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Abstract— Recently, the most important properties of the 

conformable fractional derivative and integral have been 

introduced. In this paper, some interesting results of real 

fractional Calculus are extended to the context of the complex-

valued functions of a real variable. Finally, using all obtained 

results the complex conformable integral is defined, and some 

of its most important properties are established. 
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I. INTRODUCTION  

OR many years, several definitions of fractional 

derivative have been introduced by various researchers. 

The most common fractional derivatives are Riemann-

Liouville and Caputo fractional derivative. For more 

information about the characteristics of Riemann-Caputo, 

Caputo and other related fractional definitions, we refer to 

[1]. 

Recently, Khalil et al. introduced a new definition of 

fractional derivative called the conformable fractional 

derivative [2]. Unlike other definitions, this new definition 

satisfies the formulas of derivative of product and quotient 

of two functions and has a simpler chain rule than other 

definitions. In addition to the conformable fractional 

derivative definition, the conformable integral definition, 

Rolle theorem, and Mean value theorem for conformable 

fractional differentiable functions were given in literature. In 

[3], Abdeljawad improves this new theory. For instance, 

definitions of left and right conformable fractional 

derivatives and fractional integrals of higher order (i.e. of 

order    ), fractional power series expansion, fractional 

Laplace transform definition, fractional integration by parts 

formulas, chain rule and Grönwall inequality are provided 

by Abdeljawad.  

In [4] the conformable partial derivative of the order 

         of the real value of several variables and 

conformable gradient vector are defined as well as a 

conformable version of Clairaut´s Theorem for partial 

derivatives of conformable fractional orders is proven in [4].  
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In [5], conformable Jacobian matrix is defined; chain rule 

for multivariable conformable derivative is given; relation 

between conformable Jacobian matrix and conformable 

partial derivatives is revealed.  

In [6], two new results on homogeneous functions 

involving their conformable partial derivatives are 

introduced, specifically, the homogeneity of the conformable 

partial derivatives of a homogeneous function and the 

conformable version of Euler´s Theorem.  

In [7], [8], a theory of fractional analytic functions in the 

conformable sense is developed. In short time, many studies 

about the theory and applications of the fractional 

differential equations which based on this new fractional 

derivative definition were conducted in [9], [10], [11], [13], 

[13], [14], [15], [16], [17], [18], [19], [20] and [21]. 

The paper is organized as follows. In Section 2, the main 

concepts of the conformable fractional calculus are 

presented. In Section 3, the conformable fractional 

derivative of the order         of the complex-valued 

functions of a real variable is defined and its most important 

properties are introduced. In Section 4, the real conformable 

fractional integral is extended to the context of the complex-

valued functions of a real variable. Also, some results of the 

classical integral calculus such as the Second Fundamental 

Theorem or a property of moduli of integrals are established. 

In Section 5, conformable integrals of complex-valued 

functions of a complex variable are define on curves in the 

complex plane. In addition, some of the most important 

properties of these integrals are established.  

II. BASIC DEFINITIONS AND TOOLS 

Definition 2.1. Given a function           . Then the 

conformable fractional derivative of    of order  , [2], is 

defined by  

               
               

 
          (1) 

for all    ,      . If   is  -differentiable in some 
     ,    , and                 exist, then it is defined 

as 

                                   (2) 

As a consequence of the above definition, the following 

useful theorem is obtained. 

Theorem 2.1. [2]. If a function            is  -

differentiable at     ,      , then   is continuous at 

  . 

It is easily shown that    satisfies the following 

F 
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properties: 

Theorem 2.2. [2]. Let       and  ,   be  -

differentiable at a point    . Then 

(i)                                  . 

(ii)                   . 

(iii)         , for all constant functions       . 

(iv)                     . 

(v)    
 

 
  

             

  . 

(vi) If, in addition,   is differentiable, then  

               

  
   . 

The conformable fractional derivative of certain functions 

for above definition is given as follows, [2]: 

(i)        . 

(ii)                             . 

(iii)                              . 

(iv)                 . 

Further, many functions behave as in the usual derivative. 

