
A Class of Bivariate Rational Interpolation
Surfaces with C2 Continuity

Xiangbin Qin and Yuanpeng Zhu∗

Abstract—Based on two new kinds of Hermite-type interpo-
lation basis functions, a class of piecewise bivariate rational
interpolation surface scheme with bi-cubic denominator and
four parameters is constructed in a rectangular domain. The
given interpolation surface is proved to be bounded and its error
formula is provided. The conditions for the resulting interpo-
lation surface to be C2 continuous in the whole rectangular
domain are developed. Several numerical examples are given
and the numerical results show that the given scheme is effective
and practical.

Index Terms—Hermite-type interpolation basis, Interpolation
surface, Bounded property, Error estimate, C2 continuity

I. INTRODUCTION

MOdeling smooth interpolation surfaces to given data
in rectangular grid is an essential issue in industrial

design and scientific data visualization. Generally speaking,
for most applications, C1 smoothness is sufficient, and there
are many schemes to tackle this problem, see for example
the classical Coos surface schemes [1], the bi-cubic blending
rational interpolation schemes [2], [3], [4], the bivariate
rational interpolation schemes [5], [6], [7], [8], [9], [10], and
the bivariate rational Hermite interpolation schemes [11]. In
some practical applications, curvature continuity is needed
sometimes and this leads to the need for C2 smoothness.

By using the classical Coons surface scheme, it is a
more difficult task to construct C2 interpolation surfaces
for 3D data defined over rectangular grid. For example, to
generate a C2 bi-quintic Coons surface, it needs to provide
the second and higher mixed partial derivatives at the data
points in advance. In practical applications, however, the
second and higher mixed partial derivatives are hard to
estimate and control, and there may also exist compatibility
problem in generating the classical C2 bi-quintic Coons
surface, see [12]. In [13], by taking the Boolean sum of two
rational cubic/quadratic Hermite-type blending functions and
solving two linear systems of equations with respect to the
first partial derivative values on a rectangular grid, a kind
of C2 rational bi-cubic spline interpolants was proposed.
In [14], a class of rational bi-quintic interpolation splines
with two parameters was constructed. For generating inter-
polation surfaces, the given interpolant only use the values
of the interpolated function and can be C2 continuous for
equally spaced knots. And the shape of the generated C2

rational interpolation surfaces can be modified conveniently
by using the parameters for the unchanged interpolating
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data. Later, in [15], Fan and his colleagues showed that
in the applications of image interpolation, the C2 rational
interpolants have lower time complexity and can preserve
image details well. In [16], a new kind of C2 piecewise
bivariate rational interpolation scheme with two parameters
was constructed. In [17], a class of C2 bi-quintic partially
blended rational quartic/cubic interpolation surfaces were
constructed. Recently, in [18], Yuan and Ma construct a kind
of C2 truncated interpolation basis functions over tensor
product meshes and they showed that the new bases have
some merits in Isogeometric analysis.

The purpose of this paper is to present a class of piecewise
bivariate rational interpolation surface scheme with bi-cubic
denominator and four parameters over rectangular domain.
The given interpolation surface can be C2 continuous in
the whole rectangular domain without using the second or
higher mixed partial derivatives at the knots. The values of
the generated interpolation surface are bounded and stable
no matter what the four parameters might be. It improves
on the existing schemes in some ways: (1) The classical
C2 bi-quintic Coons surface has to estimate the second or
higher mixed partial derivatives at the knots in advance, while
the new given C2 rational interpolation spline surface is
based on the interpolated function only; (2) Compared with
the rational interpolation spline surface with two parameters
developed in [14] and [16], the new given C2 rational
interpolation spline surface provides four parameters, which
is more flexible in adjusting the shape of surface; (3) For
special values of the four parameters, the new given C2

rational interpolation spline surface includes the C2 ratio-
nal interpolation spline surface given in [14] as a special
case. (4) Compared with the C2 bi-quintic partially blended
rational quartic/cubic interpolation spline surface with 20
terms in each sub-rectangular domain [xi, xi+1]× [yj , yj+1]
developed in [17], the new givenC2 rational interpolation
spline surface only has 12 terms in each sub-rectangular
domain [xi, xi+1]× [yj , yj+1] and thus it has a more concise
expression and lower computation cost. The rest of this paper
is organized as follows. In section II, the construction of the
new C2 piecewise bivariate rational interpolation surface is
described. Section III discusses the properties of the inter-
polation surface in detail, including C2 continuity property,
bounded property, and error formula. In section IV, several
numerical examples are given to prove the effectiveness and
practicability of the new developed schemes. Conclusion is
given in the section V.

II. NEW PIECEWISE BIVARIATE RATIONAL
INTERPOLATION SURFACES

In this section, we firstly construct a class of C2 x-
direction interpolation curve with two parameters based on a
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new kind of Hermite-type interpolation basis functions. And
then by using another new kind of Hermite-type interpola-
tion basis functions, we construct a class of C2 piecewise
bivariate rational interpolation surface scheme with bi-cubic
denominator and four parameters in a rectangular domain.

