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Abstract—This research work is dedicated to an investigation
of the existence results for a class of fractional nonlocal
boundary value problems of the type

Dα
0+u(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, Dβ
0+u(1) =

∫ η

0

a(t)Dγ
0+u(t)dt,

whereDα
0+ is the standard Riemann-Liouville fractional deriva-

tive. A full analysis of existence of positive solutions is proved by
using the monotone iterative technique. The interesting point is
the nonlinear term f is involved with the first order derivative
explicitly. The casef = f(t, u) existence results are proved via
Schauder and a classical Krasnosel’skii fixed point theorems.

Index Terms—Positive solution; Boundary value problem;
Fractional differential equation; Fixed point theorem.

I. I NTRODUCTION

I N this paper, we consider the existence results of posi-
tive solutions to the fractional nonlocal boundary value

problems

Dα
0+u(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

(1)

u(0) = u′(0) = 0, Dβ
0+u(1) =

∫ η

0

a(t)Dγ
0+u(t)dt, (2)

where Dα
0+ is the standard Riemann-Liouville fractional

derivative, 0 < β < 1, 0 ≤ γ < α − 1, η ∈ (0, 1), f ∈
C([0, 1]×R+×R, R+), a(t) ∈ L1[0, 1]∩C(0, 1) is nonneg-
ative.

The study of differentiation and integration to a frac-
tional order has caught importance and popularity among
researchers compared to classical differentiation and integra-
tion. Fractional operators used to illustrate better the reality
of real-world phenomena with the hereditary property [1-3].
Existence of solutions is the basis of the theory of fractional
differential equation. Most of the previous literature deals
with the existence of solutions for fractional differential
equations boundary value problems by the use of techniques
of nonlinear analysis, see [6-36] and the references therein.

For example, in [17], Henderson and Luca considered the
existence of positive solutions for the following fractional
differential equation boundary value problems

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,
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Dp
0+u(1) =

m∑

i=1

ηiD
q
0+u(ξi),

wherep ∈ [1, n− 2], q ∈ [0, p].
See also [33] where, the authors studied the following

fractional differential equation with infinite-point boundary
value conditions

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dβ
0+u(1) =

∞∑

i=1

ηiD
β
0+u(ξi).

By using the fixed point index theory in cones, Wang et
al. [34] established the existence and multiplicity results of
positive solutions for the following fractional boundary value
problems

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0

u(t)dv(t).

When1 ≤ β < α− 1, Zhang and Zhong [35] investigated
the existence of triple positive solutions for the fractional
boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dβ
0+u(1) =

∫ η

0

a(t)Dγ
0+u(t)dt,

by using the Leggett-Williams and Krasnosel’skii fixed point
theorems.

Recently, [32] presented the existence and multiplicity of
positive solutions for a class of singular fractional nonlocal
boundary value problems

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dβ
0+u(1) =

∫ η

0

a(t)Dγ
0+u(t)dv(t).

All the above work was done under the assumption thatf
is allowed to depend just onu, while the first order derivative
u′ is not involved explicitly in the nonlinear termf. As we
know, when the nonlinear termf is involved in the first-
order derivative, difficulties arise immediately. In this work,
we use the monotone iterative technique to overcome these
difficulties. To the best knowledge of the authors, no work
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has beendone for boundary value problem (1), (2) by use
of the monotone iterative technique. The aim of this work is
to fill the gap in the literature.

The paper is organized as follows. In section 2, we give
some necessary concepts and results. Section 3 is devoted
to study two existence results whenf = f(t, u). The first
one uses the Schauder fixed point theorem, while in the
second one, existence result is obtained via the classical
Krasnosel’skii fixed point theorem. In section 4, the existence
result when the nonlinearityf depends on the solution and its
first derivative is established by using the monotone iterative
technique.

In this paper,E := C[0, 1] denotes the Banach space of
all continuous functions on[0, 1] with the norm ‖u‖0 =
max{|u(x)|, 0 ≤ x ≤ 1} and E1 := C

′
[0, 1] will refer to

the Banach space of continuously differentiable functions on
[0, 1] equipped with the norm‖u‖ = max(‖u‖0, ‖u′‖0).

