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Abstract—In this paper, we propose two complex-valued
neural networks for finding complex matrix square root by
constructing two new types of nonlinear activation functions.
Theoretically, we prove that the complex-valued neural net-
works are globally stable in the sense of Lyapunov stability
theory. The state matrix of the complex-valued neural networks
converge to the theoretical complex matrix square root in
finite time. Numerical simulations are presented to show the
effectiveness of the complex-valued neural networks.

Index Terms—Complex matrix; Square root; Finite time
convergence; Nonlinear activation function; Complex-valued
neural network.

I. INTRODUCTION

THE, problem of matrix square root is widely encoun-
tered in many scientific areas [1], [2], [3], [4], [5], [6],

[7], [8]. The square root and the matrix sign functions of
complex matrices have several applications in systems and
control theory. The square root of a positive definite matrix is
required in many algorithms in signal processing and control
[2]. In mathematics, in order to solve the matrix square root
problem, almost all algorithms/schemes are based on the
following defining equation [1], [2], [3], [4], [7], [9], [10],
[11], [12], [13], [14], [15]:

X2(t) = A, (I.1)

where matrix A ∈ Cn×n is assumed to be known. It is
universally known that if A ∈ Cn×n has no nonpositive
real eigenvalues, then there is a unique solution X , which is
denoted by A1/2 and called the principal square root of A
[16]. In fact, for given matrix A ∈ Cn×n, if A+AH

2 , the
real part of A, is positive definite, then A has a unique
square root whose real part is positive definite. This result has
been proved by Kato [17] in the more general setting of an
infinite dimensional space using operator theory techniques.
In this paper, we assume that the real part of A ∈ Cn×n is
positive definite and we are interested in the computation of
the principal square root.

A number of computational methods have been proposed
for finding the square root of a matrix [1], [2], [3], [4],
[7], [9], [10], [11], [12], [13], [14], [15]. Being one of
the most useful methods, Newton iteration [3], [4], [10]
has been investigated for matrix square root finding, owing

Z. Pu is withthe School of Mathematics and Statistics, Hexi University,
Zhangye, 734000, P. R. of China. E-mail:puzhaonian@163.com.

X. Wang is with the School of Mathematics and Statistics, Hexi Univer-
sity, Zhangye, 734000, P. R. of China. E-mail:xuezhongwang77@126.com.
This author is supported by the National Natural Science Foundation of
China under grant 11771099. Natural Science Foundation of Gansu Province
and Innovative Ability Promotion Project in Colleges and Universities of
Gansu Province 2019B-146.

to its good properties of convergence and stability. After
that, many improved algorithms from Newton iteration have
further been developed and analyzed for solving matrix
square root problems [1], [7], [10], such as simple form
of Newton iteration [10], the Meini iteration [7], and the
Denman and Beavers iteration [1]. However, these numerical
algorithms may encounter serious speed bottleneck due to
the serial nature of the digital computer, and may not be
efficient enough for large-scale online applications [11]. As
another important class of solution approach, many parallel-
processing computational schemes have been developed,
investigated, and implemented on specific architectures [11],
[15] because of the parallel distributed nature. Especially, as
a software and hardware implementable approach, recurrent
neural network (RNN) has some potential advantages in real-
time processing applications as compared to conventional
numerical algorithms, such as adaptive ability, hardware
realizability, and distributed-storage feature, and thus RNN
has become a very active research topic in many fields [15],
[18], [11], [12], [13], [14].

Recently, many authors have shown great interest for solv-
ing linear matrix equations, time-varying matrix equations
and matrix square root on the basis of gradient-based neural
networks (GNNs) [12], [13], [19], [20], [21], [22] or Zhang
neural networks (ZNNs) [9], [11], [14], [15], [23]. The GNN
approach uses the Frobenius norm of the error matrix as the
performance criterion and defines a neural network evolving
along the negative gradient-descent direction. In the time-
varying case, the Frobenius norm of the error matrix cannot
decrease to zero even after infinite time due to the lack of
velocity compensation of time-varying coefficients [11], [15].
ZNNs are developed for solving online time-varying prob-
lems. Their dynamic is designed based on an indefinite error-
monitoring function instead of a usually norm-based energy
function. Compared with GNNs, a prominent advantage of
the ZNNs solution lies in that the lagging error diminishes
to zero exponentially as time t goes on [9], [11], [14], [15],
[21]. It is well known that the design of ZNN is based on
a matrix or vector-valued indefinite error function and an
exponent-type formula, which makes every entry/element of
the error function exponentially converge to zero. By defining
different Zhang functions, a series of ZNNs models can be
proposed for solving the same time-varying problem [9],
[11], [15].