Let {(xi, yi, Fij), i = 1, 2, . . . , n; j = 1, 2, . . . ,m} be a
given set of data points defined over the rectangular domain
R = [x1, xn] × [y1, ym], where πx : x1 < x2 < . . . < xn

is the partition of [x1, xn] and πy : y1 < y2 < . . . < ym
is the partition of [y1, ym]. Dx

i,j and Dy
i,j are known as the

first partial derivatives at the grid point (xi, yj). Denote hx
i =

xi+1−xi, h
y
j = yj+1−yj , Ri,j = [xi, xi+1]× [yj , yj+1], and

for any (x, y) ∈ Ri,j , let t = (x− xi)/h
x
i , s =(y − yj)

/
hy
j ,

and

∆x
i,j =

Fi+1,j − Fi,j

hx
i

, ∆y
i,j =

Fi,j+1 − Fi,j

hy
j

.

For each y = yj , j = 1, 2, . . . ,m, and x ∈ [xi, xi+1], a
kind of x-direction interpolation curve with two local free
parameters αx

i,j and βx
i,j is constructed as follows

P ∗
i,j(x) = H0(t;α

x
i,j , β

x
i,j)Fi,j +H1(t;α

x
i,j , β

x
i,j)Fi+1,j

+H2(t;α
x
i,j , β

x
i,j)h

x
i D

x
i,j

+H3(t;α
x
i,j , β

x
i,j)h

x
i D

x
i+1,j , (1)

where the four new Hermite-type interpolation basis func-
tions Hk(t;α, β), k = 0, 1, 2, 3 are defined as

H0(t;α
x
i,j , β

x
i,j)

=
(1−t)5+(αx

i,j+2)(1−t)4t+(2αx
i,j+βx

i,j)(1−t)3t2+(1−t)2t3

(1−t)3+αx
i,j(1−t)2t+βx

i,j(1−t)t2+t3
,

H1(t;α
x
i,j , β

x
i,j)

=
t5+(βx

i,j+2)(1−t)t4+(αx
i,j+2βx

i,j)(1−t)2t3+(1−t)3t2

(1−t)3+αx
i,j(1−t)2t+βx

i,j(1−t)t2+t3
,

H2(t;α
x
i,j , β

x
i,j)

=
(1−t)4t+αx

i,j(1−t)3t2

(1−t)3+αx
i,j(1−t)2t+βx

i,j(1−t)t2+t3
,

H3(t;α
x
i,j , β

x
i,j)

=
−[(1−t)t4+βx

i,j(1−t)2t3]
(1−t)3+αx

i,j(1−t)2t+βx
i,j(1−t)t2+t3

,

with αx
i,j , β

x
i,j ≥ 0.

For the four basis functions Hk(t;α
x
i,j , β

x
i,j), k = 0, 1, 2, 3,

by directly computing, we get

H0(0;α
x
i,j , β

x
i,j) = 1, H ′

0(0;α
x
i,j , β

x
i,j) = 0,

H ′′
0 (0;α

x
i,j , β

x
i,j) = −2,

H0(1;α
x
i,j , β

x
i,j) = 0, H ′

0(1;α
x
i,j , β

x
i,j) = 0,

H ′′
0 (1;α

x
i,j , β

x
i,j) = 2,

H1(0;α
x
i,j , β

x
i,j) = 0, H ′

1(0;α
x
i,j , β

x
i,j) = 0,

H ′′
1 (0;α

x
i,j , β

x
i,j) = 2,

H1(1;α
x
i,j , β

x
i,j) = 1,H ′

1(1;α
x
i,j , β

x
i,j) = 0,

H ′′
1 (1;α

x
i,j , β

x
i,j) = −2,

H2(0;α
x
i,j , β

x
i,j) = 0, H ′

2(0;α
x
i,j , β

x
i,j) = 1,

H ′′
2 (0;α

x
i,j , β

x
i,j) = −2,

H2(1;α
x
i,j , β

x
i,j) = 0, H ′

2(1;α
x
i,j , β

x
i,j) = 0,

H ′′
2 (1;α

x
i,j , β

x
i,j) = 0,

H3(0;α
x
i,j , β

x
i,j) = 0, H ′

3(0;α
x
i,j , β

x
i,j) = 0,

H ′′
3 (0;α

x
i,j , β

x
i,j) = 0,

H3(1;α
x
i,j , β

x
i,j) = 0, H ′

3(1;α
x
i,j , β

x
i,j) = 1,

H ′′
3 (1;α

x
i,j , β

x
i,j) = 2,

it follows that

P ∗
i,j(x

+
i ) = Fi,j , P ∗

i,j
′(x+

i ) = Dx
i,j ,

P ∗
i,j

′′(x+
i ) =

2(∆x
i,j−Dx

i,j)
hx
i

,

P ∗
i,j(x

−
i+1) = Fi+1,j , P ∗

i,j
′(x−

i+1) = Dx
i+1,j ,

P ∗
i,j

′′(x−
i+1) =

2(Dx
i+1,j−∆x

i,j)
hx
i

.

