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Cyclic Brunn-Minkowski Inequalities for the
General L,-Mixed Brightness Integrals and
General L,-Dual Mixed Brightness Integrals

Linmei Yu, Weidong Wang* and Yuanyuan Zhang

Abstract—Based on the general L,-projection bodies, Yan
and Wang introduced the notion of general L,-mixed bright-
ness integrals. Combining with general L,-intersection bodies,
Zhang and Wang gave the general L,-dual mixed brightness
integrals. In this paper, we establish the new cyclic Brunn-
Minkowski inequalities for general L,-mixed brightness inte-
grals and general L,-dual mixed brightness integrals. Our re-
sults unify the relevant cyclic inequalities and Brunn-Minkowski
inequalities.

Index Terms—cyclic inequality; Brunn-Minkowski inequal-
ity; L,-mixed brightness integral; L,-dual mixed brightness
integral.

I. INTRODUCTION

HE setting for this paper is the Euclidean n-space

R™. If K is nonempty compact convex set in R", the
support function, hxg = h(K,-) : R* - R, of K € K" is
defined by (see [6])

hK,z)=max{zx-y:y€ K}, z€R"

where x - y denotes the standard inner product of x and y.
If K is compact convex set with nonempty interiors in R",
then K is called a convex body. Let X7 denote the set of
convex bodies that containing the origin in R".

For a compact set K in R™ which is star shaped with
respect to the origin, the radial function, px = p(K,-) :
R™\{0} — [0, 00), was defined by (see [6])

p(K,xz) =max{\>0: )z € K}, z € R™"\{0}.

If px is positive and continuous, then K will be called a
star body (about the origin). Let S denote the subset of star
bodies containing the origin in R™. Two star bodies K and
L are dilates (of one another) if px (u)/pr(u) is independent
of u € S~ !, where S”~! denotes the unit sphere in R™.
Asymmetric L,-Brunn-Minkowski theory has its origins
in the work of Ludwig, Haberl and Schuster (see [10], [11],
[12], [14], [13], [21], [22]). Based on Lutwak, Yang and
Zhang’s L,-projection body (see [24]), Ludwig ([21]) discov-
ered general L,-projection bodies: For K € K7, p > 1, the
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function ¢, : R — [0, 00) given by ¢.(t) = |t| + 7t, where
T € [—1,1], the general L,-projection body, 7K € K7, of
K is defined by

() = () |

Sn—1

or(u-v)PdSy(K,v), (1.1)

for all u € S"~1. Here S, (K, ) denotes the L,-surface area
measure of K, and

Qnp
1+7)P+(1—1)P°

an,P (T) = (

The normalization is chosen such that II) B = B for every

€ [~1,1]. Obviously, if 7 = 0, then I} K = II, K which
is just Lutwak, Yang and Zhang’s L,-projection body (see
[24]). On this basis, let p = 1, the convex body II; K is a
dilate of the classical projection body ITK of K and II; B =
B.

In 2015, based on the general L,-projection bodies, Yan
and Wang ([42]) defined general L,-mixed brightness inte-
grals: for Ki,...,.K,, € KI', p > 1 and 7 € [—1,1], the
general L,-mixed brightness integrals, DI(,T)(K 1y, Ky), Of
Ky, ..., K, is defined by

DKy, ..., Ky)

1
= - /Sni1 61()7—)(K1,u) e 6;7—)(Kn7u>ds(u)’ (1.2)

n
where 61(,7)(1( Ju) = %h(H;K ,u) denotes the half general
L,-brightness of K € K in the direction u. If there exist
constants \p, ..., A, > 0 such that for all v € S"~!

MOST (K1) = A0 (Ko, u) = -+ - = A6 (Ko, w),

then we call convex bodies K71, ..., K, have similar general
L,-brightness.

For 7 = 0 in (1.2), we write 51(,0)(K7 u) = §p(K,u) =
1h(I,K,u) and

Dy(K1, ... Kp) = DOV(Ky, - -+, Koy)

= 1 /5an Op (K7, u) - - - 8p(K, w)dS(u).

