do this, we derive the vector loop-closure equations BGH
and EIH

N;

l_..e =0

g€ +1 5i  (BH), " (BH), )

BG "~ (BG), on®

(54)

I_e +l.e.—1_.e =0

EIC(B1), IH *6i (EH); ~ (EH); ) (55)

where the modules of vectors are denoted by I, and their unit
vectors are denoted by € . In the equations (54) and (55), the

modules and directions of the vectors (ﬁ), and (E)I :

as well as the modules of the vectors E and El are
determined by the expressions

1

I(BH)i :[(XHi - xBi)z +(YHi —YBi)2:|2 , (56)
1
I(EH)i = |:(XHi - XEi)Z +(YHi _lei)2:|2 J (57)
tg™ Yo, 7, (58)
Pem, =9 T

BH); XHi _ XBi

-1 YHi _YEi
¢(EH)i :tg X '_ X (59)

H i Ei
In the equations (56-59), the coordinates of the joints B
and E in the absolute coordinate system OXY are determined

by the expression (6), (7), and the coordinates of the joint H

are determined by the expression
XHi | X . cosg,, —sing, . X7 )
Y, Y, sing,, cosg, | |y? |

To determine the unknown directions of the vectors
I.(e,), and I (e,),, we transfer the vectors | and

GHeSi

l,.€, to the right-hand sides of the equations (54), (55) and
square there both sides

2

I;G +I(BH)i _2|BGI(BH)i COS((D(BG)i _(D(BH)i): IGH ’ (61)
Iél +|(2EH)i _2|EII(EH)i COS((”(EH)i _¢(E|)i) = IIH . (62)
and obtain
2 2 2
4 IBG +I(BH)i _IGH
Pec), = Parn +c0s —M8M8M8MMmm8 (63)
2|BGI(BH)i
2 2 2
1 IEI +I(EH)i _IIH
P, = Peen, —-C0S —(——F—— (64)
2|E|I(EH)i
The directions of the vectors I(GH)i and I(IH)i are
determined by the equations
tg™ Yo, 7Ye, (65)
D5 = -
i XH. - XG.
1 YH. _Y|.
0y =g ————, (66)
i X H. X I
where
XGi XBi | COS(D(BG)i -
= | . ) 67
YGi YBi _sm Pec),
XIi XEi | cos(p(E,)i )
= +1g ] . . 68
YIi YEi _sm Py,

Thus, the functions (44) and (45) are functions of the
single variable ¢; and ¢, respectively. Therefore,

minimizing these functions with respect to the variables @;;

and ¢, their values have been determined. In this case, the

angles Qi)+ Py Psiv P are simultaneously
I 1

determined. Then the coordinates of the output points C and
F (centers of grippers) are determined by the equations,

X | [Xe ] [coso, |

B Y I Y I Pai , (69)
Ye Ye | SIng,, |
_XF._ _XE._ _COS ._

S R Y el (70)
Yo Yo | sing,, |

where
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ay
Po = Paey, 197 =5 (71)
XG
@
ay
D :qD(El)i -1g IW (72)

V. VELOCITIES AND ACCELERATIONS

To determine the velocities and accelerations of the links
and output points of the considered manipulator, let
determine the independent vector contours and differentiate
them by time. The number of independent vector contours is
determined by dividing into two numbers of the Assur
groups links. The number of the Assur groups links of the
manipulator is eight, therefore, the number of independent
vector contours is four. As the independent vector contours,
we choose the contours KHGBA, KHMLA, KHIED,
KHNQD and derive their vector closure-loop equations

IKHe(KH)i +IGHe(HG)i _IBGe(BG)i _IABe(AB)i _IKAeKA =0

IKHe(KH)i "'In-ume(n-n\n)i _ILMe(LM)i _IALe(AL)i _IKAeKA =0

(73)
IKHe(KH)i +IHIe(HI)i _IEIe(EI)i _IDEe(DE)i _IKDeKD =0

IKHe(KH)i +IHNe(HN)i _IQNe(QN)i _IDQe(DQ)i _IKDeKD =0

Let project the system of equations (73) on the OX and
OY axes of the absolute coordinate system OXY

|k €OS @y, + g COS @ ig), —lae COS Py, —
|15 COS (), —a COS Py =0
i SIN @y, + e SINPpie), — Lo SIN Pec), —
~La SIN @), —la SN @, =0
Lk €OS @auy, + limi €OS Py, — i COS @y, —
i COS Py —lia COS P, =0
L SIN @y, + i SNy, — i SINQ ) —
-1, sin Peavy, ~ leasing, =0
lkn COS @) + iy COSPyy — e COSPgy) —
~loe COS o) o COS P =0
I Sin Pxr, +1,, sin Py, —Ig, sin Pery, ~
~loe SiN@oe), — o SINPp =0
I, COS Pk, +1,,, COS Py, —lgy COS Prony, ~
~log COS P, —lko COS Py =0
Iy SIN P, +1,y Sin P, —lgy sin Prony,

g sin Poq), ~ lo SiNgp =0

(74)

and differentiate by time

_IKH sin (/)(KH)i C0; — IHG sSIin §D(HG)i "0 +
+l, sin Plac), " Do T I, sin Pinsy, P = 0