Thus, we can see that if the first partial derivative values
Dx

i,j , i = 2, 3, . . . , n− 1 are chosen as follows

Dx
i,j =

hx
i−1∆

x
i,j + hx

i ∆
x
i−1,j

hx
i−1 + hx

i

, (2)

then for i = 2, 3, . . . , n− 1, we have

P ∗
i,j(x

+
i ) = P ∗

i,j(x
−
i ) = Fi,j ,

P ∗
i,j

′(x+
i ) = P ∗

i,j
′(x−

i ) = Dx
i,j ,

P ∗
i,j

′′(x+
i ) = P ∗

i,j
′′(x−

i ) =
2
(
∆x

i,j −∆x
i−1,j

)
hx
i−1 + hx

i

,

which implies that the resulting interpolation function P ∗
i,j(x)

defined by (1) is C2 continuous in [x1, xn]. At the end
knots x1 and xn, the derivative values are computed by the
following formulasDx

1,j = ∆x
1,j −

hx
1

hx
1+hx

2

(
∆x

2,j −∆x
1,j

)
,

Dx
n,j = ∆x

n−1,j +
hx
n−1

hx
n−2+hx

n−1

(
∆x

n−1,j −∆x
n−2,j

)
.

(3)

Remark 1: It is interesting to note that for αx
i,j = βx

i,j , the
four Hermite-type interpolation basis functions Hk(t;α, β),
k = 0, 1, 2, 3 will return to the four interpolation basis
functions ωi,j(t), i, j = 0, 1 given in [14]. And when
αx
i,j = βx

i,j → +∞, the four Hermite-type interpolation basis
functions Hk(t;α, β), k = 0, 1, 2, 3 will give approximation
to the four standard cubic Hermite interpolation basis func-
tions.

For any (x, y) ∈ Ri,j , i = 1, 2, . . . , n − 1, j =
1, 2, . . . ,m − 1, we now use the x-direction interpolant
P ∗
i,j(x) given in (1) to construct a new kind of piecewise

bivariate rational interpolation surfaces Pi,j(x) as follows

Pi,j(x, y) = V0(s;α
y
i,j , β

y
i,j)P

∗
i,j(x)

+ V1(s;α
y
i,j , β

y
i,j)P

∗
i,j+1(x)

+ V2(s;α
y
i,j , β

y
i,j)h

y
jϕi,j(x)

+ V3(s;α
y
i,j , β

y
i,j)h

y
jϕi,j+1(x), (4)

where the four new Hermite-type interpolation basis func-
tions Vk(s;α

y
i,j , β

y
i,j), k = 0, 1, 2, 3 are defined as

V0(s;α
y
i,j , β

y
i,j)

=
(1−s)5+(αy

i,j+2)(1−s)4t+(2αy
i,j+βy

i,j+1)(1−s)3s2

(1−s)3+αy
i,j(1−s)2s+βy

i,j(1−s)s2+s3
,

V1(s;α
y
i,j , β

y
i,j)

=
s5+(βy

i,j+2)(1−s)s4+(αy
i,j+2βy

i,j+1)(1−s)2s3

(1−s)3+αy
i,j(1−s)2s+βy

i,j(1−s)s2+s3
,

V2(s;α
y
i,j , β

y
i,j)

=
(1−s)4s+(αy

i,j+1)(1−s)3s2

(1−s)3+αy
i,j(1−s)2s+βy

i,j(1−s)s2+s3
,

V3(s;α
y
i,j , β

y
i,j)

=
−[(1−s)s4+(βy

i,j+1)(1−s)2s3]
(1−s)3+αy

i,j(1−s)2s+βy
i,j(1−s)s2+s3

,
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with αy
i,j , β

y
i,j ≥ 0, and the functions ϕi,l(x), l = j, j+1 are

given by

ϕi,l(x) = (1− t)
3 (

1 + 4t+ 9t2
)
Dy

i,l

+ t3
(
6− 8t+ 3t2

)
Dy

i+1,l.

