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Positive Solutions for Fractional Nonlocal
Boundary Value Problems with Dependence on the
First Order Derivative

Dehong Ji, Yitao Yang

Abstract—This research work is dedicated to an investigation u( Z (€
of the existence results for a class of fractional nonlocal 0+ miD 0+
boundary value problems of the type

wherep € [1,n — 2],q € [0, p].
See also [33] where, the authors studied the following
w(0) = u'(0) = 0, D, u(1) = / a(t) Dy, u(t)dt, fractional differential equation with infinite-point boundary
0

D§ u(t) + f(tu(t),w' (1) =0, 0<t<l, 2<a<3,

value conditions

where Dg, is the standard Riemann-Liouville fractional deriva- D& ut)+ ft,u(t) =0, 0<t<1, n—l<a<n
tive. A full analysis of existence of positive solutions is proved by o+ ’ ’ ’ -
using the monotone iterative technique. The interesting point is uw(0) =u/(0)=--- = w™2) (0) =0,

the nonlinear term f is involved with the first order derivative

explicitly. The casef = f(t¢,u) existence results are proved via 3

Schauder and a classical Krasnosel'skii fixed point theorems. Dy, u(1) = ZniD()Jru(fi)'

Index Terms—Positive solution; Boundary value problem; =1
Fractional differential equation; Fixed point theorem. By using the fixed point index theory in cones, Wang et
al. [34] established the existence and multiplicity results of
positive solutions for the following fractional boundary value

problems
N this paper, we consider the existence results of posi-

tive solutions to the fractional nonlocal boundary value Do u(t) + f(t,u(t)) =0, 0<t<1, n—1<a<n,

problems 1
0) =4 (0)=---=u""2(0) =0, u(l :/ t)do(t).
DEult) + fltu), () =0, 0<t<1, 2<a<3, OO w0 =0, ud) = Jhu(dv(?)
n @) Whenl < 8 < a—1, Zhang and Zhong [35] investigated
u(0) = u'(0) =0, D€+u(1) :/ a(t)Dy u(t)dt, (2) the existence of triple positive solutions for the fractional
0 boundary value problem

I. INTRODUCTION

where Df, is the standard Riemann-Liouville fractional

derivative,0 < 8 < 1,0 < v < a— 1,5 € (0,1),f € DPovul®) +ftu®) =0, 0<t<l n-1l<a<n,

C([0,1]x R* x R, RT),a(t) € L'[0,1]NC(0,1) is nonneg- u(0) = u/(0) = - -- = w2 (0) = 0,
ative.

The study of differentiation and integration to a frac- D0+u(1) /77 a(t) Dy, u(t)dt,
tional order has caught importance and popularity among

researchers compared to classical differentiation and integbg-using the Leggett-Williams and Krasnosel'skii fixed point
tion. Fractional operators used to illustrate better the realifiyeorems.

of real-world phenomena with the hereditary property [1-3]. Recently, [32] presented the existence and multiplicity of
Existence of solutions is the basis of the theory of fractionpbsitive solutions for a class of singular fractional nonlocal
differential equation. Most of the previous literature dealsoundary value problems

with the existence of solutions for fractional differential

equations boundary value problems by the use of techmque@0+u +ftut) =0, 0<t<1l, n-1<asn,

of nonlinear analysis, see [6-36] and the references therein. w(0) = ' (0) = - - = u™D(0) = 0,
For example, in [17], Henderson and Luca considered the .

existence of positive solutions for the following fractional D0+u( ) = / a(t) DY, u(t)dv(t).

differential equation boundary value problems

All the above work was done under the assumption fhat
is allowed to depend just aim while the first order derivative
uw(0) =u'(0)=---= w2 (0) =0, v’ is not involved explicitly in the nonlinear terrfi. As we
know, when the nonlinear ternf is involved in the first-
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has beerdone for boundary value problem (1), (2) by us&here
of the monotone iterative technique. The aim of this work is G(t,s) = Gi(t,s) + h(s)t* 1, (6)
to fill the gap in the literature.

