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Abstract—In this work, A consistent tanh expand (CTE)
method is developed for a high-order Boussinesq-Burgers (HB-
B) equation. Via the CTE method, we first obtain two kinds of
branches to the HBB equation. The main branches are consis-
tent while the auxiliary branches are not consistent. From the
main consistent branches, we can obtain many exact significant
solutions including soliton-resonant solutions, soliton-periodic
wave interactions and soliton-rational wave interactions. From
the inconsistent branches, many special solutions can be found.
The CTE related nonlocal symmetries are also proposed. The
nonlocal symmetries can be localized to find finite Bäcklund
transformations (BT) by prolonging the model to an enlarged
one.

Index Terms—consistent tanh expand (CTE) method, high-
order Boussinesq-Burgers (HBB) equation, interaction solution-
s, nonlocal symmetries.

I. INTRODUCTION

nonlinear evolution equations (NLEEs) play an important
role in describing nonlinear scientific phenomena, such as
marine engineering, fluid dynamics, plasma physics, chem-
istry, physics and other fields. In order to understand the
mechanisms of their physical phenomena, it is necessary
to explore their explicit solutions. Some elegant methods
have been constructed for finding exact solutions of NLEEs,
such as Hirota’s bilinear method [1], Bäcklund transforma-
tion (BT) [2], Darboux transformation (DT) [3], Painlevé
analysis [4,5], Homogeneous balance method (HB) [6,7],
Compact difference schemes [8], Hybrid series method [9]
and so on. Recently, Lou and his group [10-13] propose
the consistent Riccati expansion (CRE) and consistent tanh
expansion (CTE) method through the nonlocal symmetry
to find interaction solutions of NLEEs including soliton-
resonant solutions, soliton-periodic wave interactions and so
on. On account of this, there are a lot of paper here to study
this problem [14-23].

In this work, we will discuss the following high-order
Boussinesq-Burgers (HBB) equation [24-28]

ut − 3σu2ux +
3
2σ(uv)x −

1
4σuxxx = 0, (1a)

vt +
3
2σvvx − 3σ(u2v)x + 3σuxuxx

+ 3
2σuuxxx −

1
4σvxxx = 0.

(1b)

where σ is a non-zero arbitrary constant.
Zuo and Zhang [24] first applied the simplified Hirota’s

method to derive multiple kink solutions. Guo et al. [25]
applied the homogeneous balance method to find multiple-
soliton (kink) solutions of the HBB equation (1). Jaradat et
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al. [26] and Wazwaz [27] used function expansion methods to
investigate soliton and periodic solutions. Zuo [28] gave out
Painlevé analysis, Lax pairs and a Darboux transformation
of the HBB equation (1). The aim of this work to use the
CTE method to seek the interaction solutions. The CTE
related nonlocal symmetries are also proposed. The nonlocal
symmetries can be localized to find finite BT by prolonging
the model to an enlarged one.

II. CTE SOLVABILITY FOR THE HBB EQUATION

For a given derivative nonlinear polynomial system

P (x, t, u) = 0, x = {x1, x2, · · · , xn}, (2)

we look for the following possible truncated expansion
solution

u =
n∑
i=0

ui tanh
i(w), (3)

where w is an undetermined function of space-time x and
t, n should be determined from the leading order analysis of
(2), and all the expansion coefficient functions ui should be
determined by vanishing the coefficients of powers tanh(w)
after substituting (3) into (2).

If the system for ui(i = 0, 1, · · · , n) and w is obtained
by vanishing all the coefficients of powers tanh(w) after
substituting (3) into (2) is consistent (or not overdetermined),
we call the expansion (3) is a CTE and the nonlinear system
(2) is CTE solvable.

By using leading order analysis (balance the highest order
of tanh(w)) for the HBB equation (1), we can take the
following truncated tanh function expansions

u = u1 tanh(w) + u0 +
1
2wx, (4a)

v = v2 tanh
2(w) + v1 tanh(w) + v0. (4b)

In the expansion (4a), we have written u0 as u0 + 1
2wx for

convenience later. Substituting (4) into (1), and assuming
all coefficients of tanh(w) vanish independently, we get the
following two kids of results.