From (1) and (4), after some manipulations, we can also
rewrite the interpolation surfaces Pi,j(x) as the following
form

Pi,j (x, y) =

i+1∑
k=i

j+1∑
l=j

[Ak,l (t, s)Fk,l

+Bk,l (t, s)h
x
i D

x
k,l + Ck,l (t, s)h

y
jD

y
k,l

]
, (5)

where

Ai,j (t, s) = H0

(
t;αx

i,j , β
x
i,j

)
V0

(
s;αy

i,j , β
y
i,j

)
,

Ai,j+1 (t, s) = H0

(
t;αx

i,j+1, β
x
i,j+1

)
V1

(
s;αy

i,j , β
y
i,j

)
,

Ai+1,j (t, s) = H1

(
t;αx

i,j , β
x
i,j

)
V0

(
s;αy

i,j , β
y
i,j

)
,

Ai+1,j+1 (t, s) = H1

(
t;αx

i,j+1, β
x
i,j+1

)
V1

(
s;αy

i,j , β
y
i,j

)
,

Bi,j (t, s) = H2

(
t;αx

i,j , β
x
i,j

)
V0

(
s;αy

i,j , β
y
i,j

)
,

Bi,j+1 (t, s) = H2

(
t;αx

i,j+1, β
x
i,j+1

)
V1

(
s;αy

i,j , β
y
i,j

)
,

Bi+1,j (t, s) = H3

(
t;αx

i,j , β
x
i,j

)
V0

(
s;αy

i,j , β
y
i,j

)
,

Bi+1,j+1 (t, s) = H3

(
t;αx

i,j+1, β
x
i,j+1

)
V1

(
s;αy

i,j , β
y
i,j

)
,

Ci,j (t, s) = (1− t)
3 (

1 + 4t+ 9t2
)
V2

(
s;αy

i,j , β
y
i,j

)
,

Ci,j+1 (t, s) = (1− t)
3 (

1 + 4t+ 9t2
)
V3

(
s;αy

i,j , β
y
i,j

)
,

Ci+1,j (t, s) = t3
(
6− 8t+ 3t2

)
V2

(
s;αy

i,j , β
y
i,j

)
,

Ci+1,j+1 (t, s) = t3
(
6− 8t+ 3t2

)
V3

(
s;αy

i,j , β
y
i,j

)
.

We call the terms Ak,l, Bk,l and Ck,l, k = i, i + 1,
l = j, j+1, as the basis functions of the interpolation surface
defined by (5). Before further discussion, we want to give
the following end-point properties of the four basis functions
Vk(s;α

y
i,j , β

y
i,j), k = 0, 1, 2, 3, which is quite useful for

discussing the C2 continuous property of the interpolation
surface Pi,j(x, y)

V0(0;α
x
i,j , β

x
i,j) = 1, V ′

0(0;α
x
i,j , β

x
i,j) = 0,

V ′′
0 (0;αx

i,j , β
x
i,j) = 0,

V0(1;α
x
i,j , β

x
i,j) = 0, V ′

0(1;α
x
i,j , β

x
i,j) = 0,

V ′′
0 (1;αx

i,j , β
x
i,j) = 0,

V1(0;α
x
i,j , β

x
i,j) = 0, V ′

1(0;α
x
i,j , β

x
i,j) = 0,

V ′′
1 (0;αx

i,j , β
x
i,j) = 0,

V1(1;α
x
i,j , β

x
i,j) = 1, V ′

1(1;α
x
i,j , β

x
i,j) = 0,

V ′′
1 (1;αx

i,j , β
x
i,j) = 0,

V2(0;α
x
i,j , β

x
i,j) = 0, V ′

2(0;α
x
i,j , β

x
i,j) = 1,

V ′′
2 (0;αx

i,j , β
x
i,j) = 0,

V2(1;α
x
i,j , β

x
i,j) = 0, V ′

2(1;α
x
i,j , β

x
i,j) = 0,

V ′′
2 (1;αx

i,j , β
x
i,j) = 0,

V3(0;α
x
i,j , β

x
i,j) = 0, V ′

3(0;α
x
i,j , β

x
i,j) = 0,

V ′′
3 (0;αx

i,j , β
x
i,j) = 0,

V3(1;α
x
i,j , β

x
i,j) = 0, V ′

3(1;α
x
i,j , β

x
i,j) = 1,

V ′′
3 (1;αx

i,j , β
x
i,j) = 0,

Remark 2: It is interesting to note that for αx
i,j = βx

i,j

and αy
i,j = βy

i,j , the given interpolation surface Pi,j(x, y)
will return to the interpolation surface given in [14].

III. PROPERTIES OF THE INTERPOLATION SURFACES

In this section, we shall discuss the properties of the inter-
polation surfaces in detail, including the bounded property,
the error formula and the C2 continuous property.

A. Bounded property

We denote

M = max {|Fk,l| , k = i, i+ 1, l = j, j + 1} ,
Q1 = max

{
hx
i

∣∣Dx
k,l

∣∣ , k = i, i+ 1, l = j, j + 1
}
,

Q2 = max
{
hy
j

∣∣∣Dy
k,l

∣∣∣ , k = i, i+ 1, l = j, j + 1
}
.