For given matrix A ∈ Rn×n with no nonpositive real
eigenvalues, Xiao [9], [11] has proposed real-valued finite
time convergence ZNNs model with the sign-bi-power func-
tion to find the real matrix square root. In addition, the
upper bound of convergence time for the proposed model
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is theoretically derived and estimated by solving differential
inequalities. However, if matrix A ∈ Cn×n with the real part
of A is positive definite, then A has a unique square root.
In the general case, we need convert the complex matrix
equation (I.1) into a real one for finding the square root of
complex matrix A ∈ Cn×n. Thus, we have to solve matrix
equation (I.1) in a double real-valued space. Theorefore, the
main motivation and the novelty of us, in this paper, is to
propose a complex-valued neural network for solving the
matrix equation (I.1), where this neural network can avoid
redundant computation in a double real-valued space and
reduce a low model complexity and storage capacity.

Throughout this paper, we use ‖A‖F , A>, AH, <(A) and
=(A) to denote the Frobenius norm, the transpose, the com-
plex conjugated transpose, the real part and the imaginary
part of a given matrix A ∈ Cm×n, respectively. This notation
is consistently used for lower-order parts of a given structure.
For example, the entry with row index i and column index j
in a matrix A, i.e., Aij , is symbolized by aij (also (x)i = xi).
Hence, we use |A| = (|akj |), Θ(A) = (Θ(akj)) and
exp(A) = (exp(akj)) denote the element-wise modulus, the
element-wise argument and the element-wise exponential of
the matrix a ∈ Cm×n, respectively. For two given matrices
A,B ∈ Cm×n, A ◦ B denotes the Hadamard product of
matrices A and B, i.e., (A ◦B)ij = aijbij .

This paper is organized as follows. In Section II, we recall
some preliminary results. Complex-valued neural network
models with the weighted sign-bi-power activation functions
for online solution of the time-varying complex matrix square
root are presented in Section III. Convergence properties of
the complex-valued neural network models will be discussed
in Section IV. Illustrative numerical examples are presented
in Section V.

Before ending this section, the main contributions of this
paper are summarized and listed as follows:

1) This paper focuses on finding complex matrix square
root in complex domain rather than conventionally
investigated real matrix square root in real domain.

2) Two types of activation functions are constructed and
two finite-time convergent complex-valued neural net-
works are proposed and investigated for online solution
of the complex matrix square root finding in complex
domain.

3) The paper carries out an in-depth theoretical analysis
for our proposed ZNN models. It is theoretically proved
that our models can converge to the theoretical solution
of the complex matrix square root finding with in finite
time. In addition, the upper bound of the convergence
time are derived analytically via Lyapunov theory.

II. PRELIMINARY

By Euler’s formula, a complex number α ∈ C can
be represented as α = |α| exp(ιθ), where ι =

√
−1 is

imaginary unit and θ ∈ (−π, π] is the augment of the
number α. Meanwhile, we can also rewrite a complex matrix
A ∈ Cm×n as |A| ◦ exp(ιΘ(A)).

The following two lemmas are needed to analyze the
convergence and stability of the complex-valued neural net-
works.

Lemma II.1. [24] The following identity holds for arbitrary
time-varying complex matrix Z(t) ∈ Cm×p:

dZH(t)

dt
=

(
dZ(t)

dt

)H
.

Lemma II.2. [24] For any two time-varying complex ma-
trices Y (t) ∈ Cm×n, Z(t) ∈ Cn×p, the next identity is
satisfied:

d(Y (t)Z(t))

dt
=

dY (t)

dt
Z(t) + Y (t)

dZ(t)

dt
.

For a given matrix A ∈ Rm×n, the function F(A) is
defined to be element-wise applicable, odd and monotoni-
cally increasing, i.e., F(A) = (f(akj)), with an odd and
monotonically increasing sign-bi-power function [25] f(·),
where

f(akj) = Lipσ(akj) + Lip
1
σ (akj), σ ∈ (0, 1),

with

Lipσ(akj) =


aσkj , akj > 0,

0, akj = 0,
−aσkj , akj < 0.