= (1.3)

Here D,(Ki,...,K,) is called the mixed L,-brightness
integrals of Ky,...,K, € K. If p = 1 in (1.3), then it
is just the mixed brightness integrals given by Li and Zhu
(see [17]).

In (1.2), let K1 = ... =
K, = L, we write

()
D, (K,L)

ni=Kand K,, ;11 =---=
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1 T n—i (7T 7
:E/Sn 15[(,)(K,u) 87 (L,u)'dS (u),

(1.4)
if allow 4 is any real number, then D(T)(K L) is called the
i-th general L,-mixed brightness 1ntegrals of K and L.

Let L = B in (1.4), we write D7)(K,B) = £ D7) (K)
and notice that (5,(,7) (B,u) = %h(H;B,u) =1 for all u €
S"~1 then by (1.4) we have

Ry = r n—i
D, (K) = ﬂ/snfl 515) )(Kau) dS(u),

where the D(T)(K ) is called the i-th general L,-mixed
brightness 1ntegrals of K.

In [42], Yan and Wang established the following Brunn-
Minkowski type inequality and cyclic inequality for ¢-th
general L,-mixed brightness integrals.

Theorem 1.A. If K, L € K}, p>1 7€ [-1,1,ieR
and i # n, then for i <n — p,

DK @, L) < DV)(K)75 + D)(L)77;  (1.5)
forn—p <i<nori>n, we have
D{T)(K @, L)™ > D) (K)=5 + D\)(L)75. (1.6)

In each case, equality holds if and only if K and L have
similar general L,-brightness. For i = n—p, equality always
holds in (1.5) and (1.6). Here the “®,” denotes the L,-
Blaschke sum.

Theorem 1.B. Let K € K2, p>1, 7€ [-1,1] and i,j,k €
R Ifi<j<k, then

(7) k—i (1) k—j y(T) j—i
Dy, i (K)* " < Dy, i (K)* 7Dy (K) ™,

with equality if and only if K and L have similar general
L,-brightness, i.e., K has constant general L,-brightness.
In 2006, Haberl and Ludwig ([11]) introduced the notion
of L,-intersection body, it is an important concept in L,-
Brunn-Minkowski theory. Recently, Wang and Li ([35], [36])
using the function go; : R — [0, 400) which is given by

pr(t) = [t = 7t,

to define the general L,-intersection body with parameter 7
as follows: for K € 87, 0 < p < 1, and 7 € [-1,1], the
general L, -intersection body, I; K € S, of K is defined by
(see [35], [36])

p(Iy K, u)?

= i(r) [ erlu- ) s

TE [_17 1]a

:i(T)/K[|u~:v|—T(u-9c)]_pda:

= ﬂ/ [Ju-v] —7(u-v)]"Pp(K,v)" Pdv, (1.7)
n—pJgn
for any u € S"~!, where

’L(T) _ (1+7_)p(1_7_)p )
A+ + -1y
Motivated by the general L,-mixed brightness integrals
and based on the general L,-intersection bodies, Zhang and
Wang ([43]) defined the general L,-dual mixed brightness
integrals as follows: For Ki,...,K, € 8, 0 < p < 1 and

(1.8)

€ [—1,1], the general L,-dual mixed brightness integrals,
DS (Ky, ..., Ky), of K1, ..., K, is defined by

D (Ky, ..., Kn)

1 ~'T NT
o L T (),

(1.9)
where 5~( )(K u) = ;5 p(I "K,u) denotes the half general
L,-dual brightness of K € S” in direction u € S™~

If’T =0, by (1.7) and (1.8), we have IOK I,K, the I,K
called the L,-intersection body which was given by Haberl
and Ludwig (see [11]). So we write 60 (K, u) = 5p(I, K, u)
and DY)(K1, ... K,) = Dy(Ky,....Ky,). Dp(Ky, ..., Ky)
was called the L,-dual mixed brightness integrals of

Ki, ..., K, € S7, this was introduced by Zhang and Wang
(see [43])
LetK1:-~~: n_q;:KandKn_i;H:w':