a—1 a—pF—-1

The paper is organized as follows. In section 2, we give 1 £ (1~ s)oP 0<t<s<l
some necessary concepts and results. Section 3 is devaiggt, s) = —— a-1(] _ gya—B-1 _ (4 _ gja-1 ’
to study two existence results wheh= f(t,u). The first (@) | 7 (1=s) (t—s)
one uses the Schauder fixed point theorem, while in the Osssts 1(7)
second one, existence result is obtained via the classical ta=1=1(] — g)a—B-1
Krasnosel'skii fixed point theorem. In section 4, the existence 1 0<t<s<l1
result when the nonlinearit§ depends on the solution and its72(t; s) = T(@) ) o7 11— s)a Pl — (t - ;)af;ff
first derivative is established by using the monotone iterative 0<s<t<

1.
technique. (8)
In this paper,E := C[0,1] denotes the Banach space of _Tla—n) [
all continuous functions on0, 1] with the norm |[uljy = hs) = =R a(t)Ga(t, s)dt. ©)

0
1 L ’ .
max{[u(z),0 < o < 1} and B := C'[0,1] will refer to  yye yaye the following assumptions throughout this paper:
the Banach space of continuously differentiable functions on (A1) a(t) € L10,1] N C(0, 1);

[0, 1] equipped with the nornfiu|| = max(||u||o, ||v'||o)- (A4) A= T(a — ) — T(a — B) [T a(t)yto=7"1dt #
0 andh(s) > 0 for s € [0,1].
Il. THE PRELIMINARY LEMMAS Lemma 2.4 The functionG (¢, s) defined by (7) satisfies
To reformulate the problem (1), (2) into a fixed pointhe following properties.
theorem, we present some necessary definitions and lemmas G, (¢, s) > 0 for all ¢, s € (0, 1),
from conformable fractional calculus theory in this sectiom. T'(a)Gi(t,s) < t*~ (1 —s)* B~ for all t,s € [0, 1],
Definition 2.1 [32] The fractional integral of orde® >0 3.  Bs(1—s)* #1421 <T(a)Gy(t,s) < s(1—s)2F1

for functionw : (0,+oc0) — R is given by for all ¢, s € [0,1].
t Lemma 2.5 The Green functionG (¢, s) defined by (6)
Ig u(t) = @/ (t — s)* tu(s)ds satisfies the following properties.
0

1.  G(t,s)>0forall t,s € (0,1),
provided that the right hand side is point-wise defined on_ G(t,s) < t* '@ (s) for all t,s € [0, 1],

(0, +00). 3. Bt 1®,(s) < G(t,s) < ®y(s) forall t, s € [0, 1],where
Definition 2.2 [32] The Riemann-Liouville fractional a—f1
_deri_vative of ordera > 0 of a functionu : (0,4+00) — R By(s) = (1-5) + h(s),
is given by ING)
A 1 (1= 50!
oY . v _ \n—a— 0} e R .
D) = = () 0= o (o 28) = =gy TR
wheren = [a]+1, [a] denotes the integer part of real number ~ Proof: It can be directly deduced from Lemma 2.4 and
a, provided that the right hand side is point-wise defined dhe definition ofG(t, s), so we omit the proof. u
(0, +00). Remark 2.1 The function u € E! is a solution of the
Lemma 2.1[32] Let a > 0, then the following equality Poundary value problem (1), (2) if and only if it is a solution
holds foru € L(0,1), D§, u € L(0,1) of the operator equation = Tu, where
« @ _ a—1 a—2 a—n 1
I57 Dy ult) = u(t) + ert™" 4 et 4o+ ent Tu(t) = / G(t,s)f(s,uls),d/(s))ds.  (10)
wherec; € R, i=1,2,---.,n,n—1<a<n. 0
ThLemma 2.2[32] Assume thay € L(0,1) anda > 8 > 0. IIl. THE CASEf = f(t,u)
en
. . First, notice that the functiom € E is a solution of the
D&/ (t—s)*"'g(s)ds = M/ (t—s)*~F~1g(s)ds. boundary value problem (1), (2) with = f(t, u(t)) if and
0 Pla=p) Jo only if it is a solution of the operator equatian = Lu,
Lemma 2.3[32] Assumethata € L'[0,1] N C(0,1), where 1
n Lu(t) :/ G(t,s)f(s,u(s))ds. (11)
A=T(a—~) - Ta—f) / a(t)* = \dt £ 0. 0
0 Using the Arzela-Ascoli theorem, it is easy to prove the
Then for anyy € L[0,1] N C(0,1), the unique solution of following lemma.
the boundary value problem Lemma 3.1 The operatorL : E — FE is completely

D u(t)+yt) =0, 0<it<1, 2<a<3 (3 continuous.
o+u(t) +y(t) “= ®) Theorem 3.2[4] Let X be a Banach space add C X

n .