II. T HE PRELIMINARY LEMMAS

To reformulate the problem (1), (2) into a fixed point
theorem, we present some necessary definitions and lemmas
from conformable fractional calculus theory in this section.

Definition 2.1 [32] The fractional integral of orderα > 0
for function u : (0, +∞) → R is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0

(t− s)α−1u(s)ds

provided that the right hand side is point-wise defined on
(0,+∞).

Definition 2.2 [32] The Riemann-Liouville fractional
derivative of orderα > 0 of a functionu : (0,+∞) → R
is given by

Dα
0+u(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1u(s)ds,

wheren = [α]+1, [α] denotes the integer part of real number
α, provided that the right hand side is point-wise defined on
(0,+∞).

Lemma 2.1 [32] Let α > 0, then the following equality
holds foru ∈ L(0, 1), Dα

0+u ∈ L(0, 1)

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cntα−n

whereci ∈ R, i = 1, 2, · · · , n, n− 1 < α ≤ n.
Lemma 2.2[32] Assume thatg ∈ L(0, 1) andα > β ≥ 0.

Then

Dβ
0+

∫ t

0

(t−s)α−1g(s)ds =
Γ(α)

Γ(α− β)

∫ t

0

(t−s)α−β−1g(s)ds.

Lemma 2.3 [32] Assumethat a ∈ L1[0, 1] ∩ C(0, 1),

∆ := Γ(α− γ)− Γ(α− β)
∫ η

0

a(t)tα−γ−1dt 6= 0.

Then for anyy ∈ L[0, 1] ∩ C(0, 1), the unique solution of
the boundary value problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1, 2 < α ≤ 3, (3)

u(0) = u′(0) = 0, Dβ
0+u(1) =

∫ η

0

a(t)Dγ
0+u(t)dt, (4)

is

u(t) =
∫ 1

0

G(t, s)y(s)ds, (5)

where
G(t, s) = G1(t, s) + h(s)tα−1, (6)

G1(t, s) =
1

Γ(α)





tα−1(1− s)α−β−1

0 ≤ t ≤ s ≤ 1,
tα−1(1− s)α−β−1 − (t− s)α−1

0 ≤ s ≤ t ≤ 1.
(7)

G2(t, s) =
1

Γ(α)





tα−γ−1(1− s)α−β−1

0 ≤ t ≤ s ≤ 1,
tα−γ−1(1− s)α−β−1 − (t− s)α−γ−1

0 ≤ s ≤ t ≤ 1.
(8)

h(s) =
Γ(α− γ)

∆

∫ η

0

a(t)G2(t, s)dt. (9)

We make the following assumptions throughout this paper:
(A1) a(t) ∈ L1[0, 1] ∩ C(0, 1);
(A2) ∆ := Γ(α − γ) − Γ(α − β)

∫ η

0
a(t)tα−γ−1dt 6=

0 andh(s) ≥ 0 for s ∈ [0, 1].
Lemma 2.4The functionG1(t, s) defined by (7) satisfies

the following properties.
1. G1(t, s) > 0 for all t, s ∈ (0, 1),
2. Γ(α)G1(t, s) ≤ tα−1(1− s)α−β−1 for all t, s ∈ [0, 1],
3. βs(1− s)α−β−1tα−1 ≤ Γ(α)G1(t, s) ≤ s(1− s)α−β−1

for all t, s ∈ [0, 1].
Lemma 2.5 The Green functionG(t, s) defined by (6)

satisfies the following properties.
1. G(t, s) > 0 for all t, s ∈ (0, 1),
2. G(t, s) ≤ tα−1Φ1(s) for all t, s ∈ [0, 1],
3. βtα−1Φ2(s) ≤ G(t, s) ≤ Φ2(s) for all t, s ∈ [0, 1],where

Φ1(s) =
(1− s)α−β−1

Γ(α)
+ h(s),

Φ2(s) =
s(1− s)α−β−1

Γ(α)
+ h(s).

Proof: It can be directly deduced from Lemma 2.4 and
the definition ofG(t, s), so we omit the proof.