By directly computing, we can obtain the following prop-
erties of the basis functions

Ai,j (t, s) +Ai,j+1 (t, s) +Ai+1,j (t, s) +Ai+1,j+1 (t, s)
= 1,
Bi,j (t, s) +Bi,j+1 (t, s)−Bi+1,j (t, s)−Bi+1,j+1 (t, s)
= (1− t) t,
Ci,j (t, s)− Ci,j+1 (t, s) + Ci+1,j (t, s)− Ci+1,j+1 (t, s)

=
(1+t−10t3+15t4−6t5)s[1−3s+4s2−2s3+αy

i,j(1−s)3s+βy
i,j(1−s)2s2]

(1−s)3+αy
i,j(1−s)2s+βy

i,j(1−s)s2+s3
.

Thus, for the given data, from the expression of the
interpolation surface Pi,j(x, y) given in (5), we have

|Pi,j (x, y)|

≤ M
i+1∑
k=i

j+1∑
l=j

|Ak,l (t, s)|+Q1

i+1∑
k=i

j+1∑
l=j

|Bk,l (t, s)|

+Q2

i+1∑
k=i

j+1∑
l=j

|Ck,l (t, s)|

= M +Q1 (1− t) t+Q2

i+1∑
k=i

j+1∑
l=j

|Ck,l (t, s)|

≤ M + 0.25Q1

+Q2

(
1 + t− 10t3 + 15t4 − 6t5

) s(1−3s+4s2−2s3)
1−3s+3s2 .

Since

max
t∈[0,1]

(
1 + t− 10t3 + 15t4 − 6t5

)
= 1.14675,

max
s∈[0,1]

s
(
1− 3s+ 4s2 − 2s3

)
1− 3s+ 3s2

= 0.5,

we can conclude the following theorem.
Theorem 1: For any nonnegative free parameters

αx
i,j , β

x
i,j , α

y
i,j , β

y
i,j , the values of the resulting interpolation

surface Pi,j(x, y) on Ri,j are bounded by

|Pi,j(x, y)| ≤ M + 0.25Q1 + 0.573375Q2.

B. Error formula

For any (x, y) ∈ Ri,j , let Fi,j = F (xi, yj) , D
x
i,j =

∂F (xi,yj)
∂x , Dy

i,j =
∂F (xi,yj)

∂y , and denote∥∥∥∥∂F (x, y)

∂x

∥∥∥∥ = max
(x,y)∈Ri,j

∣∣∣∣∂F (x, y)

∂x

∣∣∣∣ ,∥∥∥∥∂F (x, y)

∂y

∥∥∥∥ = max
(x,y)∈Ri,j

∣∣∣∣∂F (x, y)

∂y

∣∣∣∣ .
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For any (x, y) ∈ Ri,j , by using the Taylor formula of
F (x, y) at the points (xk, yl), k = i, i+ 1, l = j, j + 1, we
have

|F (x, y)− F (xk, yl)|
= (x− xk)

∂F (θk,ηl)
∂x + (y − yl)

∂F (θk,ηl)
∂y ,

where θk and ηl are between x and xk, y and yl, respectively.
It follows that

max
(x,y)∈Ri,j

|F (x, y)− F (xk, yl)|

≤ hx
i

∥∥∥∂F (x,y)
∂x

∥∥∥+ hy
j

∥∥∥∂F (x,y)
∂y

∥∥∥ .
Thus for any (x, y) ∈ Ri,j , we have

|F (x, y)− Pi,j (x, y)|

=

∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

[Ak,l (t, s) (F (x, y)− F (xk, yl))

+Bk,l (t, s)h
x
i
∂F (xk,yl)

∂x + Ck,l (t, s)h
y
j
∂F (xk,yl)

∂y

]∣∣∣
≤ max

(x,y)∈Ri,j

|F (x, y)− F (xk, yl)|

∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

Ak,l (t, s)

∣∣∣∣∣
+hx

i

∥∥∥∂F (x,y)
∂x

∥∥∥ ∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

Bk,l (t, s)

∣∣∣∣∣
+hy

j

∥∥∥∂F (x,y)
∂y

∥∥∥ ∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

Ck,l (t, s)

∣∣∣∣∣
≤ 1.25hx

i

∥∥∥∂F (x,y)
∂x

∥∥∥+ 1.573375hy
j

∥∥∥∂F (x,y)
∂y

∥∥∥ .
Summarize the above analysis, we have the following

theorem.
Theorem 2: Let F (x, y) ∈ C1(R) be the interpolated

function with Pi,j(x, y) is compared. Then for any (x, y) ∈
Ri,j , the following error formula holds

|F (x, y)− Pi,j (x, y)|
≤ 1.25hx

i

∥∥∥∂F (x,y)
∂x

∥∥∥+ 1.573375hy
j

∥∥∥∂F (x,y)
∂y

∥∥∥ .
From Theorems 1 and 2, we can see that the generated

interpolation surface is stable for the parameters.

