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Abstract—We use the nonstandard finite difference (NSFD)
method to solve the two-compartments pharmacokinetic models
of drug elimination. Pharmacokinetic models are commonly
used to predict drug concentrations in the body. These models
are modeled by nonlinear ordinary differential equations. We
apply the NSFD rules, based on Mickens’ idea of transferring
nonlinear models into discrete schemes. The method used was
compared with other established methods to verify its efficiency
and accuracy. Two-compartment pharmacokinetic models are
considered for different routes of administration: I.V. bolus
injection and I.V. bolus infusion.

Index Terms—pharmacokinetics, intravenous bolus injec-
tion, intravenous bolus infusion, nonstandard finite difference,
Michaelis-Menten elimination.

I. INTRODUCTION

PHARMACOKINETICS is the study of the dynamics
of drugs in the body. The dynamics or behavior of

drugs in the body can be described mathematically into
a pharmacokinetic model. This model is very helpful in
understanding the biological processes that occur in a drug
that is inserted into the human body.

The pharmacokinetic model has three types namely, com-
partment, physiological and non-compartmental. The model
that uses compartments is known as a very simple and
very useful tool in describing pharmacokinetic dynamics.
Drugs have various dosage forms and ways of administration
according to function and purpose. Drugs that are inserted
into the body, will be released from its dosage form and will
be absorbed into the surrounding tissue. Parts of the human
body are classified into several parts called compartments. In
the case of pharmacokinetics, the number of compartments
in the model depends on the rate of distribution of the drug
to various parts of the body. Once distributed, the drug
will be eliminated from the body, which means the drug
levels in the bloodstream and tissues decrease at the same
rate due to the rapid distribution balance. Drugs that follow
this behavior are called one compartment pharmacokinetic
models. If the speed of drug distribution differs from one
tissue to another, the pharmacokinetic model follows two or
more compartments [1].

The distribution and elimination of drugs in the body
varies greatly between one patient to another, depending on
the body condition of each patient, but the distribution and
elimination of these drugs can be characterized using math-
ematical models and statistics. This characterization is very
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needed in determining the dosage, dosage form and method
of drug administration to patients, so that drug administration
can be carried out appropriately and the treatment goals can
be achieved. In general, the method of drug administration
can be divided into two. The first is intravascularly, namely
the drug will be directly inserted into blood vessels. The
second is extravascularly, the drug is not put directly into
blood vessels, so the drug must be absorbed before entering
the blood vessels [2].

Drugs put into the body are generally carried by blood.
Blood vessels act as a place for blood flow to spread
throughout the body, allowing drugs to enter the target
tissue that requires treatment. This process describes the
process of drug distribution, which is when a drug spreads
in blood vessels, and the process of elimination is when
a drug comes out of the blood into the target tissue. In
this process, the blood vessels act as the main compartment
as a place for changes in drug concentration due to the
elimination process. Generally the drug concentration uses
units of mg/dL which describe the amount of drug (mg)
in 1 dL of blood. The compartment model formed is a
one compartment model because it only considers blood
vessels as the only compartment. This compartment model
is assumed that there is a fast and perfect distribution of
the drug in each part of the blood vessels that illustrates the
concentration of the drug in the main compartment. A simple
pharmacokinetic model is based on the assumption of a
linear relationship between the amount of drug concentration
and the change of its concentration per unit time. But in
actual conditions in the body, biological processes that occur
in drugs form nonlinear relationships due to absorption,
distribution, metabolism and drug elimination [3]. A model
that has a non-linear relationship is difficult to obtain a
solution so numerical methods are used as an approach.