Here are some formulas, [2]: 

(i)    
 

 
      

(ii)     
 

 
  

   
 

 
  

 

(iii)        
 

 
         

 

 
    

(iv)        
 

 
          

 

 
    

Remark 2.1. One should notice that a function could be  -

differentiable at a point but not differentiable. For example, 

take         
 

. Then   

 
                

 
       , 

where      

 
       , for    . But  

  

  
     does not exist. 

Definition 2.2. The (left) conformable derivative starting 

from   of a function            of   of order      , 

[3], is defined by 

   
             

                   

 
          (3) 

When    , it is written as         . If   is  -

differentiable in some      , then define 

   
                 

                 (4) 

Note that if   is differentiable, then    
       

          

  
   . Theorem 2.2 holds for Definition 2.2 

when changing by      .  

Theorem 2.3. (Chain Rule).[3]. Assume             

be (left)  -differentiable functions, where       . Let 

            . The      is   -differentiable for all     

and       , therefore 

   
          

             
                         (5) 

If     , then 

   
          

    
   

             
                       (6) 

Theorem 2.4 (Rolle´s Theorem). [2]. Let    ,          
and           be a given function that satisfies the 

following:  

-   is continuous on      .  

-   is   differentiable on      .  

-          .  

Then, there exists         , such that         =0. 

Corollary 2.1. [2]. Let         ,           and       

be a given function that satisfies   

-   is   differentiable on  .  

-             for certain    .  

Then, there exists         , such that         =0. 

Theorem 2.5. (Mean Value Theorem). [2]. Let    , 

         and            be a given function that 

satisfies  

-   is continuous in      . 

-   is   -differentiable on      . 

Then, exists         such that 

         
         

  

 
 

  

 

                    (7) 

Theorem 2.6. [9]. Let    ,          and            

be a given function that satisfies  

-   is continuous in      . 

-   is   -differentiable on      . 

If            for all        ,  then   is a constant on 

     .  

Corollary 2.2. [9]. Let    ,          and            

  be functions such that                   for all 

       . Then there exists a constant   such that 

                        (8) 

The following definition is the  -fractional integral of a 

function   starting from    . 

Definition 2.3.   
         

    

    

 

 
   , where the integral is 

the usual Riemann improper integral, and          , [2]. 

With the above definition, it was shown that 

Theorem 2.5. [2].   
   

            , for    , where    

is any continuous function in the domain of   . 
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Lemma 2.1. Let           be differentiable and    
       . Then, for all     we have, [3], 

   
   

                            (9) 

III. CONFORMABLE FRACTIONAL DERIVATIVE OF COMPLEX-
VALUED OF A REAL VARIABL 

In this section, some new results on conformable 

fractional derivative of complex-valued functions are 

presented.  

Definition 3.1. Let                 where      and 

     are real-valued functions of the variable t, for   
      . Then the conformable derivative of   of order   is 

defined by  

                                      (10) 

for all    ,      . If   is  -differentiable in some      , 

   , and                 exist, then it is defined as 

                                 (11) 

As a consequence of the above definition, the following 

useful theorem is obtained:  

Theorem 3.1. If a complex-valued function              

is  -differentiable at     ,      , then   is 

continuous at   . 

Proof. This result follows from the similar theorem for real 

conformable fractional derivative in [2].  

Remark 3.1. The conformable fractional derivative is linear 

on  . In other words, if    ,   and   are  -differentiable 

complex-valued functions at point    , then   and     

are also  -differentiable complex-valued functions at point 

   , hence we have:  

                             (12) 

                                    (13) 

Remark 3.2. As in case of real conformable fractional 

derivative, if   is differentiable, then   

               

  
             (14) 

Example 3.1. Another expected rule that is often used 

      
  

      
  

  

where          . To prove this, we write  

   
  

     
  

      
  

 

    
  

        

  

 
         

  

 
   

and refer to Definition 3.1 to see that  

      
  

         
  

       

  

 
          

  

       

  

 
  

     
  

  

       

  

 
     

  
  

       

  

 
  

      
  

  

       

  

 
     

  
  

       

  

 
  

    
  

  

      
  

  

  

or  

      
  

      
  

  

It is good to point out that not every rule for conformable 
fractional calculus can be valid for complex-valued 
functions. The following example illustrates this:  

Example 3.2. Let    . Suppose that                  

is continuous on a closed interval       such that its 

component functions       and       are continuous there. 