C. C2 continuity property

For any (x, y) ∈ Ri,j , from the interpolation surface
Pi,j(x, y) given in (4), direct computation gives that

Pi,j

(
x, y+j

)
= P ∗

i,j (x) , Pi,j

(
x, y−j+1

)
= P ∗

i,j+1 (x) ,

Pi,j(x
+
i , y) = V0(s;α

y
i,j , β

y
i,j)Fi,j + V1(s;α

y
i,j , β

y
i,j)Fi,j+1

+ V2(s;α
y
i,j , β

y
i,j)h

y
jD

y
i,j

+ V3(s;α
y
i,j , β

y
i,j)h

y
jD

y
i,j+1,

Pi,j(x
−
i+1, y) = V0(s;α

y
i,j , β

y
i,j)Fi+1,j

+ V1(s;α
y
i,j , β

y
i,j)Fi+1,j+1

+ V2(s;α
y
i,j , β

y
i,j)h

y
jD

y
i+1,j

+ V3(s;α
y
i,j , β

y
i,j)h

y
jD

y
i+1,j+1,

Thus we have Pi,j

(
x, y+j

)
= Pi,j

(
x, y−j

)
, Pi,j(x

+
i , y) =

Pi,j(x
−
i , y).

Furthermore,

∂Pi,j

(
x, y+j

)
∂x

=
dP ∗

i,j (x)

dx
,

∂Pi,j

(
x, y−j+1

)
∂x

=
dP ∗

i,j+1 (x)

dx
,

∂Pi,j

(
x+
i , y

)
∂x

= V0(s;α
y
i,j , β

y
i,j)D

x
i,j

+ V1(s;α
y
i,j , β

y
i,j)D

x
i,j+1

+ V2(s;α
y
i,j , β

y
i,j)h

y
j

Dy
i,j

hx
i

+ V3(s;α
y
i,j , β

y
i,j)h

y
j

Dy
i,j+1

hx
i

,

∂Pi,j

(
x−
i+1, y

)
∂x

= V0(s;α
y
i,j , β

y
i,j)D

x
i+1,j

+ V1(s;α
y
i,j , β

y
i,j)D

x
i+1,j+1

+ V2(s;α
y
i,j , β

y
i,j)h

y
j

Dy
i+1,j

hx
i

+ V3(s;α
y
i,j , β

y
i,j)h

y
j

Dy
i+1,j+1

hx
i

,

thus we have
∂Pi,j(x,y+

j )
∂x =

∂Pi,j(x,y−
j )

∂x and
∂Pi,j(x+

i ,y)
∂x =

∂Pi,j(x−
i ,y)

∂x if hx
i−1 = hx

i , αy
i−1,j = αy

i,j and βy
i−1,j = βy

i,j .
Similarly, we have

∂Pi,j

(
x, y+j

)
∂y

= ϕi,j (x) ,
∂Pi,j

(
x, y−j+1

)
∂y

= ϕi,j+1 (x) ,

∂Pi,j

(
x+
i , y

)
∂y

=
dV0(s;α

y
i,j , β

y
i,j)

ds

Fi,j

hy
j

+
dV1(s;α

y
i,j , β

y
i,j)

ds

Fi,j+1

hy
j

+
dV2(s;α

y
i,j , β

y
i,j)

ds
Dy

i,j

+
dV3(s;α

y
i,j , β

y
i,j)

ds
Dy

i,j+1,

∂Pi,j

(
x−
i+1, y

)
∂y

=
dV0(s;α

y
i,j , β

y
i,j)

ds

Fi+1,j

hy
j

+
dV1(s;α

y
i,j , β

y
i,j)

ds

Fi+1,j+1

hy
j

+
dV2(s;α

y
i,j , β

y
i,j)

ds
Dy

i+1,j

+
dV3(s;α

y
i,j , β

y
i,j)

ds
Dy

i+1,j+1,

it follows that
∂Pi,j(x,y+

j )
∂y =

∂Pi,j(x,y−
j )

∂y and
∂Pi,j(x+

i ,y)
∂y =

∂Pi,j(x−
i ,y)

∂y if αy
i−1,j = αy

i,j and βy
i−1,j = βy

i,j .
From the above analysis, we can see that the interpolation

surface Pi,j(x, y) is C1 continuous in whole rectangular do-
main R if hx

i =constant, αy
i,j =constant and βy

i,j =constant
for each j ∈ {1, 2, . . . ,m− 1} and all i = 1, 2, . . . , n − 1,
no matter what the parameters αx

i,j and βx
i,j might be. In

the following, we shall further discuss the C2 continuous
property of the interpolation surface.

For any (x, y) ∈ Ri,j , straightforward computation gives
the mixed partial derivatives ∂2Pi,j(x,y)

∂x∂y and ∂2Pi,j(x,y)
∂y∂x as
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follows

∂2Pi,j (x, y)

∂x∂y
=

1

hy
j

dV0

(
s;αy

i,j , β
y
i,j

)
ds

dP ∗
i,j (x)

dx

+
1

hy
j

dV1

(
s;αy

i,j , β
y
i,j

)
ds

dP ∗
i,j+1 (x)

dx

+
dV2

(
s;αy

i,j , β
y
i,j

)
ds

dϕi,j (x)

dx

+
dV3

(
s;αy

i,j , β
y
i,j

)
ds

dϕi,j+1 (x)

dx

=
∂2Pi,j (x, y)

∂y∂x
.

