
 

  

Abstract—Considering the characteristics of the structured 

mesh in the extended finite element method (XFEM), a new 

method is proposed to accurately search the enrichment 

element, which can determine enrichment type and 

simultaneously obtain the intersection position between the 

crack and the element boundary. Importantly, this intersection 

position information can guarantee accuracy when calculating 

the discontinuity element’s stiffness matrix. In the new method, 

considering only the nodes of the enrichment elements, 

computation speed is increased and storage consumption is 

lower than that of the level set method (LSM). Numerical 

simulations were used to verify the advantages of the proposed 

method over the LSM for higher algorithm accuracy, higher 

computing efficiency, and lower storage consumption, and to 

explore the potential for efficient computing in 

three-dimensional (3D) situations. In addition, the feasibility of 

using the new method for efficient computation in 3D cases was 

verified. 

 
Index Terms—XFEM, Structured mesh, Element boundary, 

Intersection information, Level set method (LSM) 

I. INTRODUCTION 

N many engineering projects, catastrophic accidents are 

the result of fracture failure. In geotechnical engineering, 

rock masses often contain a discontinuous surface that can 

develop continuously under geostress, blasting, or 

hydrostatic loads, which can lead to discontinuous face 

interpenetrating (perforating) and cause instability. 

Conversely, in shale gas exploitation, water pressure is 

exerted on the perforation cracks and primary fractures to 

drive the crack growth. With better driving of the fractured 

network, the shale gas yield increases. Therefore, the 
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propagation of the crack and prediction of the crack growth 

are critical to engineering practice. At present, there are many 

numerical methods to process discontinuity problems, such 

as the finite element method (FEM) [1], boundary element 

method (BEM) [4], discrete element method (DEM) [5], 

meshless method [6], and extended finite element method 

(XFEM) [7]. Belytschko and Black [7] proposed XFEM in a 

standard FE framework without re-meshing to address 

drawbacks in simulating discontinuity problems. Because of 

the characterizations and advantages of XFEM for 

discontinuity problems, it can be developed rapidly and has 

been widely employed to solve a variety of problems, such as 

simulating inclusions and holes [10], frictional contact [11], 

crack growth [14], fluid-structure coupling [20], multifluid 

flows [24], hydraulic fracturing [23], and several other 

discontinuity problems. 

To further  developthe finite element method in crack 

growth, Moës et al. [31] introduced the Heaviside function 

and the asymptotic crack tip displacement field function as 

enrichment shape functions to describe the displacement 

field's discontinuity of those elements, including the crack 

surface and tip, respectively. The nodes of the crack-crossed 

element and crack tip-embedded element are enriched by the 

Heaviside function and the asymptotic function respectively. 

Osher and Sethian [32] devised the level set method (LSM) 

to trace the motion of an interface in two or three dimensions, 

and the method was used to find the crack-embedded element 

[15]. The LSM can be used to describe cracks, or interfaces 

between different materials, and to model their shapes [33]. 

As a powerful numerical method for interface tracking, the 

LSM has played an important role in digital image processing 

and in motion interface tracking in the XFEM. The key idea 

of the LSM for capturing discontinuous interfaces is to 

replace the real interface with a zero level set function 

( )( ),x t t [34]. Thus, the level set value of node X  can be 

obtained by the sign distance function in XFEM [10]. To 

accurately capture the location of the crack, two LS functions 

are needed [17]: (a) the crack LS function  , which is 

orthogonal to (b) the LS function   at the crack tip. The type 

of the element can then be determined based on the two LS 

values of the element nodes. 

When the method is embedded into higher dimensions and 

applied to the entire grid, it is inefficient [38]. For the sake of 

computational efficiency, Adalsteinsson and Sethian [39] 

introduced the narrow-band LS method in which only the 

nodes in the narrow band are used to calculate the values of 

the LS. Sethian [40] introduced the fast-marching method, 

which was directed by an extreme one-cell version of the 

narrow-band approach. Nodes are classified as accepted, 

tentative, and distant nodes by solving an Eikonal equation, 

A New Method for Searching the Enrichment 

Element in Extended Finite Element Method 

Xiaofang Jiang, Zhenghong Huang, Rui Luo, Hong Zuo, Xing Zheng, and Shouchun Deng* 

I 

IAENG International Journal of Applied Mathematics, 50:3, IJAM_50_3_08

Volume 50, Issue 3: September 2020

 
______________________________________________________________________________________ 



 

which is the concept behind the fast-marching method [41]. 