Now, we construct two new activation functions to analyze
the complex-valued neural networks for solving the equation
(I.1). For a given complex matrix A = <(A) + ι=(A) ∈
Cm×n, two types of the activation functions Ψk(A) =
(ψk(eij)) (k = 1, 2) are as follows:

(a) Type I activation function array is defined by

Ψ1(<(A) + ι=(A)) = F(<(A)) + ιF(=(A)). (II.1)

(b) Type II activation function array is defined by the
expression

Ψ2(<(A) + ι=(A)) = F(Γ) ◦ exp(ιΘ), (II.2)

where Γ = |A| ∈ Rm×n (resp. Θ = Θ(A) ∈ Rm×n)
denotes element-wise modulus (resp. element-wise ar-
guments) of the complex matrix A.

III. NEURAL NETWORK MODELS BASED ON ZNNS

Here, the nonlinear methods of ZNNs design for finite-
time convergent complex-valued ZNNs model are presented.
Then, by exploiting this method, two finite time convergent
ZNNs model are first proposed for complex matrix square
root finding based on two basic ZFs. For presentation con-
venience, such two ZNNs models are termed ZNN-I model
and ZNN-II model.

As usual, the time derivative of the complex function E(t)
is denoted by Ė(t). The complex-valued neural network
model is developed by employing three basic steps from
[9], [11], [15]. An application of these steps in our case is
described in the following.

Step 1. (Choose a convenient Zhang Function). The first
step assumes definition of a proper fundamental matrix-
valued error-monitoring function (Zhang Function, or ZF1
shortly) is defined as follows

E(t) = X2(t)−A. (III.1)
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Step 2. (Define Zhang design formula). In the second step,
with the aim to achieve global convergence of E(t) to zero,
it is necessary to use the general design pattern

Ė(t) :=
dE(t)

dt
= −γΨk(E(t)), k = 1, 2, (III.2)

where the design parameter γ > 0 corresponds to the in-
ductance parameter or reciprocal of a capacitance parameter,
and Ψk(·), (k = 1, 2) denotes an especially constructed
activation-function matrix mapping of neural networks.

In this paper, we apply the sign-bi-power activation func-
tion [25] to accelerate the ZNN to finite-time convergence to
the complex matrix square root of the complex matrix.

Step 3. (Generate a ZNN model). In the last step, the
dynamic equation of a complex neural network model for
finding complex matrix square root of the complex matrix
can be established by expanding (III.2). The complex matrix-
valued error-monitoring function E(t) defined in (III.1) pos-
sesses the following time derivative:

Ė(t) = Ẋ(t)X(t) +X(t)Ẋ(t). (III.3)

Combining (III.2) and (III.3), we can obtain the following
implicit dynamic equation of ZNN model for k = 1, 2:

Ẋ(t)X(t) +X(t)Ẋ(t) = −γΨk

(
X2(t)−A

)
, (III.4)

where X(t), starting from initial state matrix X(0) ∈ Cn×n,
denotes the state matrix corresponding to the theoretical
matrix square root of equation (I.1).

For presentation convenience, if k = 1, we call above
dynamic equation as ZNN-I model. If k = 2, we call above
dynamic equation as ZNN-II model.

IV. CONVERGENCE ANALYSIS

In this section, we prove that both ZNN-I and ZNN-II
can be globally convergent to the time-varying theoretical
solution of equation (I.1).

A. Convergence of the model ZNN-I

The convergence performances in finite time as the sign-
bi-power activation function of the ZNN-I model, defined
on the basis of (II.1), is investigated in this subsection. The
following result is valid for the ZNN-I model with the type
I activation function.

Theorem IV.1. Given matrix A ∈ Cn×n with the real part
of A is positive definite. If the Type I activation function
is used, then the state matrix X(t) ∈ Cn×n of the neu-
ral network (III.4), starting from an arbitrary initial state
X(0) ∈ Cn×n, converges to the theoretical matrix square
root X∗(t) ∈ Cn×n of the equation (I.1) in finite time:

tf <
|e+(0)|1−σ

γ(1− σ)
,

where e+(0) is the largest element in

E(0) = X2(0)−A.

Proof. According to the definition of Ψ1(·), the following
two equivalent formulae in the real numbers domain appear:

<(Ė(t)) = −γF(<(E(t)))

and
=(Ė(t)) = −γF(=(E(t))).