Remark 2.1 The function u ∈ E1 is a solution of the
boundary value problem (1), (2) if and only if it is a solution
of the operator equationu = Tu, where

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds. (10)

III. T HE CASEf = f(t, u)

First, notice that the functionu ∈ E is a solution of the
boundary value problem (1), (2) withf = f(t, u(t)) if and
only if it is a solution of the operator equationu = Lu,
where

Lu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds. (11)

Using the Arzela-Ascoli theorem, it is easy to prove the
following lemma.

Lemma 3.1 The operatorL : E → E is completely
continuous.

Theorem 3.2 [4] Let X be a Banach space andC ⊂ X
a bounded, closed convex subset ofX. If T : C → C is a
completely continuous operator, thenT has a fixed point in
C.

Theorem 3.3 [5] Let X be a Banach space,K ⊂ X a
cone andΩ1,Ω2 two bounded open subsets satisfying0 ∈
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Ω1 ⊂ Ω1 ⊂ Ω2. Let T : K∩(Ω2\Ω1) → K be acompletely
continuous operator, such that:
(a) either‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≥ ‖v‖
for v ∈ K ∩ ∂Ω2,
(b) or ‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for
v ∈ K ∩ ∂Ω2.
ThenT has at least a fixed point inK ∩ (Ω2 \ Ω1).

3.1 An existence result by the Schauder fixed point
theorem

Theorem 3.4Suppose that
(1) f(t, ·) is nondecreasing onR+, for all t ∈ [0, 1];
(2) Assume that there existsR > 0 such that

∫ 1

0

f(t, R)dt ≤ R

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

. (12)

Then fractionalboundary value problem (1), (2) has at least
one nonnegative solutionu such that‖u‖0 ≤ R.

Proof: For u ∈ B = {u ∈ E : ‖u‖0 ≤ R}, following
from Lemma 2.5, we have
∣∣∣∣(Lu)(t)

∣∣∣∣ ≤
∣∣∣∣
∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣

≤
∫ 1

0

G(t, s)
∣∣∣∣f(s, u(s))

∣∣∣∣ds

≤
∫ 1

0

G(t, s)
∣∣∣∣f(s,R)

∣∣∣∣ds

≤
∫ 1

0

tα−1

(
(1− s)α−β−1

Γ(α)
+ h(s)

)
f(s,R)ds

≤
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

f(s,R)ds

≤ R.

So, ‖Lu‖0 ≤ R. Therefore, the operatorL mapsB into
itself. Hence, by applying Theorem 3.2 and Lemma 3.1,L
has a fixed pointu in B.

3.2 An existence result by the classical Krasnosel’skii
fixed point theorem

Construct the following cone

P = {u ∈ E : u(t) ≥ β‖u‖tα−1, t ∈ [0, 1]}. (13)

Theorem 3.5 Assume that there existρ ∈ (0, 1), q1, q2 ∈
C([0, 1], R+), nondecreasing functionsϕ1, ϕ2 ∈ C(R, R+)
andr0, R0 > 0 with (r0 6= R0) such that
(A) 0 ≤ f(t, u) ≤ q1(t)ϕ1(u) for all t ∈ [0, 1], 0 ≤ u ≤ r0

with

Mϕ1(r0) ≤ r0

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

. (14)

(B) f(t, u) ≥ q2(t)ϕ2(u) for all t ∈ [ρ, 1], βρα−1R0 ≤ u ≤
R0 with

βρmϕ2(βR0ρ
α−1)

(1− ρ)α−β

(α− β)Γ(α)
≥ R0. (15)

Then fractional boundary value problem (1), (2) has a
positive solution satisfying

min(r0, R0) ≤ ‖u‖0 ≤ max(r0, R0). (16)

Herem = min{q2(t), t ∈ [ρ, 1]} andM = max{q1(t), t ∈
[0, 1]}.