0) = u/(0) = 0, D w1 :/ DY u(t)dt, (4 a bounded, closed convex subsetflf T: C — Cis a

u(0) =(0) o+ (1) alt) Do ult)dt, (4) completely continuous operator, théhhas a fixed point in

i C.
is

= 1Gt d 5 Theorem 3.3[5] Let X be a Banach spacdsy C X a

u(t) = o (t; s)y(s)ds, ) cone and?;, 2, two bounded open subsets satisfyinige
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0 C O C Q. LetT: KN(Q2\Q1) — K be acompletely Herem = min{qz(t), t € [p,1]} and M = max{q(t), t €

continuous operator, such that: [0,1]}.
(a) either||Tv|| < |jv|| for v € K N 9Q; and [|[Tv] > ||v]| Proof: (a) Let the open seB; = {u € E : |jullo < 7o}
for v e KN oy, andu € P N 9B;. Then for anyt € [0, 1], and sincep; is
(b) or || Tv|| > ||v|| for v € K N9y and||Tv| < |lv|| for nondecreasing, we have
v e KNoQs. . 1
ThenT has at least a fixed point i N (Qs \ 21). ’(Lu)(t)‘ - G(t, s)f(s,u(s))ds
3.1 An existence result by the Schauder fixed point )
theorem < / G(t,8)q1(s)p1(u)ds
Theorem 3.4 Suppose that o, 1s)er
) f(t,-)is nondecreasmg o™, for all t € [0, 1]; < | Gt 9)q(s)o1(||ullo)ds
(2) Assume that there exis#? > 0 such that 0,
' < G(t,s)q1(s)p1(rg)ds
/ (1, Bt <~ S‘ — . (12) ./o1 Gsiasieirol
) _
I'a) * A F(a)/o a(t)dt S/ G(t,s)Mp1(ro)ds
. 1(11 (1_S)aﬁl
Then fractionaboundary value problem (1), (2) has at least / t T + h(s) | Mpi(ro)ds
one nonnegative solutiom such that||u|lo < R. —y) 1 7
Proof: Foru € B = {u € E: |ulo < R}, following { o) A o) / a(t)dt} Mg (ro)
from Lemma 2.5, we have < U||o 0

So, ||LU||() < HUH(), forall w e PNoOB;.
(b) Let the open seB; = {u € E : ||luljo < R} and
ds u € PNOB,. So, Lemma 2.5 yields

u(t) > BRop™ ™,  Vt e p,1].

< /0 G(t, ) f(s, u(s))ds
< / IGM £(s,u(s))
§/0 G(t,s)|f(s,R)|ds

(@)

Then for anyt € [0, 1], and sincep, is nondecreasing, we

< /01 t"_l(l_;():)_ﬂ_l +h(s) ) f(s,R)ds get
1 Pla—7) 1 n . 1
Sl{r(a) A F(a)/o “(t)dt} ([ Lullo >tm[g>§ ft 1/ Do(s) f(s,u(s))ds
/0 f(s,R)ds —ﬂ/ (s u(s))ds
<R.