Pharmacokinetic models can be presented in the form of
differential equations. There are a number of articles that
have used numerical methods to solve the pharmacokinetic
model [4], [5], [6].The numerical method that is commonly
used to solve a differential equation is the standard finite
difference (SFD). The SFD scheme is carried out by re-
placing the derivative form in the differential equation with
the difference quotient formula [7]. Although SFD is often
used, this scheme has several deficiencies so that it can cause
numerical instability. These shortcomings include: producing
unnecessary oscillations, providing false solutions that are
not in corresponding with the analytical solution and the
results given are converging to fixed point solutions that are
not in corresponding with the model [8]. This limitation has
led Mickens to develop alternative methods that can produce
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approximate solutions for various differential equations, both
of which the analytic solutions are easy to obtain or difficult
to obtain, and reduce the numerical instability that can be
generated by the SFD scheme [8]- [11]. This method is
known as the nonstandard finite difference (NSDF). Apart
from being an alternative method for the SFD method, NSDF
schemes can be used when exact finite difference schemes
cannot be formed because there is no information related to
analytical solutions from the differential equation model.

II. THE NONSTANDARD FINITE DIFFERENCE METHOD

Numerical approaches have been frequently used in con-
tinuous models. It is well known that traditional schemes
like forward Euler and others, sometimes fail generating
oscillations, bifurcations, chaos and false steady states. One
alternative to prevent these classes of numerical instabilities
is the construction of numerical schemes using nonstandard
finite difference method. The NSFD procedures, developed
by Mickens [10], [11], are based on following rules,

1) the discrete first-derivative has the representation

du

dt
−→ uk+1 − ψuk

φ

where ψ and φ depends on step-size ∆t = h and satisfy
the conditions

ψ = 1 +O(h), φ = h+O(h2).

The functions of ψ and φ can differ from one another.
While no general principles currently exist for selecting
the functions ψ(h) and φ(h), particular forms for a
specific equation can easily be determined. Functional
forms commonly used for ψ(h) and φ(h) are

φ(h) =
eλh − 1

λ
, ψ(h) = 1,

where λ is some parameter appearing in the differential
equations.

2) both linear and nonlinear terms may require a nonlo-
cal representation on the discrete computational; for
example,

x =⇒ 2xk − xk+1,

x3 =⇒
(
xk+1 + xk−1

2

)
x2k,

x3 =⇒ 2x3k − x2kxk+1,

x2 =⇒
(
xk+1 + xk + xk−1

3

)
xk.

There are some preliminary rules for constructing denomi-
nator functions for system of coupled, first-order, ordinary
differential equations:

1) Form an initial, finite difference model by replacing all
first-derivatives by discrete forward-Euler terms.

2) For a particular discrete equation, in general, its de-
pendent variable will occur linearly in its evaluation
at the (k + 1)-th time step. Solve for this dependent
variable, at the (k + 1)-th time step, in terms of all
other dependent variables evaluated at the k-th time
step.

3) If a factor in a particular discrete equation contains an
expression of the form (1+λh), where λ is composed

of one or more parameters appearing in the original
differential equations, then the denominator function
can be selected as

φ(h, λ) =
eλh − 1

λ
.

4) In the discrete finite-difference schemes, constructed in
(1), replace h by the appropriate φ(h, λ).

5) For the case where λ = 0, use as the denominator
function φ(h) = h.