Proof: (a) Let the open setB1 = {u ∈ E : ‖u‖0 < r0}
andu ∈ P ∩ ∂B1. Then for anyt ∈ [0, 1], and sinceϕ1 is
nondecreasing, we have
∣∣∣∣(Lu)(t)

∣∣∣∣ =
∣∣∣∣
∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣

≤
∫ 1

0

G(t, s)q1(s)ϕ1(u)ds

≤
∫ 1

0

G(t, s)q1(s)ϕ1(‖u‖0)ds

≤
∫ 1

0

G(t, s)q1(s)ϕ1(r0)ds

≤
∫ 1

0

G(t, s)Mϕ1(r0)ds

≤
∫ 1

0

tα−1

(
(1− s)α−β−1

Γ(α)
+ h(s)

)
Mϕ1(r0)ds

≤
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]
Mϕ1(r0)

≤ r0 = ‖u‖0.
So, ‖Lu‖0 ≤ ‖u‖0, for all u ∈ P ∩ ∂B1.

(b) Let the open setB2 = {u ∈ E : ‖u‖0 < R0} and
u ∈ P ∩ ∂B2. So, Lemma 2.5 yields

u(t) ≥ βR0ρ
α−1, ∀t ∈ [ρ, 1].

Then for anyt ∈ [0, 1], and sinceϕ2 is nondecreasing, we
get

‖Lu‖0 ≥ max
t∈[0,1]

βtα−1

∫ 1

ρ

Φ2(s)f(s, u(s))ds

= β

∫ 1

ρ

Φ2(s)f(s, u(s))ds

≥ β

∫ 1

ρ

Φ2(s)q2(s)ϕ2(u)ds

≥ β

∫ 1

ρ

Φ2(s)mϕ2(βR0ρ
α−1)ds

= βmϕ2(βR0ρ
α−1)

∫ 1

ρ

Φ2(s)ds

≥ βmϕ2(βR0ρ
α−1)

∫ 1

ρ

s(1− s)α−β−1

Γ(α)
ds

≥ βmϕ2(βR0ρ
α−1)ρ

∫ 1

ρ

(1− s)α−β−1

Γ(α)
ds

= βmϕ2(βR0ρ
α−1)ρ

(1− ρ)α−β

(α− β)Γ(α)
≥ R0 = ‖u‖0.

Then,‖Lu‖0 ≥ ‖u‖0, for all u ∈ P ∩ ∂B2. Moreover, from
Lemma 2.5, we getL(P ) ⊂ P. Then fractional boundary
value problem (1), (2) has a positive solution satisfying

min(r0, R0) ≤ ‖u‖0 ≤ max(r0, R0).

IV. THE CASEf = f(t, u, v)

In this sequel, we denote byK the positive cone ofE1

given by

K = {u ∈ E1|u(t) ≥ 0, t ∈ [0, 1]}. (17)
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Lemma 4.1 The Green functionG(t, s) defined by (6)
satisfies

∂G(t, s)
∂t

≤ (α− 1)tα−2

[
(1− s)α−β−1

Γ(α)
+ h(s)

]
. (18)

Proof: It follows from (6) that

∂G(t, s)
∂t

=
∂G1(t, s)

∂t
+ (α− 1)h(s)tα−2.

(7) implies that

∂G1(t, s)
∂t

=
1

Γ(α)





(α− 1)tα−2(1− s)α−β−1

0 ≤ t ≤ s ≤ 1,
(α− 1)tα−2(1− s)α−β−1

−(α− 1)(t− s)α−2

0 ≤ s ≤ t ≤ 1.

So, wehave

∂G(t, s)
∂t

≤ (α− 1)tα−2

[
(1− s)α−β−1

Γ(α)
+ h(s)

]
.

Lemma 4.2 The operatorT : K → K is completely
continuous.

Proof: First, using Lemma 2.5, we getT (K) ⊆ K,
and each fixed point ofT is a solution of problem (1),(2).
We claim thatT : K → K is completely continuous. The
continuity of T is obvious sincef is continuous. Now, we
proveT is compact.

Let Ω ⊂ K be an bounded set. Then, there existsR > 0,
such thatΩ ⊂ {u ∈ K|‖u‖ ≤ R}. f ∈ C[[0, 1] × R+ ×
R, R+] implies there existsΨR(t) ∈ C[0, 1] such that

f(t, u, v) ≤ ΨR(t), ∀t ∈ [0, 1], u ∈ [0, R], v ∈ [−R, R].