> / B s
So, || Lullo < R. Therefore, the operatol. maps B into 2(3)aa(s)2(v)

itself. Hence, by applying Theorem 3.2 and Lemma 3.1, > 6/ D5 (s)mepa(BRop™ " )ds
P

has a fixed point: in B. [ ]
3.2 An existence result by the classical Krasnosel'skii N !
fixed point theorem = Amia(BRop” 1)/ Pa(s)ds
Construct the following cone ! s(1 — s)a=h-1
> Bmpa(BRop™") / —r ds
P={ucE: ut)>But>", te0,1]}.  (13) ( o
S
Theorem 3.5 Assume that there exist € (0,1),q1,q2 € > Bmep2(BRop™™ /p T(a) () Us
C([0,1], RT), nondecreasing functions,, po € C(R, RT) (1—p)a=5
andrg, Ry > 0 with (ro # Ry) such that = Bmpa(BRop® 1 )p ( B)F(a)
(A) 0 < f(t,u) < q1(t)p1(u) forall t € [0,1], 0 < u <7 > Ry = ||ullo.
with

Then, || Lu|lg > ||ullo, for all w € P N dBy. Moreover, from

,
Mei(ro) < — F(a—'y;) T - (14) Lemma 2.5, we gef(P) c P. Then fractional boundary
o) +—x o) /O a(t)dt value problem (1), (2) has a positive solution satisfying
(B) f(t,u) > qa2(t)pa(u) for all t € [p, 1], Bp* 'Ry < u < min(ro, Ro) < [|ullo < max(ro, Ro).
RO with | |
Ly, (L=p)> P
Rop>~! (7 > Ry. 15
Bpm2(BRop™ ) =3 ey = 0 (15) IV. THE CASEf = f(t, u,v)
Then fractional boundary value problem (1), (2) has a In this sequel, we denote bi the positive cone of5!
positive solution satisfying given by
min(rg, Ro) < ||ullo < max(rg, Rp). (16) K ={u¢c FE'lu(t) >0, t€[0,1]}. 17)
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Lemma 4.1 The Green functionG(¢, s) defined by (6) Thus,we get

satisfies I1(Tu) |lo < (e —1)M. (20)
_ g)a—B-1
9G(1,s) < (a—1)t2 % +h(s)|. (18) In view of the above two equations (19),(20), we & is
ot I'(a) uniformly bounded.
Proof: It follows from (6) that It is clear thatG(¢, s) is uniformly continuous on0, 1] x
OG(t,s)  9G(t,s) o2 [0, 1]. This means for any > 0, there exist$ > 0 such that
ot ot + (a = Dh(s)t* for anyti,to € [0,1], |t1 —t2| <4, s €[0,1], one has
(7) implies that Clto. ) — Gt 5)| < <
(o = 1te2(1 = s)o 7! Gtz 9) = Gl o)l < gyt
0<t<s<1, consequently,
0G1(t, s) _ 1 (@ — 1)t2-2(1 — —) 51 a y
o T | Y e St (Tw)(t2) = (Tu)(1)
0<s<t<L < | 1G(t2,8) = G(ty, s)| f (s, u(s), v/ (s))ds
0
So, wehave 1 e
26 (t.) R (O <, T s <o
<(a—1)t ———— + h(s)
ot () - _9G(ts) . .
m Similarly, since s uniformly continuous oro, 1] x

Lemma 4.2 The operatorT : K — K is completely [0,1], we can prove
continuous. , ,
Proof: First, using Lemma 2.5, we géf(K) C K, |(Tu) (t2) = (Tw)' (ta)] <e.
and each fixed point of" is a solution of problem (1),(2). This means thatI'2 is equicontinuous. By the Arzela-
We claim thatT : K — K is completely continuous. The Ascoli theorem, we know thal’ : K — K is completely

continuity of T' is obvious sincef is continuous. Now, we continuous. ™
proveT is compact. Theorem 4.3 Assume that there exists> 0, such that
Let © Cc K be an bounded set. Then, there exiBts- 0, o ’ <t
such thatQ  {u € K|[ul| < R}. f € C[[0,1] x R+ x (f;? CJ;(W o 32 : f(é o y?’x B
R, R*] implies there exists&r z(t) € C|0, 1] such that L=22 =874
}imp wlt) € C0.1 0 <[y < lya| < (= 1)a
f(t,u,v) < WR(t), VE€[0,1],u € [0, R],v € [-R, R]. (Cy) Joax f(t, (a—1)a, (a—1)a)
For anyu € 2, we obtain B a .
: SR CED Ny L |
0 < (Tu)(t) = / G(t,5)f (s,u(s), o/ (5))ds M) "~ & T ), 4O
1 0 (C3) f(t, 0, 0)Z0 for 0 <t <1.