III. PHARMACOKINETIC MODEL OF TWO
COMPARTMENTS

In the pharmacokinetic model of one compartment, the
drug that is inserted into the body is assumed to be mixed
and spread quickly and evenly so that the body is considered
as one compartment. This assumption is a simplification of
the actual event. The distribution of drugs in the body is
actually not equal, depending on the nature of the drug
and the structure of the place or tissue where the drug is
spread. In this study, it is assumed that the body is divided
into two parts or compartments, namely the compartment
with a rapid spread or called the central compartment, and
compartments with a relatively slower spread or called the
peripheral compartment. The central compartment consists
of blood flow and tissues that are mostly passed through
the bloodstream such as the kidneys and liver, while the
peripheral compartments include fat and muscle where these
tissues are slightly passed through the bloodstream so the
spread of drugs in them is relatively low [1]. Another
assumption applied is that drug elimination occurs only in the
central compartment, so drugs in the peripheral compartment
must be transferred back to the central compartment [5]. This
assumption is given because most drugs are eliminated by tis-
sues that are in the central compartment. These assumptions
produce a pharmacokinetic model with two compartments.
The drug that is put into the body will dissolve in the
appropriate compartment fluid so that the drug in the body
is expressed in terms of concentration, i.e. the amount of
the drug divided by the volume of compartmental fluid,
or C = A/V with A is the amount of drug in mg, V is
the volume of compartments in units of mL, and C is the
concentration of drugs in the compartment (mg/mL).
The drug is given in small quantities so the concentration
in the body will also be small, so that its elimination from
the central compartment will also be linear. Drugs given in
large quantities will result in high concentration in the body.
Each tissue has a different ability to eliminate drugs. Tissues
that have low elimination ability will be saturated when the
concentration of drugs in the body is high. This saturation
results in elimination occurring nonlinearly following the
Michaelis-Menten kinetics. Whereas for tissue with fast
elimination capabilities, elimination remains linear [1].
The process of elimination in the two compartment pharma-
cokinetic model with nonlinear elimination will be reviewed
in the following two administration methods:

A. I.V. Bolus Injection

At I.V. injection, all doses of the drug will enter directly
into the bloodstream or central compartment and will then
enter the peripheral compartment. Apart from entering into
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Fig. 1. Illustration of drug movement in the case I.V. bolus injection scheme
with nonlinear elimination in the two compartment model

the peripheral compartment, the drug will also be eliminatied
from the central compartment which in this case elimination
occurs nonlinearly. Figure 1 provides an illustration of the
movement of drugs in two-compartment. In Figure 1 it
appears that the concentration of the drug available in the
central compartment will enter the peripheral compartment
at the speed of k12. Because the assumption was given
that elimination only occurs in the central compartment,
the concentration of the drug in the peripheral compartment
will return to the central compartment with speed k21.
Furthermore, the drug will be eliminated from the central
compartment in two ways, namely linearly with a speed
of kel and non-linearly following the kinetics of Michaelis-
Menten, Vmax

Km+C1
, with Vmax is the maximum elimination

capacity, Km is the Michaelis coefficient and C1 is the
concentration in the central compartment. From Figure 1,
a system of differential equations can be formed which
illustrates the change of drug concentration in the body as
follows,

dC1

dt
= −kelC1 −

Vmax
Km + C1

C1 − k12C1 + k21C2, (1)

C1(0) = C1,0

dC2

dt
= −k21C2 + k12C1, (2)

C2(0) = 0

where C2 is the concentration of the drug in the peripheral
compartment. Analytical solutions for the (1)-(2) system are
difficult to obtain, so solutions will be observed around the
equilibrium point. The equilibrium point is the point when
there is no change in concentration in a compartment, or the
rate of concentration that enters the compartment is the same
as the rate that exits the compartment. The equilibrium point
is the point that satisfies dC1

dt = 0 and dC2

dt = 0 so that it is
obtained

− kelC1 −
Vmax

Km + C1
C1 − k12C1 + k21C2 = 0, (3)

− k21C2 + k12C1 = 0. (4)

The Equation (4) is then substituted into the (3) equation so
that it is obtained

−
(
kel +

Vmax
Km + C1

)
C1 = 0.

The result obtained is C1 = 0 or

kel +
Vmax

Km + C1
= 0

⇐⇒ C1 = −
(
Vmax
kel

+Km

)
. (5)

The first possibility is C1 = −
(
Vmax

kel
+Km

)
. All parame-

ters in this model are positive, so C1 in Eqs. (5) produces

a negative value. A negative C1 value does not reflect the
condition of drug concentration in the body, so this point
is not used. The second possibility is C1 = 0 and produce
C2 = 0. So the equilibrium point of the (1)-(2) system is
(C∗

1 , C
∗
2 ) = (0, 0).