K, =L (i =0,1,..,n) in (1.9), that is D{)(K,L) =
D{(K,...,K,L,..,L). If i is any real number, K, L € S",
0 <p<1,7e€[-1,1], then the i-th general L,-dual mixed
brightness integrals, D( )(K L), of K and L is defined by
(see [43)])
()
D{)(K, L)
1 ~ . ,
_ (1) n—i5(7) 7
n/gn 15p (K u)"7"6,7 (L, u) dS (u)

1
S on.p

/ p(I7 K, u)" " p(I] L,u)'dS(u).  (1.10)
Sn—l

B and notice that the 6 (B, u) =
for all w € S™ !, so we write

1
2
4 D) (K), which together with (1.10) yields

In (1.10), let L =
%Jz()f,?B,u) =
DV)(K,B) =

~ 1
DK = 5
i.q

N /S 00 (K, u)" ' dS (u).
Here we call ﬁ;?(K ) the i-th general L,-dual mixed
brightness integrals of K.

For the i-th general L,-dual mixed brightness integrals,
Zhang and Wang ([43]) gave related Brunn-Minkowski type
inequality and cyclic inequality as follows:

Theorem 1.C. Let K, K L eS8 0<p<1, 1e[-1,1]
i€Randi#n. Ifi <n—p, then

~(r i ! b
B Dy

< DU)(K.L)75 + D)k D)7, (1)

equality holds if and only if I} K and I;K/ are dilates. If
1 > n — p, then inequality (1.11) is reversed. For i = n — p,
(1.11) becomes an equality. Here “:i\—p” denotes L, radial
Blaschke sum.

Theorem 1.D. Let K,L € S}, 0 <p < 1, 7€ [-1,1],
i,j,k € R. If’,j%; > 1, then

DK, L)~ D\T) (), LY~ > D{T)/(K, L)F,  (1.12)

equality holds if and only if I} K and I7L are dilates. If
0 ,

In this paper, associated with the Brunn-Minkowski type
inequality (Theorem 1.A or Theorem 1.C) and cyclic in-
equality (Theorem 1.B or Theorem 1.D), we establish two
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cyclic Brunn-Minkowski inequalities for i-th general L,-
mixed brightness integrals and i-th general L,-dual mixed
brightness integrals, respectively. For more cyclic Brunn-
Minkowski inequality, please refer to references ([44], [45]).
Theorem 1.1. Ler K, K',L € K, p > 1, 7 € [-1,1],
hwihkeR Ifj<n—pandi<j<k (i#k), then

T ' _p_

DK @, K, 1)
(r) T2 5 (7) _pG=D)
gDm (K, L) =9t J>Dp’k([(7 L) =05

+DIUE DTIEI DK I (113)

fn—p<j<nandj<i<korj>nandi<j<k
(i # k), then

DUN(K @, K ,L)™7

T p(kaj) _ T P(]*i) _
> D; )(K, L) <kﬂ><nﬂ>[)1()’,2([(, L)®=o0t=n

32

+DC) (K, L) T5e5 D) (K L) T30

P,

(1.14)

In each case, with equality if and only if K and K " have

similar general L-brightness.

Theorem 1.2. Let K, K ,LeS", 0<p<1,7e[-1,1]

LwihkeR Ifj<n—pandi<j<k(i#k), then
DINKF, K 1)

2]

~(r p(k—j) ~(r p(i—i)
< DI(M.) (K, L) (k=) (n—73) D;Jz(](, L) =) (n—7)

B , (k—34) - , (j—1)
+DJ)(E LTS DK I (L15)
fn—-p<j<nandj<i<korj>nandi<j<k
(i # k), then

SO KD K DS
D;DJ (K+pK , L)n=7
> D{) (K, L) 567 DY (K, L) 750D

+EI(JTZ,)(K/, L) w5 5](;]3(}{', L) e . (1.16)
In each case, with equality if and only if 1] K and I;Kl are
dilates.

Remark 1.1. Let j = ¢ in Theorem 1.1, we can get the
following Brunn-Minkowski type inequality for i-th general
L,-mixed brightness integrals.