Only the set of accepted nodes is needed to calculate the 

values of the LS, and the judgment is the same as using the 

LSM to determine the type [18]. Sethian [34] improved the 

fast-marching method and Chopp [44] used it to trace the 

geometric position of a discontinuous interface in the XFEM 

[45]. Ventura et al. [14] proposed a vector LSM in the XFEM 

to describe the location and propagation of cracks, but this 

method is seldom used in practical applications. 

Even though the LS and fast-marching methods can 

capture the position of the crack, the intersection information 

between the crack and element boundary, as well as the 

inflection point of the crack, cannot be obtained. 

Nevertheless, this information is useful when subdividing the 

elements [31], integrating the contact surface in the contact 

problem [38], and dispersing the fluid in the crack network 

[21]. These algorithms are based on nodes without 

considering the relationship between the element boundary 

and crack; additionally, the type of the crack-tip-embedded 

element may not be judged correctly. 

A key problem in the XFEM is the inability to search for 

the enrichment element and then to determine the type of 

enrichment element. The elements should be classified as 

standard, crack-crossed, and crack tip-embedded elements, as 

well as a blending element that contains standard and 

enriched nodes in the calculation. The LS and fast-marching 

methods play an important role in the XFEM by determining 

the relative position between the crack and element; however, 

they fail to capture information about the intersection of the 

crack and element boundary. This information is vital when 

subdividing the enrichment element. Actually, the use of the 

LSM in the XFEM is not necessary or mandatory [17]. On the 

basis of the position relationships between the structured 

mesh element and the crack, a method for searching the 

enrichment element and obtaining the intersection 

information that can be used to guarantee the accuracy of the 

stiffness matrix of enriched discontinuity element is proposed 

in this paper. The method not only avoids the misjudgment of 

the crack-tip-embedded element, but also contributes to the 

efficiency of the calculation because one needs to compute 

only the signed distance value of the enrichment node. 

The remainder of this paper is organized as follows. 

Section II presents the governing equations and framework of 

the XFEM. Section III presents the different searching 

methods. Section IV gives the method for the element 

integral and Section V provides numerical examples. Finally, 

Section VI provides conclusions. 

 

II. GOVERNING EQUATIONS AND XFEM FRAMEWORK 

A. Governing Equations 

The linear elasticity small deformation governing 

equations in two-dimensional (2D) problems can be found in 

references [31]; they are described here briefly.   is the 

elastic body and   is the boundary of the domain, where the 

boundary   is composed of arbitrary cracks 
i

c , displaced 

boundary 
i

u , and the force boundary 
i

f . Then, prescribed 

tractions f  and displacements u  are imposed on the 

boundaries f  and u , respectively, as shown in Fig. 1. 

 

Fig. 1. The domain contains different boundaries. 

 

According to the equilibrium equation in elastic mechanics, 

the related equations can be given by 

 , 0ij j ib + =  in   (1) 

 u u=  on 
u  (2) 

 n f  =  on f  (3) 

 0n  =  on 
c  (4) 

where 
,ij j  is the matrix of stress tensor; 

jb  is the body force 

per unit volume of the domain; f , u , and c  are the 

boundaries of force, displacement, and cracks, respectively; 

and n  is the normal vector of the boundary. 

In addition, the relationship between stress and strain is 

 :C =  (5) 

 
su =   (6) 

where C  is the elasticity tensor, and   and s  are the strain 

tensor and symmetric gradient operator, respectively. 

B. XFEM Framework 

Equation (7) is based on partition unity and was first 

proposed by Belytschko and Black [6]; the enrichment shape 

function was introduced by Moёs [31]. The method without 

re-meshing is called the XFEM: 

( ) ( ) ( ) ( )

( ) ( )

c

c

c H

T

N
h S

i i j j i

i s i j s

k k

k s

u x N x u N x x u

N x x u





 



= +

+

  


 (7) 

where ( )x  and ( )x  are the enrichments, hu  is the 

displacement field of the nodes, Su  is the standard 

displacement of node x , ju  and ku  are the displacement 

fields of enriched node x , S  is the set of all nodes,  HS  and 

TS  are the sets of enriched nodes. 