Case 1 Principle branchs. We have

v2 = 1
2w

2
x, u1 = ± 1

2wx, (5)

v1 = − 1
2wxx, v0 = ∓u0x − 1

2w
2
x ∓ 1

2wxx, (6)

while w and u0 are determined by the following two equa-
tions

STO : u0t − σ( 14u0xx ±
3
2u0u0x + u30)x = 0, (7a)

PSTO : wt − σ( 14wxx ±
3
4w

2
x ± 3

2u0wx)x − σw
3
x

−3σu0wx(u0 + wx) = 0.
(7b)

Thus, according to the definition of the CTE, we have the
following CTE solvable theorem for the HBB equation (1).
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Theorem 1 The HBB equation (1) is CTE solvable with the
CTE

u = 1
2wx[± tanh(w) + 1] + u0, (8a)

v = 1
2w

2
x[tanh

2(w)− 1]
− 1

2wxx[tanh(w)± 1]∓ u0x.
(8b)

and the consistent system (7).
In the CTE (7a), the wx term has been separated out from

u0 such as the u0 equation becomes w independent. In order
to prove the CTE solvability of the HBB equation (1), it
is sufficient to take u0 as zero. However, nonzero u0 leads
to more general solutions of the HBB equation (1). The u0
equation (7a) is just the well known linearizable Sharma-
Tasso-Olver (STO) equation [29,30]. The w equation (7b)
can also be linearized because it is a potential form of the
variable coefficient STO equation.

Case 2 Auxiliary branchs. We have

v2 = w2
x, u1 = ±wx, (9a)

v1 = −wxx, u0 = − 1
2wx ∓

1
2
wxx

wx
, (9b)

v0 = − 2wt

3σwx
+ wxxx

6wx
− 1

3w
2
x, (9c)

while w is determined by the following over-determined
systems

wt − σw3
x +

1
2σwxxx−

3
4σ

w2
xx

wx
= 0, (10a)

(∂2x − 4w2
x)
(
wxxx

wx
− 3

2
w2

xx

w2
x

)
− 10w2

xx = 0. (10b)

Though the auxiliary branches are not a CTE, They are still
useful to get a special type of exact solutions of the HBB
equation (1) by solving the over-determined systems (10)

u = ±
[
wx tanh(w)− 1

2
wxx

wx

]
, (11a)

v = w2
x[tanh

2(w)− 1]− wxx tanh(w)
+ 1

2
wxxx

wx
− 1

2
w2

xx

w2
x
.

(11b)

III. EXPLICIT SOLUTIONS OF THE HBB EQUATION

According to the CTE solvability Theorem 1, by solving
the w and u0 equation (7), we can get various interaction
solutions among different types of nonlinear excitations.

From Eq. (7), we have known that for any fixed solution of
the STO equation (7a), the solution of the w equation (7b)
can be obtained by solving a variable coefficient potential
STO (PSTO) eqaution. Therefore, the corresponding solution
of the HBB equation (1) can be obtained from the CTE (8).

In this work, we only restrict the trivial STO solution

u0 = c. (12)

where c is an arbitrary constant. In this case the w equation
(7b) is simplified to a constant coefficient PSTO equation

wt − σ( 14wxx ±
3
4w

2
x ± 3

2cwx)x
−σw3

x − 3σcwx(c+ wx) = 0.
(13)

A. Single soliton solutions

Eq. (13) has the following trivial solution

w = kx+ ωt, ω = σk(k2 + 3ck + 3c2), (14)

which leads to the single soliton solutions of the HBB
equation (1)

u = ± 1
2k tanh[kx+ σ(k3 + 3ck2 + 3c2k)t]

+c+ 1
2k,

(15a)

v = − 1
2k

2sech2[kx+ σ(k3 + 3ck2 + 3c2k)t]. (15b)

Taking k = 1
2 , c = 1, σ = 1 in (15), we can show the single

soliton solutions of the HBB equation (1) in Fig 1.

(a) u(x, t)

(b) v(x, t)

Fig. 1. Single soliton solutions of the HBB equation.

B. Solitons and the any Potential STO wave solutions

In order to obtain the interaction solutions of Eqs. (1), we
consider w in the form

w = kx+ ωt+ g, (16)

on account of which, Eq. (13) leads to a potential STO wave

gt − σ
4 (gxx ± 6c1gx + 12c21g ± 3g2x)x
−σg3x − 3σc1g

2
x + ω0 = 0,

(17)

where c1 and ω0 are related to k, c and ω by

c1 = c+ k, ω0 = ω − σk(k2 + 3ck + 3c2), (18)
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Substituting Eq. (16) along with Eq. (17) into Eq. (8), we
get the interaction solutions for the original HBB equation
(1)

u = 1
2 (k + gx)[± tanh(w) + 1] + c, (19a)

v = 1
2 (k + gx)

2[tanh2(w)− 1]
− 1

2gxx(tanh(w)± 1).
(19b)

It is well known that the potential STO equation has many
types of known exact solutions, such as resonant soliton
solutions and so on. Thus, we can use those known solutions
to construct the interaction solutions between a soliton and
those PSTO waves.