For anyu ∈ Ω, we obtain

0 ≤ (Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds

≤
∫ 1

0

G(t, s)ΨR(s)ds

≤
∫ 1

0

tα−1

[
(1− s)α−β−1

Γ(α)
+ h(s)

]

ΨR(s)ds

≤
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

ΨR(s)ds

=: M.

From the definition ofT, we get

‖Tu‖0 ≤ M. (19)

On the other hand, for allu ∈ Ω, using Lemma 4.1, we find

(Tu)′(t) =
∫ 1

0

∂G(t, s)
∂t

f(s, u(s), u′(s))ds

≤
∫ 1

0

∂G(t, s)
∂t

ΨR(s)ds

≤
∫ 1

0

(α− 1)tα−2

[
(1− s)α−β−1

Γ(α)
+ h(s)

]

ΨR(s)ds

≤ (α− 1)
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

ΨR(s)ds

=: (α− 1)M.

Thus,we get
‖(Tu)′‖0 ≤ (α− 1)M. (20)

In view of the above two equations (19),(20), we getTΩ is
uniformly bounded.

It is clear thatG(t, s) is uniformly continuous on[0, 1]×
[0, 1]. This means for anyε > 0, there existsδ > 0 such that
for any t1, t2 ∈ [0, 1], |t1 − t2| < δ, s ∈ [0, 1], one has

|G(t2, s)−G(t1, s)| < ε

ΨR(s) + 1
,

consequently,

|(Tu)(t2)− (Tu)(t1)|
≤

∫ 1

0

|G(t2, s)−G(t1, s)|f(s, u(s), u′(s))ds

<

∫ 1

0

ε

ΨR(s) + 1
ΨR(s)ds < ε.

Similarly, since
∂G(t, s)

∂t
is uniformly continuous on[0, 1]×

[0, 1], we can prove

|(Tu)′(t2)− (Tu)′(t1)| < ε.

This means thatTΩ is equicontinuous. By the Arzela-
Ascoli theorem, we know thatT : K → K is completely
continuous.

Theorem 4.3 Assume that there existsa > 0, such that

(C1) f(t, x1, y1) ≤ f(t, x2, y2),
for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ (α− 1)a,
0 ≤ |y1| ≤ |y2| ≤ (α− 1)a;

(C2) max
0≤t≤1

f(t, (α− 1)a, (α− 1)a)

≤ a[
1

Γ(α)
+

Γ(α− γ)
∆

1
Γ(α)

∫ η

0

a(t)dt

] ;

(C3) f(t, 0, 0) 6≡ 0 for 0 ≤ t ≤ 1.

Then the fractional boundary value problem(1),(2) has one
positive solutionω∗ ∈ K such that0 < ω∗ ≤ (α−1)a, 0 <
|(ω∗)′| ≤ (α − 1)a and lim

n→∞
Tnω0 = ω∗, lim

n→∞
(Tnω0)′ =

(ω∗)′where

ω0(t) = atα−1, 0 ≤ t ≤ 1.

Proof: We write

K(α−1)a = {u ∈ K| ‖u‖ < (α− 1)a} ,

and
K(α−1)a = {u ∈ K| ‖u‖ ≤ (α− 1)a} .

We first claimT : K(α−1)a → K(α−1)a. Let u ∈ K(α−1)a,
then

0 ≤ u(t) ≤ max
0≤t≤1

|u(t)| ≤ ‖u‖ ≤ (α− 1)a, (21)

|u′(t)| ≤ max
0≤t≤1

|u′(t)| ≤ ‖u‖ ≤ a < (α− 1)a. (22)

So, from assumptions(C1) and (C2), we get

0 ≤ f(t, u(t), u′(t)) ≤ f(t, (α− 1)a, (α− 1)a)
≤ max

0≤t≤1
f(t, (α− 1)a, (α− 1)a)

≤ a[
1

Γ(α)
+

Γ(α− γ)
∆

1
Γ(α)

∫ η

0

a(t)dt

] , 0 ≤ t ≤ 1.