Corollary 1.1. Let K, K',L € K, p > 1, 7 € [-1,1],
i€Randi#n. Ifi <n—p, then

D) (K@, k', L) < D{)(K,L)75 + D) (K, L)77;
if t >n —p, then
Dy)(K &, K', L)% > DS)(K, L)75 + Dy (K, L)7.

In each case, with equality if and only if K and K " have
similar general L-brightness.

If L = B, then Corollary 1.1 yields Theorem 1.A.
Remark 1.2. Let K = {0} in (1.13), then we may obtain
the following result which was given by Yan and Wang (see
[42]).

Corollary 1.2. Let K,L € K, p > 1, 7 € [-1,1] and
i,5,k € R, ifi < j <k, then

D;,j (K7 L)k_z S D;—,i(K7 L)k_jD;,k(K7 L)j_iv

with equality if and only if K and L have similar general
L,-brightness.

In particular, let L = B in Corollary 1.2, this is just
Theorem 1.B.

Remark 1.3. Let j = ¢ in Theorem 1.2, we immediately
obtain Theorem 1.C. If K' = {0} in Theorem 1.2, then
Theorem 1.D can be given.

Our results unify the relevant cyclic inequalities and
Brunn-Minkowski inequalities for the general L,-mixed
brightness integrals and general L,-dual mixed brightness
integrals. Our work belongs to a new and rapidly evolv-
ing asymmetric L, Brunn-Minkowski theory, the further
researches for this theory, readers can refer to papers [2],
[31. [4], [10], [11], [12], [14], [18], [19], [20], [25], [26],
(271, [301, [311, [38], [39], [29], [33], [34], [35], [36], [37],
[40], [32], [41], [42], [43], [46], [47].

II. PRELIMINARIES
A. L,-Blaschke combination

According to the existence’s theorem of L,-Minkowski
problem (see Theorem 9.2.3 in [28]), the author defined the
L,-Blaschke combinations of convex bodies as follows: For
K, L € K},n# p>1and A\, > 0 (not both zero), the
L,-Blaschke combination of K and L is defined by (see
[28]):

SP(AOKEB;D:LLOLa) :ASP(K7)+MSP(L7)7 (21)

where “ @, 7 denotes L,-Blaschke addition, “ A o K ”
denotes L,-Blaschke scalar multiplication. When K and L
both are origin-symmetric convex bodies, the (2.1) was given
by Lutwak ([23]). For more information on these and other
binary operations between convex and star bodies, see ([7],
[81, [9], [16]).

By (1.1) and (2.1), we have, for all u € S,

M (N0 K @, oo L), u)
= M, K, w)? + ph(I1) L, u)?,
i.e.,

(Ao K @ppuoLl)=A-TJK +,pu T L.

B. Ly-radial combination and L,,-radial Blaschke combina-
tion

For K,Le SI',p#0 and A, 1 > 0 (note both zero), the
L, -radial combination, Ax K+,uxL € S}, of K and L was
defined by (see [5], [28])

where “—T—p 7 and “A* K ” denote L,, radial addition and L,
radial scalar multiplication, respectively.

If n > p > 0, then according to (2.3), we defined the
L,-radial Blaschke combination, A ©® K —T—p,u oL eS8 of

K and L by (see [32])
ANOKF,uOL=A+K+¥, ,u*L. (2.4)

For K,L €S, 0<p<1,7¢e[-1,1], from (1.8), (2.3)
and (2.4), we can obtain for any u € Sl

PP Iy (K+pL),u)
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_ ir) u-v|—7(u-v)]7P n )" Pdu
= [ el = o) o T L), o)
_ i) u-v| —7(u-v)]? )" Pduy
=L vl = o)) (o)

i(7) Y —
o [ ol = rlu o) 7o)

= ,D(I;K, u)p + p(I;Lau)pa

ie.,
I;(K—&-pL) =LK+, L. (2.5)

III. RESULTS AND PROOFS

In this part, we will give the proofs of Theorem 1.1 and
Theorem 1.2. First, we give the following lemmas.
Lemma 3.1 ([1]). Ler f € LP(E),g € LI(E), real number
q#Oand%—F%:L if p>1, then

([ |f(z)|pd:z:>;< / o)

> [ 1#@y(@)ds; (3.1)
ifp<0or0<p<1, then
([ If(a?)l”dw>;< [ lataya)
< /E 1 (@)g(x)\da. (3.2)

In each case, with equality if and only if there exists constant
c1 and co, such that c1|f(z)[P = co|g(x)|?. Here LP(E)
denotes all function sets defined on measurable set & in L,
spaces.