1) Multiple resonant soliton solutions: Eq. (17) possesses
the following multiple wave solutions

g = ± 1
2 ln

[ n∑
i=1

lie
(kix+ωit)

]
(20)

with ωi = ∓2ω0 + σki(
1
4k

2
i ± 3

2c1ki + 3c21), and ki, li are
arbitrary constants. Substituting (20) into the CTE (19), we
obtain (n+1) resonant soliton solutions of the HBB equation
(1), which displays soliton fission and fusions.

Taking n = 2, k = 1
2 , c = 1, σ = 1, ω = 1, l1 = 1, k1 =

2, l2 = 2, k2 = 3 in (20), we can show multiple resonant
soliton solutions of the HBB equation (1) in Figure 2.

(a) u(x, t)

(b) v(x, t)

Fig. 2. Multiple resonant soliton solutions of the HBB equation.

2) Multiple interactions with periodic waves: It is not
difficult to find soliton interactions with sine-cosine periodic
waves because the PSTO (17) possess the following exact
solutions

g = ± 1
2 ln

n∑
i=1

{
di sin

[
li(x+ ait)

]
e(kix+bit)

}
(21)

and

g = ± 1
2 ln

n∑
i=1

{
di cos

[
li(x+ ait)

]
e(kix+bit)

}
(22)

where ai = 3σ(c1 ± k2i
2 ) − 1

4σl
2
i , bi = ∓2ω0 + σ[3kic

2
1 ∓

3
2c1(l

2
i − k2i ) + 1

4k
2
i − 3

4kil
2
i ], and di, ki, li(i = 1, 2, · · · , n)

are arbitrary constants.
In other words, the CTE (21) or (22) with (19) exhibits

the interaction solutions of multiple solitons and multiple
periodic waves.

Taking n = 2, k = 1, c = 2, σ = 1, ω = 1, l1 =
2, k1 = 1, d1 = 1, l2 = 3, k2 = 2, d2 = 2 in (22), we can
show multiple interactions with periodic waves of the HBB
equation (1) in Figure 3.

(a) u(x, t)

(b) v(x, t)

Fig. 3. Multiple interactions with periodic waves of the HBB equation.

3) Multiple interactions with rational waves: In order to
obtain more solutions of Eq. (17), we consider ω in the
following result

ω = σk(k2 + 3ck + 3c2). (23)
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Thus, the PSTO wave (17) is simplified to

gt − σ
4 (gxx ± 6c1gx + 12c21g ± 3g2x)x

σg3x − 3σc1g
2
x = 0,

(24)

It is not difficult to verify that Eq. (24) possesses the
following solution

g = ± 1
2 ln

[
a1x

2 + a2x+ 6σa1c
2
1xt

+9σ2a1c
4
1t

2 + 3σc1(a2c1 ± a1)t
]
,

(25)

which means the CTE solutions (19) along with (25) become
an interaction solution between a soliton and a rational wave.

So, starting from any solution of the STO u0 equation (7a)
and the variable coefficient PSTO system (7b) we can find
the corresponding interaction solutions of the HBB equation
(1) via the CTE (8).

Taking k = 4, c = 2, σ = 1, a1 = 1, a2 = 2 in (25), we
can show multiple interactions with rational waves of the
HBB equation (1) in Figure 4.

(a) u(x, t)

(b) v(x, t)

Fig. 4. Multiple interactions with rational waves of the HBB equation.

Now, we should return back to the non-CTE (11) case.
Though the expansions (11) are not consistent in our defini-
tion, it still can be used to find some possible exact special
solutions. For instance, it’s not difficult to find that the over-
determined system (10) possesses the solutions

w = ± 1
2k(x+ σk2t)− 1

2 ln sech[k(x+ σk2t)], (26)

where k is an arbitrary constant. Substituting the special
solutions (26) into the expansion (11) yield a kids of single
soliton solutions.

IV. NONLOCAL SYMMETRIES OF THE HBB EQUATION
RELATED TO CTE

To find nonlocal symmetries related to the CTE, we write
down a non-auto Bäcklund (BT) theorem for the HBB
equation.