I COS Py, ~ @y + |, COS o,

7 "W —

HG)i i

_IBG Cos (D(BG)i T, — IAB Cos ¢(AB)i ‘0, = 0

_IKH Slnq)(KH)i c @~ IHM sin ¢(HM)i T+

+1,, sin (p(LM)i o, +1, sin (p“‘L)i ‘o, =0

e COS Py, ~ @y + L COS Py * Dy~

_ILM cos ¢(LM)i "W — IAL cos (D(AL)i "W, = 0
) ) (75)
_IKH sin ¢(KH)i "0~ IHI sin (/)(Hl)i (O +
+1_ sin qo(El)i o, +1__sin go(DE)i o, =0
IKH cos (p(KH)i 0, + IHI cos (p(Hl)i "t Qg —
_IEI cos ¢)(El)i "Wy~ IDE cos ¢(DE)i (0 = 0
_IKH sin (/)(KH)i @y _IHN sin (p(HN)i "0+
+l, sin Py, " Poi T I, sin Prooy, " Psi = 0
IKH COSgD(KH)i T+ IHN cos qD(HN)i "W —
I, cos Py, " Doi ~ I, cos Plooy, " Psi = 0
or
(Y« _YHi o + (YHi _YGi )os; + (Yei _YBi )@, +
+(YBi Y, )o,; =0
(XHi =Xy +(Xei - XHi)wSi +(XBi - XGi)wZi +
+(XA_XBi)a)li =0
(Yx _YHi ), +(YHi _YMi ) s, +(YMi _YLi)w8i +
+(YLi =Y, )o,; =0
(XHi - X))y, +(XMi - XHi)wSi +(XLi _XMi)a)Si +
+(X,—X.)w; =0
' (76)

Yy _YHi)wﬁ ""(YHi _Yli)a)Gi +(Y|i _YEi)a)4i +
+(Yg, —Yp)oy =0
(XHi - Xy )y, +(x|i _XHi)wGi +(XEi _Xli)a)4i +
+(X,p —XEi)a)3i =0
P _YHi ), + (YHi _YNi )@g; + (YNi _YQi )@, +
+(Yq, —Yp)@y =0
(XHi - Xy, "'(XNi - XHi)a)Gi +(in - XNi)a)gi +
+(Xp— XQi)a)3i =0

From the system of linear equations (76) we determine
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the angular velocities of the links by the equation

X=A".B, (77)
when det|A|# 0, where
_ YHi _YGI YGi -Yg YBI =Y, 0
XGi_XHi XBi_XGi XA—XBi 0
YHi —YMI 0 YLI -Y, YMi —YLI
A= XMi_XHi 0 XA_XL XLI_XMi
0 0 0 0
0 0 0 0
0 0 0 0
| 0 0 0 0
0 0 0 0 1 (78)
0 0 0 0
0 0 0 0
0 0 0 0
YHi —YII YIi —YEi YEi -Yp 0
XI|_XHi XEi_X'. XD—XEI 0
YHI —YNi 0 YQi -Yy YNi —YQI
XNi—XH 0 XD—XQi XQi_XN.
- S YKi _YHi
23
5 XHi — )(Ki
Wy,
Y, =Y
@y “ i
V2 Wy = XHi — Xy
X = , B=w, (79)
Wy, YK _YHi
@y XHi - Xy
2
8 Yy —YHi
| Dy |
L XHi — X« i

Velocities of the output points C and F are determined by
differentiating the equations (69) and (70) with respect to
time

Fox 71 [.,,x] —~ A -
Ve, Ve, -sing,,
= +l, 0, , (80)
¥ ¥ i
_V i _VBi _ L COS i
[ox T [x ] - . -
VFi VEi =Sing,,
= +l 0, , (81)
Y Y i
_VFi | _VEi ] | COso,, |

where the velocities of the joints B and E are determined by
differentiating the equations (6) and (7) with respect to time

vy ] sin
B - i
S =l { ! } (82)
v, cos @,
-
Ve, -sing,,
v T IDEa)3i { ’ j| : (83)
Ve cos @,

To determine the angular accelerations of the manipulator
links, let differentiate the system of equations (74) with
respect to time