With this development, the final equation can be written as 

(8) [49]: 

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )
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 (8) 
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where Hu  and HS  are the displacements of node x  

enriched by the Heaviside step function and asymptotical 

function, respectively, and HS  and TS  are the respective sets 

of nodes enriched by the Heaviside step function and 

asymptotical function. 

( )H x  is the Heaviside step function: 

 ( )
1 for >0

1 for <0

x
H x

x

−
= 


 (9) 

( )B x  is the tip asymptotical function 

( ) ( ) ( )sin cos sin sin sin cos
2 2 2 2

x r r r r
   

 
        

 =         
        

 (10) 

where r  and   are polar coordinate parameters in the 

local crack-tip coordinate system. 

 

III. DIFFERENT SEARCHING METHODS 

A. LS Method 

The LSM was originally proposed to track the moving 

interface, which is composed of pixels in digital images. 

Later, this method was used to describe the crack interface 

and the search enrichment element in the XFEM. Element 

computation, particularly the enrichment element, is a key 

part of the XFEM, and only when the node is combined with 

the element does the calculation make sense. Because the 

LSM captures the crack location and determines that the 

enrichment element is based on the node, the intersection 

information between the crack and element cannot be 

obtained, and errors in judgment about the type of enrichment 

often occur in the calculation process. 

To obtain the enrichment element, two LS functions [17] 

are needed to describe the position of the crack, as shown in 

Fig. 2. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig. 2. (a) Two LS functions to describe the position for the crack; (b) crack 

surface LS function ( )x  (front view); (c) fracture LS function ( )x  

(top view). 

 

From this figure, the two LS values of node x  were 

defined as follows: 

( )

0 the node is above the crack surface

0 the node is on the crack surface

0 the node is down the crack surface

x




= 


 (11) 

 ( )

0 the node is outside the fracture 

0 the node is on the fracture

0 the node is in the fracture

x




= 


 (12) 

A 2D crack model was considered as an example to 

evaluate the element type, as shown in Fig. 3.  

Crack surface level 

set function ( )x  

Fracture level set 

function ( )x  
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Fig. 3. Crack model for enrichment element in 2D model. 

 

The enrichment elements and types of elements were 

determined using the following judgment method: 

(a) If ( ) ( )min max 0x x •   and ( ) ( )min max 0x x •  , 

then the element is a crack-tip-embedded element. 

(b) If ( )max 0x   and ( ) ( )min max 0x x •  , then the 

element is a crack-crossed element. 

(c.1) If ( )max 0x   and ( )max 0x  , then the element is 

a standard element. 

(c.2) If ( )max 0x   and ( )min 0x  , then the element is 

a standard element. 

(c.3) If ( )min 0x  , then the element is the standard. 

 

Fig. 4. Element types are judged incorrectly by the LS method. 

 

From Fig. 4, it can be seen that elements 2 and 4 are 

crack-tip-embedded elements, element 1 is a standard 

element, and element 3 is a crack-crossed element, but 

elements 1 and 3 are incorrectly judged to be 

crack-tip-embedded elements by the LSM. 

B. Proposed Method 

The method proposed in this paper searches the 

enrichment element and determines the type of element based 

on the relative position between the element and the 

crack—that is, the intersection and disjoint. At the same time, 

this method captures the intersection information between the 

crack and element boundary. According to the enrichment 

element, one can calculate the signed distance value of the 

enrichment node used by the Heaviside function. 

 

2D Algorithm 

In the 2D model, because the crack is a 1D line, one can 

judge the type of enrichment element based on the 

relationship between the element boundary position and line 

position. Moreover, one can also obtain the intersection 

information in the calculation procedure. 

It was assumed that the crack is presented by the function

( ), 0f x y = , and the domain of the crack is restricted to the 

interval , which is composed of monotony sub-intervals 

 1,i i ip p + = , as shown in Fig. 5. 

 

Fig. 5. Calculation model in two dimensions. 

 

The number of the element embedded by the end point was 

obtained using the following equations: 

 _ ( 1)j x iElement Number N N N= −  +  (13) 

 ( )1 ,i ix N ELx N ELx −      (14) 

 ( )1 ,j jy N ELy N ELy  −  
   (15) 

where Element_Number is the element number, xN  is the 

total number of elements in the x direction, iN  is the 
th

iN  

element in the x direction, jN  is the 
th

jN  element in the y 

direction, ELx  is the element length in the x direction, ELy  

is the element length in the y direction, and ( , )x y  is the 

arbitrary point in the plane. 