Furthermore, linearization is conducted at (0, 0). The first
step is to determine the Djacobian matrix of the nonlinear
(1)-(2) system, i.e.,

D(C1, C2) =

(
−kel − Vmax

Km+C1
− k12 k21

k12 −k21

)
,

So the linearization of the (1)-(2) system at point (0, 0) is(
dC1

dt
dC2

dt

)
=

(
−kel − Vmax

Km
− k12 k21

k12 −k21

)(
C1

C2

)
or

dC1

dt
= −

(
kel +

Vmax
Km

+ k12

)
C1 + k21C2 (6)

dC2

dt
= k12C1 − k21C2 (7)

Analytical solutions for concentration in the central compart-
ment, C1, and the peripheral compartment, C2, are obtained
using the Laplace transformation, L, as follows.

• Eqs. (6)

L
[
dC1

dt

]
= L

[
−kelC1 −

Vmax
Km

− k12C1 + k21C2

]
⇔
(
s+ kel +

Vmax
Km

+ k12

)
L [C1]− k21L [C2] = C1,0

⇔
(
s+ kel +

Vmax
Km

+ k12

)
Q1 − k21Q2 = C1,0,

(8)

where Q1 = L[C1] and Q2 = L[C2].
• Eqs. (7)

L
[
dC2

dt

]
= L [k12C1 − k21C2]

⇐⇒ sL [C2]− C2(0) = k12L [C1]− k21L [C2]

⇐⇒ − k12L [C1] + (s+ k21)L [C2] = 0

⇐⇒ − k12Q1 + (s+ k21)Q2 = 0. (9)

Next, Eqs. (9) is substituted into Eqs. (8), so that it is
obtained

Q2 =
k12C1,0

(s+ λ1) (s+ λ2)
, (10)

where

λ1,2 =
1

2

((
kel +

Vmax
Km

+ k12 + k21

)

±

√(
kel +

Vmax
Km

+ k12 + k21

)2

− 4

(
kel +

Vmax
Km

)
k21

 .

The solution for the peripheral compartment is obtained by
using the inverse Laplace transform in Eqs.(10), so that it is
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obtained

C2(t) = L−1 [Q2]

= L−1

[
k12C1,0

(s+ λ1) (s+ λ2)

]
=
k12C1,0

λ2 − λ1
(
e−λ1t − e−λ2t

)
. (11)

Eqs.(11) is then substituted into Eqs.(7) to get the solution
from the central compartment, C1(t). The results given are
as follows,

C1(t) =
(k21 − λ1)C1,0

λ2 − λ1
e−λ1t +

(λ2 − k21)C1,0

λ2 − λ1
e−λ2t.

So the concentration of the drug in the central compartment,
C1(t), and the peripheral compartment, C2(t), around the
equilibrium point, (C∗

1 , C
∗
2 ) = (0, 0) are

C1(t) =
(k21 − λ1)C1,0

λ2 − λ1
e−λ1t +

(λ2 − k21)C1,0

λ2 − λ1
e−λ2t

C2(t) =
k12C1,0

λ2 − λ1
(
e−λ1t − e−λ2t

)
.

Next will be determined numerical solutions of Eqs. (6)-
(7) in the form of NSFD and SFD for comparison. Using
a forward-Euler schemes to construct The SFD schemes,
Equation (6)-(7) becomes

C1,k+1 − C1,k

h
= −

(
kel +

Vmax
Km + C1,k

+ k12

)
C1,k

+ k21C2,k (12)
C2,k+1 − C2,k

h
= k12C1,k − k21C2,k. (13)

To construct the NSFD schemes, using a forward-Euler
schemes for the first derivative and nonlocal representations
for other terms, Equation (1) becomes

C1,k+1 − C1,k

h
=−

(
kel +

Vmax
Km + C1,k

+ k12

)
C1,k+1

+ k21C2,k.

Solving for C1,k+1 gives the expression

C1,k+1 =
C1,k + k21hC2,k

1 + (kel + k12)h+ Vmaxh
Km+C1,k

.