Thus we have

∂2Pi,j

(
x, y+j

)
∂x∂y

=
dϕi,j (x)

dx
=

∂2Pi,j

(
x, y+j

)
∂y∂x

,

∂2Pi,j

(
x, y−j+1

)
∂x∂y

=
dϕi,j+1 (x)

dx
=

∂2Pi,j

(
x, y−j+1

)
∂y∂x

,

∂2Pi,j

(
x+
i , y

)
∂x∂y

=
dV0(s;α

y
i,j , β

y
i,j)

ds

Dx
i,j

hy
j

+
dV1(s;α

y
i,j , β

y
i,j)

ds

Dx
i,j+1

hy
j

+
dV2(s;α

y
i,j , β

y
i,j)

ds

Dy
i,j

hx
i

+
dV3(s;α

y
i,j , β

y
i,j)

ds

Dy
i,j+1

hx
i

=
∂2Pi,j

(
x+
i , y

)
∂y∂x

,

∂2Pi,j

(
x−
i+1, y

)
∂x∂y

=
dV0(s;α

y
i,j , β

y
i,j)

ds

Dx
i+1,j

hy
j

+
dV1(s;α

y
i,j , β

y
i,j)

ds

Dx
i+1,j+1

hy
j

+
dV2(s;α

y
i,j , β

y
i,j)

ds

Dy
i+1,j

hx
i

+
dV3(s;α

y
i,j , β

y
i,j)

ds

Dy
i+1,j+1

hx
i

=
∂2Pi,j

(
x−
i+1, y

)
∂y∂x

.

These imply that
∂2Pi,j(x,y+

i )
∂x∂y =

∂2Pi,j(x,y−
i )

∂x∂y =
∂2Pi,j(x,y+

i )
∂y∂x =

∂2Pi,j(x,y−
i )

∂y∂x and
∂2Pi,j(x+

i ,y)
∂x∂y =

∂2Pi,j(x−
i ,y)

∂x∂y =
∂2Pi,j(x+

i ,y)
∂y∂x =

∂2Pi,j(x−
i ,y)

∂y∂x if hx
i−1 = hx

i ,
αy
i−1,j = αy

i,j and βy
i−1,j = βy

i,j .

For ∂2Pi,j(x,y)
∂x2 , since the x-direction interpolation curve

P ∗
i,j (x) is C2 continuous if the first partial derivative values

Dx
i,j , i = 2, 3, . . . , n− 1 are given by (2) and

d2ϕi,l

(
x+
i

)
dx2

=
d2ϕi,l

(
x−
i+1

)
dx2

= 0, l = j, j + 1,

we have

∂2Pi,j(x,y+
j )

∂x2 =
d2P∗

i,j(x)

dx2 ,
∂2Pi,j(x,y−

j+1)
∂x2 =

d2P∗
i,j+1(x)

dx2 ,
∂2Pi,j(x+

i ,y)
∂x2

= V0

(
s;αy

i,j , β
y
i,j

) 2(∆x
i,j−∆x

i−1,j)
hx
i−1+hx

i

+V1

(
s;αy

i,j , β
y
i,j

) 2(∆x
i,j+1−∆x

i−1,j+1)
hx
i−1+hx

i
,

∂2Pi,j(x−
i+1,y)

∂x2

= V0

(
s;αy

i,j , β
y
i,j

) 2(∆x
i+1,j−∆x

i,j)
hx
i +hx

i+1

+V1

(
s;αy

i,j , β
y
i,j

) 2(∆x
i+1,j+1−∆x

i,j+1)
hx
i +hx

i+1
,

it follows that
∂2Pi,j(x,y+

j )
∂x2 =

∂2Pi,j(x,y−
j )

∂x2 and
∂2Pi,j(x+

i ,y)
∂x2 =

∂2Pi,j(x−
i ,y)

∂x2 if αy
i−1,j = αy

i,j and
βy
i−1,j = βy

i,j .

Finally, for ∂2Pi,j(x,y)
∂y2 , we have

∂2Pi,j

(
x, y+j

)
∂y2

= 0,
∂2Pi,j

(
x, y−j+1

)
∂y2

= 0,

∂2Pi,j

(
x+
i , y

)
∂y2

=
d2V0

(
s, αy

i,j , β
y
i,j

)
ds2

Fi,j(
hy
j

)2
+

d2V1

(
s, αy

i,j , β
y
i,j

)
ds2

Fi,j+1(
hy
j

)2
+

d2V2

(
s, αy

i,j , β
y
i,j

)
ds2

Dy
i,j

hy
j

+
d2V3

(
s, αy

i,j , β
y
i,j

)
ds2

Dy
i,j+1

hy
j

,

∂2Pi,j

(
x−
i+1, y

)
∂y2

=
d2V0

(
s, αy

i,j , β
y
i,j

)
ds2

Fi+1,j(
hy
j

)2
+

d2V1

(
s, αy

i,j , β
y
i,j

)
ds2

Fi+1,j+1(
hy
j

)2
+

d2V2

(
s, αy

i,j , β
y
i,j

)
ds2

Dy
i+1,j

hy
j

+
d2V3

(
s, αy

i,j , β
y
i,j

)
ds2

Dy
i+1,j+1

hy
j

,

it follows that
∂2Pi,j(x,y+

j )
∂y2 =

∂2Pi,j(x,y−
j )