The element is crossed by the crack, and one can calculate 

the intersection information between the crack and element 

boundary by the following equations: 

 ( 0 1,x i ix N ELx x x +=    (16) 

 ( )0 0y f x= , and (17) 

 ( 0 1,i iy y y + ; or (18) 

 

 ( 
0

'

1,y i iy N ELy y y +=    (19) 
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 ( )
0 0

' 'x f y= , and (20) 

 ( 
0

'

1,i ix x x +  (21) 

where 
0 0( , )x y  or 

' '

0 0( , )x y  is the intersection point between 

the crack and element boundary, and ( , )i ix y  and 1 1( , )i ix y+ +  

are the end points of the interval i . 

In the calculation, the enrichment elements and their type 

can be obtained only by the intersection point between the 

crack and element boundary, and by the end point of the 

interval i . 

In MATLAB, the code can be implemented as follows: 

⚫ For the crack-tip-embedded element: 

for Ni=1:Nx-1 

 for Nj=1:Ny-1 

  if judging the coordinate of crack tip 1 by equations (14) and 

(15) 

        calculating the number of elements by equation (13) 

  elseif judging the coordinate of crack tip 2 by equations (14) 

and (15) 

    calculating the number of elements by equation (13) 

  end 

 end 

end 

⚫ For the crack-crossed element 

for i_interval = 1:length(CRACK(:,1))-1 

   Cx = [CRACK(i_interval,1) CRACK(i_interval +1,1)]; 

   Cy = [CRACK(i_interval,2) CRACK(i_interval +1,2)]; 

   for Ni=1:Nx-1 

     if judging the element boundary by equation (16) 

       solving y0 by equation (17) 

       if judging y0 by equation (18) 

         for Nj=1:Ny-1 

           if calculating Nj 

             calculating the number of elements by equation (13) 

           end 

         end 

       end 

     end 

   end 

   for Nj=1:Ny-1 

     if judging the element boundary by equation (19) 

       solving x0 by equation (20) 

       if judging x0 by equation (21) 

         for Ni=1:Nx-1 

         if calculate Ni 

           calculating the number of elements by equation (13) 

           end 

         end 

       end 

     end 

   end 

end 

After updating crack growth in the 2D model, the 

algorithm for crack segment 1m +  is the same as that for the 

crack segment i (1 ≤ i ≤ m). Additionally, only the crack 

segment 1m mp p +  and the crack tip point 1mp +  must be 

considered. 

  

Signed Distance Value 

According to (8), the nodes of the crack-crossed element 

are enriched by the Heaviside function, so one must 

determine the sign of the enrichment nodes. The signed 

distance value of the enrichment node was calculated using 

the following functions [10]: 

 ( ) ( )min min minx x x n x xi i isign = −  −    (22) 

 min
x

1,2...,

x x min x x
j j

i i j

j m



=

− = −  (23) 

where minx  is the orthogonal projection of x  on the interface, 

minn  is its associated outward normal to the interface at minx , 

and the interface ( )m

i i  =   consists of m  segments i  

(  1x , xi i i+ = ). 

The calculation flowchart for the LSM and algorithm used 

in this paper are shown in Fig. 6. In the LSM, many variables 

are needed to store the data, such as the two LS values for all 

nodes and the temporary variables for the product of the 

minimum and maximum of the two LS values in an element 

for all elements. However, with the proposed method, the 

sign distance values must be stored only for the enriched 

nodes. 

 

(a) Level set method (LSM). 
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(b) Proposed method. 
Fig. 6. Calculation flowchart in 2D model. 

 

 

 

(a) Model containing a crack in the center. 

 

 

(b) Projection area and boundary of the crack in the z direction. 

Fig. 7. Method in 3D model. 

C. 3D Algorithm 

In the 3D model, the crack is 2D, so the relationship 

between the boundaries of the crack and element should be 

considered. To simplify the algorithm, the projection 

equations were constructed and solved in three axis 

directions. The 2D algorithm is a special case of the 

projection algorithm in the xy-plane direction. Taking the 

xy-plane projection as an example, the following steps were 

taken. 

Step 1: Compute the projection area and boundary of the 

crack, as shown in Fig. 7. 

Step 2: Consider whether the arbitrary projection point 

( ),x y  is in the area of the crack surface projection. 