Since (1 + (kel + k12)h) occurs, based on point (3) [11], it
follows that the denominator function should be selected to
have the form

φ(h, kel, k12) =
e(kel+k12)h − 1

kel + k12
.

Thus, the NSFD schemes of Equation (1) is

C1,k+1 − C1,k

φ
=−

(
kel +

Vmax
Km + C1,k

+ k12

)
C1,k+1

+ k21C2,k

In the same way, we have the NSFD scheme for Equation
(2) becomes

C2,k+1 − C2,k

φ
= k12C1,k+1 − k21C2,k+1.

Fig. 2. Illustration of drug movement in the case I.V. bolus infusion scheme
with nonlinear elimination in the two compartment model

So that the NSFD scheme is obtained as follows
C1,k+1 − C1,k

φ
= −

(
kel +

Vmax
Km + C1,k

+ k12

)
C1,k+1

+ k21C2,k, (14)
C2,k+1 − C2,k

φ
= k12C1,k+1 − k21C2,k+1, (15)

B. I.V. Bolus Infusion
The second method of drug administration is intravenous

infusion, where the drug is inserted into blood vessels or
central compartment slowly at a constant rate that is equal
to the speed of drug infusion. After entering the central
compartment, the drug will undergo the same process as
the IV injection case, which is entered into the peripheral
compartment and also eliminated. Figure 2 provides an
illustration of the movement of drugs in compartment two
with nonlinear elimination. From the Figure 2, a system of
differential equations can be formed which illustrates the
changes in drug concentration in the body as follows,

dC1

dt
= R− kelC1 −

Vmax
Km + C1

C1 − k12C1 + k21C2,

(16)
C1(0) = 0

dC2

dt
= −k21C2 + k12C1, (17)

C2(0) = 0

where R represents the drug flow rate and C2 is the drug con-
centration in the peripheral compartment. Furthermore, using
a forward-Euler schemes to construct The SFD schemes,
Equations (16)-(17) becomes

C1,k+1 + C1,k

h
= R− kelC1,k −

Vmax
Km + C1,k

C1,k

− k12C1,k + k21C2,k, (18)
C2,k+1 + C2,k

h
= −k21C2,k + k12C1,k, (19)

To construct the NSFD schemes, using a forward-Euler
schemes for the first derivative and nonlocal representations
for other terms, Equation (16) becomes
C1,k+1 − C1,k

h
=R− kelC1,k+1 −

Vmax
Km + C1,k

C1,k+1

− k12C1,k+1 + k21C2,k.

Solving for C1,k+1 gives the expression

C1,k+1 =
Rh+ C1,k + k21hC2,k

1 + (kel + k12)h+ Vmaxh
Km+C1,k

.

Since (1 + (kel + k12)h) occurs, it follows that the denom-
inator function should be selected to have the form

φ(h, kel, k12) =
e(kel+k12)h − 1

kel + k12
.
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Fig. 3. The concentration of drug in the central compartment where h =
0.5 (I.V. bolus injection). The SFD scheme (12) and NSFD scheme (14)
plotted against ODE45 of (1)

Thus, the NSFD schemes of Equation (16) is

C1,k+1 − C1,k

φ
=R− kelC1,k+1 −

Vmax
Km + C1,k

C1,k+1

− k12C1,k+1 + k21C2,k

In the same way, we have the NSFD scheme for Equation
(17) becomes

C2,k+1 − C2,k

φ
= k12C1,k+1 − k21C2,k+1.

So that the NSFD scheme is obtained as follows

C1,k+1 − C1,k

φ
= R− kelC1,k+1 −

Vmax
Km + C1,k

C1,k+1

− k12C1,k+1 + k21C2,k, (20)
C2,k+1 + C2,k

h
= −k21C2,k+1 + k12C1,k+1, (21)

IV. NUMERICAL SIMULATIONS

In this simulation the result of the case of drug administra-
tion by I.V. bolus injection methods were shown which were
eliminated nonlinearly. In this case the drug Sisomycin has
Vmax = 3,33 mg/dL, Km = 5,56 mg/L, kel = 0,0078/mnt,
k12 = 0,0187/mnt, k21 = 0,0157/mnt and the dose for I.V.
bolus injection is 1 mg [12], [13].