Lemma 3.2 ([15]). Ler f € LP(FE) and g € LP(E), if real
number p # 0 and p > 1, then

([ f(x)l”dw>; +(/f |g<x>|pdx)’1

(/ () + g(x P) d; (3.3)
ifp<()0r0<p<1,then
([is |de) +( [rate |pda:)3”
(/ () + g(x P) da. (3.4)

In each case, with equality if and only if there exists constant
c1 and co, such that c1|f(z)| = calg(2)].

Proof of Theorem 1.1. Since p > 1 and j < n — p, thus
";j > 1. From this, by (1.4), (2.2) and (3.3), we get

D(T)(K @, K| L)75

_ 1
T |2in

- [2"1 n /S . (h(H;(K@pK’) WP R L )75 )

/S 61(,T)(K€9pK/,u)”‘jééT)(L,u)de(u)}

1 . .
~ g [ (s n i
n—j p_

L) " asto]

1 p(k—j)(n—3)
= hMIITK <k ) (n—7)
|:2n n /S'n.fl < ( p ’u) '

—i)(n
(I K, u) G003 (I L, u) 72

/ p(k—j)(n—1) p(i—i)(n—k)
+h(H;K ,u) (k=) (n—13) h(HTK u) (k=) (n—1)

n—j p_

1 (k—3)(n—i)
< h(IIT K k=1
- |:2n ‘N \/S‘nfl ( L ,U)

D

n—j

(G—i)(n—k)

h(H;K7 w)” ke

h(IL;L, u)de(u)}

1 / (k=) (n—1i)
h(IT" K T
tlg [ K
’ w =]
WK u)~ = h(I5L,u)dS(u) (3.5)

In the first item of right hand of inequality (3.5), notice that

1 < j <k (i+#k)implies ’k‘?:i, > 1, by (3.1) we know
1 (b=9)(n=1) (G=)(n—Fk)
h(IIT K h(II, K, k—i
s [ TR (I K, w)
h(IT; L, u)’ dS(u)
1 (k—3)(n—1i) (G— z)(n k)
= h(IIT K i h(IIT K —
o [ TR (0K w)
h(H;Lu) 1= h(HTL u) = dS( )
1 (k=) (n—14)
< hIT K, u) o=
—|:2n.n/5”1( ( 14 ’u)
itk—g) \ k=3 k=i
h(IL, L, u) "= ) dS(u)}
2" . n Sn—1
k—i j—i
- k(G—i) | I7¢ k—i
h(IL L, u) *= ) dS(u)]
= DU)(K, L) D) (K, L) = (3.6)

Combining nfj > 0 and (3.6), we can obtain the following
inequality

1 (k=0 (n=1)
h(IIT K =
|:2n “n Arzfl ( P u)

r
n—j

WK, u) 7

h(II] L, u)de(u)]

T _p(k=5) _ = _pG=i)
< Dz(m')(K’ L)(k—z)(n—.7)D§)7l3:(K’ L)G=0t=7)

Volume 50, Issue 3: September 2020



TAENG International Journal of Applied Mathematics, 50:3, [JAM_50 3 04

Similarly, we have

[1/ MUK )
2" . n Sn—1 p

p
n—j

(k— J)(n i) G=i)(n=k)
k—1

h(IT K, u)

h(IL L, u)de(u)}

< DK, )™ DO (K, DTS5, (35)
Hence, by inequalities (3.5), (3.7) and (3.8), we get

DN (K&, K, L)75
< D')(K, L)%p(fg([g L)%
25 P,
DU L) FETET DR 1)
This yields (1.13).