Step 3: According to the projection, use the coordinates 

( ),x y  and crack function ( ), , z 0f x y =  to obtain the 

coordinate values z , and then use the following equations to 

calculate the point in which element: 

 _ ( 1)x y k j x iElement Number N N N N N N=   + −  + (24) 

 ( )1 ,i ix N ELx N ELx −      (25) 

 ( )1 ,j jy N ELy N ELy  −  
   (26) 

 ( )1 ,k kz N ELz N ELz −      (27) 

where yN  is the total number of elements in the y direction, 

kN  is the 
th

kN  element in the z direction, and ELz  is the 

element length in the z direction. 

Step 4: Determine the key point information of the 

intersection ( )0 0 0, ,x y z  between the element and crack by 

the projection point ( )0 0,x y  in the projection crack plane, 

where 

 
0 xx N ELx=   (28) 

 0 yy N ELy=   (29) 

 ( )0 0 0z = ,f x y  (30) 

The other two projection directions are the same as that in 

the xy-plane direction. 

 

IV. ELEMENT INTEGRAL 

To obtain the stiffness matrix of the element, it is 

necessary to evaluate the integral of the stiffness matrix. The 

integral domain of the standard and blending elements is 

continuous, so it was possible to guarantee the accuracy of 

the calculation for the stiffness matrix of the element by 

selecting the appropriate Gaussian integral point. Accuracy 

of the enrichment stiffness matrix could not be guaranteed, 

however, because of the discontinuity of the enrichment 

element domain. Belytschko [50] suggested that the elements 

cut by discontinuities should be subdivided into sub-elements. 

The subdivision will be easy if the intersection points 

between the crack and element boundary and inflection 

points of the crack are known. Fig. 8(a) shows that five of the 

enrichment elements in the 2D model are embedded by two 

segment cracks, which are subdivided into sub-elements by 

the delaunay function in MATLAB, as shown in Fig. 8(b). 

The blue boxes (■) represent the intersection points between 

the crack and the element boundary, and the red circles (●) 

 

 

(x,y)

The boundary  of the crack

The domain of the crack
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represent the inflection points of the crack. 

 
(a) Element embedded by crack. 

 

 

(b) Subdividing element by inflection and intersection points. 

Fig. 8. Subdividing enriched element by delaunay function in MATLAB. 

 

The stiffness matrix of the enrichment element can then be 

computed by the following equation 

 

T

T

1

K ( )

          = ( )
sub
i

enrich
enrich enrich

n
enrich enrich sub

i

i

B DB d

B DB d



= 

= 





 
 (31) 

where Kenrich  is the stiffness matrix of the enrichment 

element, enrichB  is the strain-displacement matrix of the 

enrichment element, D  is the constitutive matrix, and   is 

the domain of the enrichment element, which is composed of 

the sub-domain
sub

i . 

 

V. NUMERICAL EXAMPLES 

A. Illustration of Accuracy of Sub-Element Integral 

To illustrate the accuracy of the enriched discontinuous 

element stiffness matrix, the stress intensity factors (SIFs) for 

a plate with an angled center crack were calculated, and 

uniform tension stress was applied on the lower and upper 

edges of the plate, as shown in Fig. 9. 

 

Fig. 9. Plate with center crack at angle β. 

 

The non-dimensional size of the model is given as follows: 

0.1373a
B

= . The numerical solutions were compared with 

the sub-elements method and rectangular sub-grids method 

[43] with the exact SIF [51], which are given as follows: 

 
2

I sinK a  =  (32) 

 II sin cosK a   =  (33) 

The results in Fig. 10 show the solution and sub-element’s 

excellent agreement with the exact solution for the entire 

range of β, but the solution obtained using the rectangular 

sub-grids method does not agree. 

Fig. 10. Relationship between stress intensity factor and angle. 
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B. Computing for Center Slant Crack 

 

Fig. 11. Plate with center slant crack. 

 

Fig. 11 shows a center slant crack in the plate. The 

non-dimensional size of the model is given as follows:  

0.2838a
B
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 = , where a  is the step length and the mesh 

number is 31 × 31. This example is used to discuss the 

accuracy of searching the enrichment elements, and to 

compare overall computation times using the LSM and the 

proposed method. The maximum circumferential stress 

criterion [52] will be used to compute the direction of crack 

growth [7]: 
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where   is the angle for crack propagation in the local 

coordinate system, and IK  and IIK  are the SIFs of modes I  

and II , respectively. 