∂y2 and
∂2Pi,j(x+

i ,y)
∂y2 =

∂2Pi,j(x−
i ,y)

∂y2 if αy
i−1,j = αy

i,j and
βy
i−1,j = βy

i,j . Summarizing the above discussion, we
can conclude the following theorem.

Theorem 3: If the knots are equally spaced for variable
x, that is hx

i =constant, and the first partial derivative
values Dx

i,j , i = 2, 3, . . . , n − 1 are given by (2), then a
sufficient condition for the interpolation surface Pi,j(x, y)
to be C2 continuous in the whole rectangular domain R
is that αy

i,j =constant and βy
i,j =constant for each j ∈

{1, 2, . . . ,m− 1} and all i = 1, 2, . . . , n−1, no matter what
the parameters αx

i,j and βx
i,j might be.

For generating the interpolation surface Pi,j(x, y), we also
need to provide the first partial derivative values Dy

i,j , i =
1, 2, . . . , n, j = 1, 2, . . . ,m in advance. In this paper, they
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are computed by the following formula

Dy
i,1 = ∆y

i,1 −
hy
1

hy
1+hy

2

(
∆y

i,2 −∆y
i,1

)
,

Dy
i,j =

hy
j−1∆

y
i,j+hy

j∆
y
i,j−1

hy
j−1+hy

j
, j = 2, 3, . . . ,m− 1,

Dy
i,m = ∆y

i,m−1

+
hy
m−1

hy
m−2+hy

m−1

(
∆y

i,m−1 −∆y
i,m−2

)
,

(6)

where i = 1, 2, . . . , n.

IV. NUMERICAL EXAMPLES

In this section, we shall give two numerical examples
to show that the proposed C2 interpolation surface scheme
can give a good approximation to the interpolated function.
And for the unchanged interpolating data, the shape of the
interpolation surface can be modified by changing the four
parameters according to the control need. In the following
figures, the interpolating data points have been marked with
solid black dots.

Example 1: Let the interpolated function be F (x, y) =
x2 + y2, (x, y) ∈ [0, 1] × [0, 1] , and xi = 0.2(i − 1), yj =
0.2(j − 1), i, j = 1, 2, . . . , 6. The parameters are chosen as
αx
i,j = 10 + 10i + 20j, βx

i,j = 20 + 20i + 10j, αy
i,j = 10 +

20j, βy
i,j = 20 + 10j, i, j = 1, 2, . . . , 6. Fig. 1 shows the

resulting interpolation surface P (x, y) defined by (4) and the
error surface F (x, y)−P (x, y). From the results, we can see
that the interpolation surface gives a good approximation to
the interpolated function.

Fig. 1. Interpolation surface and the error surface.

Example 2: Fig. 3 shows the C2 interpolation surfaces
with different parameters for the 3D data set given in Tab. I.
It can be seen that the interpolation surface can be modified
conveniently by selecting suitable parameters according to
needs of practical design.

Example 3: Fig. 3 shows the comparison between the
C2 interpolation surfaces generated by the new developed
method and the one given in [16] for the 3D data set given
in Tab. II. Our method provides four parameters, which is
more flexible in adjusting the shape of surface than the the
one given in [16] with two parameters.

TABLE I
THE 3D DATA SET GIVEN IN [14].

y/x 0 0.5 1 1.5
0 3 2 4 3

0.5 2 1 3 2
1 3 3 1 3

1.5 2 4 2 3

TABLE II
THE 3D DATA SET GIVEN IN [16].

y/x 0 1 2 3 4 5 6
0 0 1 3 4 3 1 0
1 1 2 4 5 4 2 1
3 3 4 5 8 5 4 3
5 1 2 4 5 4 2 1
6 0 1 3 4 3 1 0

V. CONCLUSION

As stated above, the developed interpolation surface is C2

continuous and include the interpolation scheme given in [14]
as a special case. The shape of the interpolation surface can
be modified conveniently by using the parameters under the
unchanged interpolating data. And the interpolation surface
is bounded and stable for the four parameters. There are
still some problems worthy of further study, such as the
convexity control of the new constructed C2 interpolation
spline surface. These will be our future work.
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Fig. 3. Comparison between the C2 interpolation surfaces generated by our method and the method given in [16] for the 3D data set given in Tab. II.
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