A. I.V. Bolus Injection: Simulations

The following is a comparison figure between the SFD
scheme in Equations (12)-(13), the NSFD scheme in Equa-
tions (14)-(15) and MATLAB built-in function ODE45 of
(1)-(2). Figure 3, 4, 5 and 6 shows the concentration profile
of Sisomicin drug in the central and peripheral compartment
with the initial dose given is 1 mg and is plotted for 0 minutes
(0) until the 80th minute for h = 0.5 and h = 5. The results
show that the NSFD scheme is stable and closer to the results
obtained via the built-in ODE45. The SFD scheme does not
match the dynamics of the system for higher step sizes; we
observe oscillations of the SFD method for large h.
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Fig. 4. The concentration of drug in the central compartment where h = 5
(I.V. bolus injection). The SFD scheme (12) and NSFD scheme (14) plotted
against ODE45 of (1)
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Fig. 5. The concentration of drug in the peripheral compartment where
h = 0.5 (I.V. bolus injection). The SFD scheme (13) and NSFD scheme
(15) plotted against ODE45 of (2)

0 10 20 30 40 50 60 70 80

Time (minutes)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

D
ru

g 
C

on
ce

nt
ra

tio
n 

(m
g/

m
L)

ODE45
SFD
NSFD

Fig. 6. The concentration of drug in the peripheral compartment where
h = 5 (I.V. bolus injection). The SFD scheme (13) and NSFD scheme (15)
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Fig. 7. The concentration of drug in the central compartment where h =
0.5 (I.V. bolus infusion). The SFD scheme (18) and NSFD scheme (20)
plotted against ODE45 of (16)
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Fig. 8. The concentration of drug in the central compartment where h = 5
(I.V. bolus infusion). The SFD scheme (18) and NSFD scheme (20) plotted
against ODE45 of (16)

B. I.V. Bolus Infusion: Simulations

The following is a comparison figure between the SFD
scheme in Equations (18)-(19), the NSFD scheme in Equa-
tions (20)-(21) and MATLAB built-in function ODE45 of
(16)-(17). Figure 7, 8, 9 and 10 shows the concentration
profile of Sisomicin drug in the central and peripheral
compartment with the drug flow rate is 0.5 and is plotted
for 0 minutes (0) until the 80th minute for h = 0.5 and
h = 5. As in the simulation results of the infusion model,
the results in this model also show that the NSFD scheme
is stable and closer to the results obtained via the built-in
ODE45. The SFD scheme does not match the dynamics of
the system for higher step sizes; we observe oscillations of
the SFD method for large h.

V. CONCLUSION

In this work, we structured two systems of two-
compartment pharmacokinetic models. The first model is
an I.V. bolus injection two-compartment model while the
second model is an I.V. infusion two-compartment model.
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Fig. 9. The concentration of drug in the peripheral compartment where
h = 0.5 (I.V. bolus infusion). The SFD scheme (19) and NSFD scheme
(21) plotted against ODE45 of (17)
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Fig. 10. The concentration of drug in the peripheral compartment where
h = 5 (I.V. bolus infusion). The SFD scheme (19) and NSFD scheme (21)
plotted against ODE45 of (17)

We presented numerical results with the NSFD scheme for
each of the developed models and compared it with the
SFD method and the built-in function ODE45 in MATLAB,
paying particular attention to the efficiency of the NSFD
method in comparison to standard methods. From the results
obtained, we observe that the stability of the NSFD scheme
is independent of the chosen step-size. This is not the case
with standard methods. The numerical simulations conducted
verify that NSFD schemes are efficient and accurate for
the solution of the problems of modelling pharmacokinetic
processes. Importantly, as pointed out through test cases in
this work, the NSFD method is able to generate numerical
schemes that are dynamically consistent with the original
equations.
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