Theorem 2 If {u0, w} is a solution of the coupled STO and
PSTO system (7), then

u = wx + u0, v = ∓(wxx + u0x). (27)

are solutions of the HBB equation (1).
Now it is ready to study the nonlocal symmetries of the

HBB equation (1) related to the consistent system (7) and
the non-auto BT (27), A symmetry of the HBB equation is
defined as a solution of its linearized system

σut − σ(3u2σu − 3
2vσ

u − 3
2uσ

v + 1
4σ

u
xx)x = 0, (28a)

σvt − σ[3u2σv + 6uvσu − 3
2vσ

v − 3
2 (uσ

u)xx
+ 3

2uxσ
u
x + 1

4σ
v
xx]x = 0.

(28b)

which means the HBB equation (1) is form invariant under
the transformation(

σu

σv

)
−→

(
u
v

)
+ ε

(
σu

σv

)
(29)

with the infinitesimal parameter ε. Thus, the HBB equation
(1) has the following nonlocal symmetry theorem.

Theorem 3 If {u, v} is related to {u0, w} by (27), and
{u0, w} is a solution of (7), then(

σu

σv

)
=

(
wxe∓2w

(∓wxx + 2w2
x)e
∓2w

)
(30)

is a nonlocal symmetry of the HBB equation (1).
Recently, it is found that the nonlocal symmetries can be

localized by introducing an enlarged system. Thus, we have
the following localization theorem for the enlarged system

ut − 3σu2ux +
3
2σ(uv)x −

1
4σuxxx = 0,

vt +
3
2σvvx − 3σ(u2v)x + 3σuxuxx

+ 3
2σuuxxx −

1
4σvxxx = 0,

u = wx + u0,
v = ∓(wxx + u0x),
w1 = wx,
w2 = ∓w1x,
u0t − σ( 14u0xx ±

3
2u0u0x + u30)x = 0,

wt − σ( 14wxx ±
3
4w

2
x ± 3

2u0wx)x
−σw3

x − 3σu0wx(u0 + wx) = 0.

(31)

Theorem 4 The HBB equation (1) possesses a Lie point
symmetry 

σu

σv

σw

σu0

σw1

σw2

 =


w1e∓2w

(w2 + 2w2
1)e
∓2w

∓ 1
2e∓2w

0
w1e∓2w

(w2 + 2w2
1)e
∓2w

 , (32)
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which is a localization of the nonlocal symmetry for the
original HBB equation (1). When a nonlocal symmetry is
localized, it can be used to find its finite transformations and
the related symmetry reductions. Thus, we have the following
finite transformation theorem.

Theorem 5 if {u, v, w, u0, w1, w2} is a solution of the
prolonged HBB equation (31), so {u′, v′, w′, u′0, w′1, w′2} is
with

u′ = u+
εw1

−ε+ e±2w
,

v′ = v +
εw2

−ε+ e±2w
+

2εw2
1e±2w

(−ε+ e±2w)2
,

w′ = ±1

2
ln(−ε+ e±2w),

v′0 = v0, w
′
1 =

w1e±2w

−ε+ e±2w
,

w′2 =
w2e±2w

−ε+ e±2w
+

2εw2
1e±2w

(−ε+ e±2w)2
.

(33)

From the finite BT transformation theorem 5, we can obtain
new solutions of the HBB equation (1) from any seed
solutions. For instance, starting form the trivial seed solution
u = v = u0 = 0 and w = kx + ωt, we can re-obtain the
single soliton solution (15) of the HBB equation (1).

V. CONCLUSIONS

In the work, we have used the CTE method to solve the
HBB equation (1). It is found that the HBB equation (1)
is not only integrable under some traditional meaning [28]
but also CTE solvable. With the help of the CTE method,
abundant interaction solutions among solitons and other types
of nonlinear waves especially any STO/PSTO waves such
as the multiple resonant solitons and periodic waves are
obtained.

Furthermore, the nonlocal symmetries of the HBB equa-
tion (1) related to the CTE are obtained. The nonlocal
symmetries related to the CTE can also be localized by
introducing suitable prolonged system. After finishing the
localization procedure, the finite transformation of the non-
local system can be obtained by solving the standard Lie’s
initial value problem. These results are important and may
have significant impact on future research. It is also worth
noting that this method can be applied to other nonlinear
evolution equations.
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