 

Searching Enrichment Elements 

The LSM may sometimes misjudge some of the 

enrichment elements for a slant crack. The different types of 

enriched nodes in the first and third steps are shown in Fig. 12, 

and the nodes enclosed by a red oval are judged incorrectly as 

enriched by an asymptotical function. Because of this 

judgment error, the final path of the two methods is slightly 

different, as shown in Fig. 13. From the amplified image in 

Fig. 14, it is known that the different types of nodes begin in 

the third step, at which point the Heaviside enrichment nodes 

are judged incorrectly as asymptotic enrichment nodes. 
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(d) 
Fig. 12. Nodes enriched by two methods in different steps: (a) and (c) by 

LSM in the first and third steps; (b) and (d) by the proposed method in the 

first and third steps. 

 

 

Fig. 13. Final paths of the two methods. 
 

 

Fig. 14. Local amplified figure for final paths. 

As shown in Table I, the incorrect judgment that occurs in 

the first step of the LSM has little effect on the SIFs. 

However, the SIFs calculated by the LSM are obviously 

lower than the factors by the method proposed in this paper 

because the Heaviside enrichment nodes are judged 

incorrectly as asymptotical nodes; that is, an error caused by 

the incorrect judgment for a standard node is very small, but 

it is obvious for the Heaviside enrichment nodes. 

TABLE I 

STRESS INTENSITY FACTORS IN FIRST THREE STEPS 

 
Method proposed 

in this paper 
LSM 

SIF KI/σy (m
1/2) KII/σy (m

1/2) KI/σy (m
1/2) KII/σy (m

1/2) 

Step 1 4.699229423 −2.077539601 4.743337507 −2.081772594 

Step 2 6.681395712 0.32907408 6.665458717 0.342777216 

Step 3 7.837850418 −0.250388707 7.426714655 −0.168975847 

 

Comparison of Overall Computer Time 

From the flowchart in Fig. 6, and according to the 

algorithm given in Section 3.2 with a simple condition 

sentence, the speed in the proposed method is faster than that 

in the LSM with strenuous computation, variable storage, and 

a judgment sentence. Khoei [43] indicated that it is not 

necessary to perform the LS computation for the entire 

domain because it can be calculated in the narrow bandwidth. 

Pais [53] achieved this algorithm using MATLAB code. Fig. 

15 gives the average computation time for the two methods to 

run continuously 10 times under the same conditions with 

different element numbers in the first step of the MATLAB 

code. It was found that the calculation efficiency will be 

improved by at least 14%. 

 
 

Fig. 15. Average computer time of center slant crack model in first step. 

 

 

 
The path in this paper

The path by LSM
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C. Paths of Interactive Crack Growth 

 

Fig. 16. Computing model of two internal interactive cracks. 

 

 

Fig. 17. Entire paths of two interactive cracks. 
 

 

(a) Crack tip 1 

 

 

(b) Crack tip 4 

 

 

(c) Crack tip 2 

 

 

(d) Crack tip 3 

Fig. 18. Non-dimensional stress intensity factors at four crack tips. 

 

Sumi [54] simulated interactive crack growth with double 

internal cracks and suggested that the interaction of crack 

growth would occur when the crack tips closely approach 

each other. The computation model is shown in Fig. 16. The 

non-dimensional size is set by 0 0.4
a

B
= ,

0

1.0c
a

= , and 

0

1.0d
a

= , and the material parameters, Young’s modulus 

and Poisson’s ratio, are assumed to be 200 GPa and 0.3, 

respectively. The uniform tensile stress 0  is prescribed on 

the upper and lower edges of the plate. Yan [55] simulated 

the same model using the cellular automation method. These 

authors all have pointed out that the paths of the internal 

crack tips are curved towards the interior and the exterior 

crack tips are slightly curved in a clockwise direction. The 

proposed algorithm was used to compute the same model, 

and it was found that the paths of the growth crack were 

almost the same as those computed by Sumi [54], as shown in 
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Fig. 17. Fig. 18 gives the non-dimensional SIFs at the crack 

tips, where I0 0 aqK a = , and the results of tips 1 and 4 are 

almost the same as Sumi's and Yan's. However, from Section 

5.2.1, it is known that an incorrect judgment will cause the 

SIF to be relatively small, so that the non-dimensional SIF 

calculated by Yan is relatively small. The 

crack-tip-embedded element is semi-continuous in the 

XFEM, which may cause the enrichment stiffness matrix to 

be slightly more rigid than in the FEM, such that the crack 

forms a boundary so that the non-dimensional SIF calculated 

by Sumi is relatively large. The results of tips 2 and 3 not only 

depend on the SIF, but also on the length of aaq. The results of 

this paper are nearly the average of their results but closer to 

Sumi’s. 