Similarly, from n —p < j <nand k > i > j (i # k),
and notice that p > 1, we know that 0 < % < 1 and
0 < ’2*? < 1, by (3.2) and (3.4), the (3.5) and (3.6) are
reversed. Since n” > 0, so the (3.7) and (3.8) are reversed.
For j>n, the % < 0, by (3. 4) the (3 5) is reversed and

Similarly, the inequality (3.8) is also reversed. In summary,
we may obtain inequality (1.14).

By the equality conditions of Lemma 3.1 and Lemma 3.2,
there exists equalities in (1.13) and (1.14) if and only if K
and L have similar general L,-brightness.

Proof of Theorem 1.2. From 0 <p <1 and j <n — p,
we know "’%j > 1. Hence, according to (1.10), (2.3), (2.5)
and (3.3), we get

D{N(KT,K' L)™5

P

1 - I _
= [2n.n/smp(l,§(K+pK ,u))" Jp(IpL,u)]dS(u)]

n—j
1 ~ ’ ip
~ |5 [ (TR 0™ )
2” -n Sn—1

P
p

dS(u)} o
- (K, K’
Lnn ml( WP+ (K u))
(7L, ) ) } .
p(k—j)(n—1)
_[ (pIKu ) =it=7)
2" . n Sn 1

(["'K u)m

p(k=j)(n—i) p(j—i)(n—k)
+ ([ K u) (k—i)(n—3) p([TK u) (k=) (n—3)

n—j p_

p(I;L’“)“jp’) pdS(u)} i

(I, L, u)

(k=j)(n—1)

1
< I'K =
<\ [ ot

P
n—j

(ITK )(J 7)(7: k)

p(I, L, u)de(u)}

n—j

1 / (k—j)(n—i)
I"K kE—1i
+|:2"-’I’L /Sn—l P( P ’U)

(G—i)(n—

pITK u) F

P
n—j

(I7L,u) dS(u) (3.9)

In the first item of right side of the above inequality (3.9),
since i < j < k (1 # k), thu

we get
1 (k=9 (i) =) —k)
I'K, = I'K, k=1
o [ ) T )
p(I} L,u)’ dS(u)
1 (k=) (n—i) G=Dn=k)
= I'K = ITK u)  *=1
g [ ) T )
p(I] L) T p(I7 L) 7 dS (u)
1 (k=) (n=i)
< I'K = a—
- |:2n -n/sn—l <p( P ’U)
k—i k—j
ik—g) \ F7 b
p(Iy Lyu) F= ) dS’(u)}
1 (G—i)(n—k)
I"TK.u)  *=—
X[Qn-n/snl (p(p )
k—i j—1
k=) \ I7¢ k=
p(Iy Lyu) =7 ) dS(u)}
= D7) (K, L)= DY) (K, L) (3.10)
So, using (3.10), we get
1 . (k=in=i) G=i)(n=k)
[W_nénlmng> PO ) SRS

n—j

p(I, L, u)de(u)]

~(7) p(k—j) ~(7) p(i—i)
< DK, L)®=0G=0 D (K, L)T=0G=0 . (3.11)
Similarly to the above mothod, we also have
1 / (b=9)(n =) G=)(n—k)
I'K I'K' k1
o [ R ) K )
pligLwast|
~(7) ’ p(k—j) ~(r) ’ p(i—%)
< DK, L)t=nt=n D YK, L)F=0G=.  (3.12)

Hence, by (3.9), (3.11) and (3.12), we have
DN (KT,K ,L)75

< BUN(K, L)y DU)(K, L)
+D ! L) DY (K 1) T,

This completes the proof of (1.15).
Whenn—p<j<nandk>i>j('7ék;) see
that 0 < np] <land0< £ =
(3.9) and (3.10) are reversed. Slnce nfj > 0, so the (3.11)
and (3.12) are reversed. For j > n, by (3.4), we can get the
(3.9) is reversed. Using j > n and (3.10), we can get the
(3.11) is reversed. Similarly, the (3.12) is also reversed. So,
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whenn—p<j<nandj<i<korj>nandi<j<k
(i # k), we can get (1.16).

From the equality conditions of the Lemma 3.1 and
Lemma 3.2, we see that equalities hold in (1.15) and (1.16)
if and only if IJK and I; K " are dilates.
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