~ly cOS Pxry; '0)72i =l sin Piry; ~E1 I, COS Pire), 'wszi -
=l Sin Doy, “Esi + I COS ZE 'wzzi +lgg Sin(p(BG)i "yt
+l 5 COS Pne, -} +1,5sin Piney, 1 =0
~lyn Sin("(KH) ‘w72i +ln COS Pk, * &vi —lye Sin(p(HG)i 'a’szi +
Hye COS¢(HG)i “&5; + lgg sin Peoy, ‘wzzi —lgg COs Peey; “&ai
+l g sin Pine), wlzu g COS Py, * €1 = 0
~l COS("(KH)i 'a)72i =l sin Piny, &7 Ly COSQ’(HM)i wszu -
~lpm sin(/’(HM)i &5+l COS @), 'a)szi +1y sin Pmy, s F
-+, COS Q) @} +1, sin Piasy, €1 =0
g Sin(ﬂ(KH)i 'w72i +ln COS?’(KH)i &7 =l SIN Prmy, 'wszi +
+ly COS P(m), * &si +1y sin Prmy, 'a’szi =l COSP(my, “€si +
+l, sin Piavy, a)lzl —1, cos Pacy, "6 = 0
iy COS @y - @2 iy SNy - & =y COSPyy, - @2 — (84)
KH (kH), " @1i T kn (kry, €7 T lh (H1); " e
~ly, sin Pty *Esi +1g, COS(P(EUi ’wfi +lg sm(/’(le)i et
+loe COS Qg @5 +loe SIN Qo) -5 =0
~l Sin(/’(KH)i 'a’72i + iy COS("(KH)i &g =Ny sin Py, 'a)szi +
+y, COS Py, ~ Eei +lg Sin(/’(t&l)i 'wfi —lg COSPery, “€ai +
+lpg sin Poey, _w3zi —lpe cOs Poey, €3 = 0
~l COS @), 'a)72i =l Sin(/’(KH)i &~y COS Py, 'wezi -
~lin SIN @y, i + lon COSPouy, @5 + 1o SIN PG, Eai +
+lpg COS @(pg), * @5 + oo SIN P, -5 =0
~lyy SiN Pixry; ‘w72i +ln COS(”(KH)i &g =l SIN P 'wezi +

; 2
+Hiy COS Piny, ~E6i + lou Sin Peany, " Doi ~ lon COS Piany, " Eoi

+log SN Png), * @5 ~log COSPpg) €5 =0
From the systems of linear equations (83), let determine

the angular accelerations of the manipulator links by the
equation
Y=A"-C, (85)

where
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(X =X )oh + (Y =Y )er + (X =Xy )b + |
+(Xg, = X )@z +(X, = Xg )y
(YHi =Y )% + (X - XHi )Eqi +(YGi —YHi)a)szI +
(¥ Yo ) + (Y ~Yy, )0

(XHi - X ) +(YHi =Y )& +(XMi - XHi)a)Szi +

&si +(XLi _XMi)wszi"'(XA_XLi)wfi
&
82 (YHi =Yoo + (X, — XHi )En +(YMi _YHi)a’szu +
1
ey | = | Y —YMI)a)gzi +(YA—YLI)a)fi
Y= C= 2 2 (86
i (XHi 7XK)a)7i+(YHi 7YK)g7i+(Xli 7XHi)w6i+
Ca +(Xg =X, )og + (Xp = Xg )}
&3
Py (YHi =Y )og +(X, ~ XHi)g7i +(Yli =Y, Jaog, +

+(YEi —YIi Yl +(Yp —YEi Yo,
(X, =X Joor + (Vg =Yi)en +(Xyy, = X, g +
+(Xq, = Xy )% +(Xp = Xo )y
(Yo, =Y )@} + (X =Xy, Vo + (Y =Yy )0l +
| H(Yo, Yy, Jag; + (Yo =Yg )@

Angular velocities and accelerations of the manipulator
links can also be determined by independent solution of the
first and second four equations of systems (76), i.e. a
separate consideration of groups IV (1,2,58) and IV
(3,4,6,9).

Accelerations of the output points C and F are determined
by differentiating the equations (80) and (81) with respect to
time

a¥ aX - . .
ci g ,[—cose, —sing, | (g7)
P el BV IBCa)Zi . + IBcgzi )
al | |a | —sing,, | cos g,
FAxT [ A% - - .
aF. aEi | —COS, —Sing, (88)
v 1=y | T lery, . +lee, ,
aFi aEi _—Sln Dy | COs @,;

where the accelerations of the joints B and E are determined
by differentiating the equations (82) and (83) with respect to
time

a - | -

5, ,[—cosg, —sing,

v |7 Loy - +1g8y; , (89)
aBi | —Sing,; | COS @,
a; r T '

e ,[—cosg, —sing,

v | = | oe @5 . +loesy, (90)
al | —sing,, | cos @,

VI. CONCLUSION

The methods of structurally parametric optimization and
position analysis of a novel RoboMech class PM with two
end-effectors are developed. The investigated PM is formed
by connecting the two moving output objects with the fixed

base by two passive, one active and two negative CKC. The
active and negative CKC impose the geometrical constraints
on the motions of the output objects, and they work with
certain geometrical parameters of links. Geometrical
parameters of the active and negative CKC links are
determined on the base of Chebyshev and least-square
approximations, and position analysis is solved on the base

of conditional generalized coordinates method.
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