D. Searching the Enriched Element in Three Dimensions 

Because the dimension of the crack in the 3D model is one 

order higher than in the 2D model, the elements that are 

crossed by the crack boundary are enriched by the Heaviside 

function, and the elements crossed by the domain of the crack 

are enriched by the asymptotic function. Both the inflection 

points of the boundary for the crack plane and the domain of 

the crack plane should be considered separately. The regular 

and irregular boundaries of the crack are used as examples 

and the different types of elements are given. 

 

Regular Boundary for Crack Plane 

 

Fig. 19. Model with triangular crack plane in 3D model. 

 

(a) Elements and intersection points embedded by crack boundary in 3D 

model 

 

 

(b) Whole results 

 

 

(c) Results in z direction 
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(d) Results in y direction 

 

 

(e) Results in x direction 

Fig. 20. Search results for all enriched elements and intersection points 

between element and crack; red circle (●) is intersection point. 

 

Fig. 19 shows a triangular crack plane in the 3D model. 

The size of the model is the following: length = 10 m, width = 

10 m, height = 10 m, and the crack plane is set by the points 

(2.5, 2.5, 1.5), (6.5, 4.5, 5.5), and (5.5, 7.5, 8.5). The mesh 

element number of the model is 20 × 20 × 20. The search 

results of the enriched elements and their types are shown in 

Fig. 20. 

 

Irregular Boundary for Crack Plane 

In the 3D model, the crack boundary cannot be always 

regular. Fig. 21 shows an elliptical plane crack as the 

irregular boundary; the position and the size of the crack are 

established by the equation set 
( )

( ) ( )
2 2

5 5
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16 4

3
5 5

3

x y

z x

− −
+ =

= − +



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, and the model 

is a cube with a side length of 10 m and the mesh element 

number is 20 × 20 × 20. The different types of enrichment 

elements are computed in Fig. 22. The enrichment elements 

and key information about the intersection relationship are 

given for the different projection directions in Fig. 23. 

 

Fig. 21. Model with irregular boundary for crack plane. 

 

 

(a) Whole results 

 

 

(b) Element embedded by crack boundary 

Fig. 22. Search results for enriched elements and intersection points between 

element and crack; red circle (●) is intersection point. 
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(a) Projection in z direction 

 

 

(b) Projection in x direction 

 

 

(c) Projection in y direction 

Fig. 23. Results in different projection directions; ● marks intersection point. 

 

VI. CONCLUSIONS 

Structural meshing is a convenient and effective technique 

used in the extended finite-element method (XFEM) because 

the finite-element mesh is completely independent of cracks. 

To make full use of its advantages, an algorithm based on the 

positional relationship between element boundaries and 

cracks was proposed herein to search the enrichment 

elements and judge element types. Furthermore, numerical 

simulation was used to study the accuracy, computational 

efficiency, and storage consumption of the proposed 

algorithm, as well as to explore the extension to 3D 

applications. Based on these results, the following 

conclusions are drawn. 

(1) With the proposed algorithm, not only can the 

information between the element boundary and the crack be 

obtained by computation, but the errors in judgment about the 

crack-tip-embedded element can be avoided. 

(2) In the 2D model, the proposed MATLAB-based 

algorithm requires only one level set value of the enrichment 

nodes, i.e., the horizontal signed distance value, to be 

computed under the same conditions, compared to two level 

set values of multiple nodes that must be computed using the 

level set method (LSM), thereby resulting in faster 

computation speed on average than the LSM with a narrow 

bandwidth. In addition, since the cracks and boundaries of the 

element are 1D, the new algorithm is simpler and has lower 

storage consumption. 

(3) In the 3D model, using the proposed algorithm, it is 

possible to perform the same computations in three 

projection directions to accurately capture critical 

information about the intersection of the crack surface and 

elemental boundaries. 
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