(23)
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Therefore, foru ∈ K(α−1)a, according toLemma 4.1, we
get the following estimates

∣∣∣∣(Tu)(t)
∣∣∣∣ =

∣∣∣∣
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds

∣∣∣∣

≤
∫ 1

0

G(t, s)
∣∣∣∣f(s, u(s), u′(s))

∣∣∣∣ds

≤
∫ 1

0

G(t, s)
∣∣∣∣f(s, (α− 1)a, (α− 1)a)

∣∣∣∣ds

≤
∫ 1

0

tα−1

(
(1− s)α−β−1

Γ(α)
+ h(s)

)

f(s, (α− 1)a, (α− 1)a)ds

≤
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

f(s, (α− 1)a, (α− 1)a)ds

≤ a ≤ (α− 1)a.

∣∣∣∣(Tu)′(t)
∣∣∣∣ ≤

∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣f(s, u(s), u′(s))ds

≤
∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣f(s, (α− 1)a, (α− 1)a)ds

≤
∫ 1

0

(α− 1)tα−2

[
(1− s)α−β−1

Γ(α)
+ h(s)

]

f(s, (α− 1)a, (α− 1)a)ds

≤ (α− 1)
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

f(s, (α− 1)a, (α− 1)a)ds

=: (α− 1)a.

Thus, we have

‖Tu‖ ≤ (α− 1)a.

This meansT : K(α−1)a → K(α−1)a. Denote

ω0(t) = atα−1, 0 ≤ t ≤ 1,

Let ω1 = Tω0, thenω1 ∈ K(α−1)a, we write

ωn+1 = Tωn = Tn+1ω0, (n = 0, 1, 2, · · ·). (24)

SinceT : K(α−1)a → K(α−1)a, we haveωn ∈ TK(α−1)a ⊆
K(α−1)a, n = 0, 1, 2, · · · . T is completely continuous
implies {ωn}∞n=0 is a sequentially compact set,

ω1(t) = Tω0(t) =
∫ 1

0

G(t, s)f(s, ω0(s), ω′0(s))ds

≤
∫ 1

0

G(t, s)
∣∣∣∣f(s, (α− 1)a, (α− 1)a)

∣∣∣∣ds

≤
∫ 1

0

tα−1

(
(1− s)α−β−1

Γ(α)
+ h(s)

)

f(s, (α− 1)a, (α− 1)a)ds

≤ tα−1

[
1

Γ(α)
+

Γ(α− γ)
∆

1
Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

f(s, (α− 1)a, (α− 1)a)ds

= atα−1 = ω0(t).

∣∣∣∣ω′1(t)
∣∣∣∣ =

∣∣∣∣(Tω0)′(t)
∣∣∣∣

≤
∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣f(s, ω0(s), ω′0(s)))ds

≤
∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣f(s, (α− 1)a, (α− 1)a)ds

≤
∫ 1

0

(α− 1)tα−2

[
(1− s)α−β−1

Γ(α)
+ h(s)

]

f(s, (α− 1)a, (α− 1)a)ds

≤ tα−2(α− 1)
[

1
Γ(α)

+
Γ(α− γ)

∆
1

Γ(α)

∫ η

0

a(t)dt

]

∫ 1

0

f(s, (α− 1)a, (α− 1)a)ds

=: a(α− 1)tα−2 =
∣∣∣∣ω′0(t)

∣∣∣∣.

then wehave

ω1(t) ≤ ω0(t), |ω′1(t)| ≤ |ω′0(t), 0 ≤ t ≤ 1.

Thus,

ω2(t) = Tω1(t) ≤ Tω0(t) = ω1(t), 0 ≤ t ≤ 1,

|ω′2(t)| = |Tω1)′(t)| ≤ |(Tω0)′(t)| = |ω′1(t), 0 ≤ t ≤ 1.

Hence by induction, we have

ωn+1 ≤ ωn, |ω′n+1(t)| ≤ |ω′n(t)|, 0 ≤ t ≤ 1, n = 1, 2, · · · .
Thus, there existsω∗ ∈ K(α−1)a such thatωn → ω∗. Letting
n →∞ in (24), we obtainTω∗ = ω∗ sinceT is continuous.

If f(t, 0, 0) 6≡ 0, 0 ≤ t ≤ 1, then the zero function is not
the solution of (1),(2). Therefore,ω∗ is a positive solution
of (1),(2).
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