We construct the following Lyapunov function:

L(t) =
‖E(t)‖2F

2
=

Tr
(
E(t)HE(t)

)
2

,

where Tr(P ) =
∑n
i=1 pii for any matrix P ∈ Cn×n. Since

E(t) = <(E(t)) + ι=(E(t)), the time derivative of L(t)
satisfies the following identities:

dL(t)

dt
=

Tr
(
Ė(t)HE(t) + E(t)HĖ(t)

)
2

= −1

2
γTr

{(
F (< (E(t)))

> − ιF (= (E(t)))
>
)

× (< (E(t)) + ι= (E(t))) +
(
< (E(t))

> − ι

× = (E(t))
>
)

(F(< (E(t))))
>

+ ιF(= (E(t)))
}

= −γTr
{
< (E(t))

> F (< (E(t)))

+= (E(t))
> F (= (E(t)))

}
.

Since F(·) is odd and monotonically increasing, we conclude

< (E(t))
> F (< (E(t))) + = (E(t))

> F (= (E(t))) ≥ 0,

and then dL(t)
dt ≤ 0. According to the Lyapunov stability

theory,
E(t)= X2(t)−A

is globally convergent to zero matrix, regardless of the initial
value. That is to say, as t → ∞, we have X2(t) → A. In
view of λ → 0, the state matrix X(t) globally converges
to the time-varying theoretical solution of (I.1) starting from
arbitrary initial state X(0).

Next, it is necessary to prove the finite-time convergent
performance of the ZNN-I model.

The initial value of the matrix valued error function E(t)
is

E(0) = X2(0)−A.

We define
|e+(0)| = max {|E(0)|} ,

for all possible values of indices i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . ,m}. This means that |eij(t)| converges to zero for
all possible i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} when
|e+(t)| reach zero. In other words, the convergence time tf
of the ZNN-I model (III.4) is bounded by t+f of the dynamics
of |e+(t)|, where t+f represent the convergence time of the
dynamics of |e+(t)|.

It is clear that

ė+ = −γψ
(
e+(t)

)
.

Another Lyapunov function candidate is defined as

l+(t) = |e+(t)|2.

Since l+(t) ≥ 0, the time derivative of l+ is equal to

l̇+(t) = −2γe+(t)ψ
(
e+(t)

)
= −2γ

(
|e+(t)|σ+1 + |e+(t)|1/σ+1

)
≤ −2γ|e+(t)|σ+1

= −2γ l
(σ+1)/2
+ (t).
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The above results mean that, if the Type I activation
function is adopted, neural state X(t) of the neural network
(III.4) with Ψ1 converges to the theoretical matrix square
root X∗(t) of the equation (I.1) in finite time tf . The proof
is complete. �

B. Convergence of the model ZNN-II

In the following, we investigate the convergence of the
complex neural network model ZNN-II, defined by (III.4)
for k = 2. The following result can be verified about the
complex-valued neural network model ZNN-II based on a
type II activation function.

Theorem IV.2. Given matrix A ∈ Cn×n with the real
part of A is positive definite. If the Type II activation
function is used, then the state matrix X(t) ∈ Cn×n of the
neural network (III.4), starting from an arbitrary initial state
X(0) ∈ Cn×n, converges to the theoretical matrix square
root X∗(t) ∈ Cn×n of the equation (I.1) in finite time:

tf <
|e+(0)|1−σ

γ(1− σ)
,

where e+(0) is the largest element in

E(0) = X2(0)−A.

Proof. Analogically as in the proof of Theorem IV.1, the
error dynamic is given by

Ė(t) = −γΨ2(E(t)),

where E(t) = (A(t) + λI)X(t) − B(t). According to the
definition of Ψ2(·), immediately follows

Ψ2(E(t)) = F(|E(t)|) ◦ exp(ιΘ(E(t))).

We construct the following Lyapunov function:

L(t) =
‖E(t)‖2F

2
=

Tr
(
E(t)HE(t)

)
2

,

which further implies

dL(t)

dt
=

Tr
(
E(t)HĖ(t) + Ė(t)HE(t)

)
2

= −1

2
γTr

(
E(t)HH2 (E(t)) + E(t)H2 (E(t))

H
)

= −1

2
γTr

(
E(t)HH2 (E(t))

+
(
E(t)HH2 (E(t))

)H)
= −γTr

(
<
(
E(t)HH2 (E(t))

))
= −γTr

{
<
[
E(t)HF (|E(t)|) ◦ exp (ιΘ(E(t)))

]}
.

Since E(t) = |E(t)| ◦ exp(ιΘ(E(t))), one can verify

dL(t)

dt
= −γTr

{
<
[
exp

(
−ιΘ

(
E(t)H

)
◦
∣∣E(t)H

∣∣)
× (F (|E(t)|) ◦ exp (ιΘ (E(t))))]} .