Then the fractional boundary value probl€f),(2) has one

o[ —s)eh8-t positive solutionw* € K such that) < w* < (a—1)a, 0 <
S AL e v (w*)] < (@ — Da and lim T"wo = w*, lim (T"wo)’ =
U Rr(s)ds (w*)'where
1 MNa—-7) 1 /" ol
|: ( ) + A F(Oé) 0 a(t)dt wo(t) = at s 0 S t S 1.
/ Proof: We write
. Ka-1)a = {u € K| |Jul| < (a —1)a},
Fromthe definition ofT’, we get and
_ < _
| Tullo < M. (19) K(a-1)a = {u € K| [Ju] < (a—=1)a}.
On the other hand, for alk € Q, using Lemma 4.1, we find :/r\]lgnflrst claim? : K-1)a = Ka-1)a- Letu € K(a_1)a,
OG(t, s)
Tu) (t :/ ——2 f(s,u(s),u'(s))ds _
(Tw)'(t) ; 8(;(% | (s, u(s), u'(s)) 0 <u(t) < max fu(t)] < [Juf < (a =D, (1)
t,s
< /01 9 Ur(s)ds ) lu/ ()] < Dax, [/ ()] < |jul]| <a< (a—1)a. (22)
_ Ja—p—-1
< / (a —1)t*72 [(llf()) + h(s)} So, from assumption&C;) and (C>), we get
0 «
Ur(s)ds 0 < ft,u(t),d () < f(t,(a—1)a,(a—1)a)
_ n < _ _
<(a—1) 1 N Ma—-7v) 1 / a(t)dt < fmax f(t, (a=1a, (e —1)a)
I'o) A T(a) Jy a
. < ,0<t<1.
/ U p(s)ds [ LA o) /na(t)dt}
0 _ [(a) A I(a) Jo
= (a—1)M. (23)
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Therefore, foru € K(,_1)q, according toLemma 4.1, we
get the following estimates

](Tuxt)\

(s,u(s),u'(s))ds
(s,u(s), ' (s))

ds

— Da, (= 1)a)ds
_ S)a—ﬂ—l
0 - I'(a)

(a —1)a, (e — 1)a)ds
MNa—7) 1
A

#1(5)]

—

+

Thus, we have
ITu| < (a—1)a.

This meansl': K(,—1)a — K(a—1)a- Denote

wo(t) = at®™t, 0<t<1,

Let w; = Twy, thenw; € K(afl)m we write

W1 =Tw, =T"wy, (n=0,1,2,--). (24)

SinceT : K(afl)a — K(afl)aa we havew, € TK(afl)a -
K-1)as n = 0,1,2,---. T is completely continuous
implies {wy,} —, is a sequenually compact set,

1

G(t,5)f(s,wo(s),w((s))ds

0
f(s Da, (a—1)a)
+ h(s))

w1 (t) = Two(t) =

1

< / G(t,s) , (o — ds

0
(1 _ S)a—ﬁ—l

= /’“‘( ()

f(sa (a - 1)0'7 (a N 1)a)d3
1 MNa—7) 1

+ A T /O77 a(t)dt}

ey
/ f(s, (@ =1)a, (e —1)a)ds

0
= at® 1 = wo(t).

< tafl

Volume 50, Issue 3:

(s,wo(s),w((s)))ds

(s, (@ —1a, (e —1)a)ds
(1- s)“*’B*1

I[(e)
Da)ds

(a — 1)t°‘*2 {
0
f(s, (e —Da, (o —

ey s/, o]

f(s, (= 1Da, (a —1)a)ds

(5]

then wehave

w1 (t) < wo(t),
Thus,

wa (1)
wa(t)] = |Tw1) ()] < [(Two)'(£)] = |wi(t),
Hence by induction, we have

= Tw1 (t) S Two(t) = W1 (t),

Wopt Swpy w0 <lwp @], 0<E<1, n=1,2,---.

Thus, there exists™* € K(a 1) Such thats,, — w*. Letting
n — oo in (24), we obtainl'w* = w* sinceT is continuous.
If f(¢t, 0, 0) £ 0, 0 <t <1,then the zero function is not
the solution of (1),(2). Therefore,* is a positive solution
of (1),(2). [ ]
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