Since F(·) is monotonically increasing, we conclude
F(|E(t)|) ≥ 0 for E(t) 6= 0. As a result, L(t) is negative
definite. According to the Lyapunov stability theory, the
matrix E(t) = (A(t) + λI)X(t)−B(t) globally converges
to the zero matrix from arbitrary initial value. Similarly
as in the proof of Theorem IV.1, we conclude that the

state matrix X(t) globally converges to the time-varying
theoretical solution of (I.1) starting from arbitrary initial state
X(0).

Because ZNN-I model (III.4), for k = 2, is derived
by using the intrinsically nonlinear method of ZNN design
similar to ZNN-I model, we also have

ĖX(t) = Ė(t) = −γΨ2(E(t)).

Therefore, the proof of finite time convergence can be
generalized from the proof of Theorem IV.1 and is thus
omitted. �

(a) The real part.

(b) The imaginary part.

Fig. 1. Trajectories of the state variables of the model ZNN-I in Example
1.

V. NUMERICAL EXAMPLES

In this section, we show that we can use the neural network
(III.4) with different activation functions to solve the matrix
principal square root via several examples. The computations
are implemented in Matlab Version 2014a on a laptop with
Intel Core i5-4200M CPU (2.50GHz) and 7.89GB RAM.

A. Numerical tests based on ZNN

Example 1. Consider the following matrix A with

A =

(
4 −2ι
3 5

)
.
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(a) ZNN-I model.

(b) ZNN-II model.

Fig. 2. Trajectories of the residual errors of the model ZNN in Example
1.

It is easy to check that matrix A+AH

2 is an Hermite positive
definite matrix. The theoretical principal square root X∗ of
the matrix A is presented as below for comparative purposes:

X∗ =

(
2.0078 + 0.0824i −0.0173− 0.4699i
0.7049− 0.0259i 2.2427 + 0.0737i

)
.

Starting from a randomly generated vector u =
rand(2, 1), take γ = 100 and initial state X(0) =diag(u). If
we choose the sign-bi-power activation function as f(·) with
σ = 0.2, then state variables trajectories of real part gener-
ated by ZNN-I and imaginary part corresponding the model
ZNN-II are shown in Figures 1 (a) and (b), respectively.

Trajectories of residual errors ‖X2(t)−A‖F , generated by
using the complex models ZNN-I and ZNN-II with γ = 100
are shown in Figure 2 (a) and (b), respectively.

Example 2. Consider the Toeplitz matrix A and has the
following form:

A =


a1 a2 a3 · · · an
a2 a1 a2 · · · an−1
a3 a2 a1 · · · an−2
...

...
...

. . .
...

an an−1 an−2 · · · a1

 ,

where a1 = n+ 1 and aj (j = 2, 3, . . . , n) with the form

aj =

 1, if mod(j, 3) = 1,
−ι, if mod(j, 3) = 2,
ι, if mod(j, 3) = 0.

It is easy to check that matrix A+AH

2 is a complex
symmetric positive definite matrix. We test the performance
of models ZNN-I and ZNN-II for solving above matrix
principal square root problem by choosing the sign-bi-power
activation function as f(·) with σ = 0.2 and the initial state
X(0) = U + ιV for randomly generated diagonal matrices
U and V , respectively.

Firstly, we set n = 3 and adopt ZNN-II model to solve
such a matrix square root problem under the conditions of
γ = 10. The state variables trajectories of real part and
imaginary part of the model ZNN-II are shown in Figures 3
(a) and (b), respectively.

(a) The first line.

(b) The first line.

Secondly, we take n = 11, the trajectories of residual
errors ‖X2(t)−A‖F , generated by using the complex model
ZNN-II with γ = 10, is shown in Figure 4 (a).

Finally, we take n = 20, the trajectories of residual errors
‖X2(t)−A‖F , generated by using the complex model ZNN-I
with γ = 100, is shown in Figure 4 (b).

It is seen from Figures 1 and 3 that state variables X(t)
of ZNN converges directly and accurately to the principal
square root after a very short finite time. In addition,
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(c) The second line.

(d) The second line.

Figures 2 and 4 show the transient convergence behavior of
‖X2(t)−A‖F synthesized by ZNN.

VI. CONCLUSION

In this paper, we have proposed two complex-valued
neural networks for solving the matrix principal square root
problem under certain conditions. To achieve this goal, we
have designed two new complex-valued activation functions
based on the sign-bi-power activation function. We have
proved that the state of our neural networks can converge
to the matrix principal square root in finite times.
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