Even if          exists when      , Mean Value 

Theorem for Conformable Differentiable Functions is no 

longer applicable, [2]. To be precise, it is not necessarily true 

that there is a number   in the open interval       such that  

         
         

  

 
 

  

 

 

To see this, let´s consider a function        
  

  on the 

closed interval         
 

  0, for some         . By using 

that function, it is easy obtain               
  

    , and 

this means that the conformable fractional derivative 

         is never zero, while  

       
 
          

IV. CONFORMABLE FRACTIONAL INTEGRAL OF COMPLEX-

VALUED FUNCTIONS OF A REAL VARIABLE 

Definition 4.1. Let          and      . Let      

           where      and      are real-valued functions 

of the variable t, for        . The   fractional integral of 

  is defined as  

 
    

    

 

 
     

    

    

 

 
      

    

    

 

 
          (15) 

where there are the individual integrals on the right. So, 
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Remark 4.1.    

  
         

    

    

 

 

    

  
         

    

    

 

 

    

  
         

    

    

 

 

    

where the integrals are the usual Riemann improper integral 

and         .  

Remark 4.2. The usual rules of operations with 

  fractional integrals of real-valued functions carry over to 

complex-valued functions. We have for example 

 
     

          
    

       
 

 

 

 
 (16) 

 
           

    

 

 
     

    

    

 

 
     

    

    

 

 
           (17)  

where    ,         and   and   are   fractional 

integrable functions on closed interval      .  

Theorem 4.1.      
 
            , for all    , when   is 

any continuous complex- valued function in the domain of 

  
  and         .  

Proof. Since   is continuous, then   
       is clearly 

differentiable, we have 

     
             

 

  
   

             
 

  
  

    

    

 

 

    

     
 

  
  

    

    

 

 

      
    

    

 

 

    

      
 

  
  

    

    
   

 

 

   
 

  
  

    

    

 

 

     

      
    

    
  

    

    
                  

Now, a conformable version of the classical Second 

Fundamental Theorem of Calculus in the context of the 

valued-complex functions of a real variable is presented.  

Theorem 4.2. Let    ,          and  be a continuous 

complex-valued function on interval      . Let   any 

complex-valued function with the property           

      for all        . Then 

  

 
    

    

 

 
                                                     (19) 

To prove Theorem 4.2, we need the following result: 

Theorem 4.3. Let    ,          and   be a continuous 

real-valued function on interval      . Let   any real-valued 

function with the property                 for all   
     . Then 

 
    

    

 

 
                       (20) 

Proof. First, let   a function on       defined as      

 
    

    

 

 
   , which can be called    fractional integral 

function of  .  

By using theorem 2.5,                for all        .  
Since   and   have the same fractional derivative, then by 

Corollary 2.2 there exists a real constant   such that 

            for all        . 

Finally,           is computed  

         

                    

  
    

    
   

 

 

  
    

    
   

 

 

  
    

    
   

 

 

 

Proof of Theorem 4.2. Consider                 and 

               , for all        . As               

for all        . 

By applying the above theorem,      and      can be 

written as follows:  

      
    

    

 

 

       

      
    

    

 

 

       

for some real constants     and   .  

Finally,           is computed as follows:  

                                   

                         

  
    

    

 

 

      
    

    

 

 

 

  
    

    

 

 

    

Using all our definitions and results, the   fractional 

integrals according can be evaluated as follows:  

Example 4.1. Evaluate the following integral  

  
 

  
   

 

 
 

  
   

 

 

 

Solution. We write the integrand in terms of its real and 

imaginary parts  

      
 

  
   

 

  
 

 
     

 

  
 

Here      
 

 
   and       

 

  
. 

The 
 

 
 fractional integrals of      and      can be written 

as  
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and 

 
    

  

 

 

       
 

 

 

 

               
           

Therefore, by definition 4.1  

  
 

  
   

 

 
 

  
   

 

 

  
    

  
   

 

 

   
    

  
   

 

 

          

Example 4.2. Evaluate the following  
 

 
 fractional integral  

 
     

 

       
 
 
  

 

 

 

 Solution. We seek a function   with the property 

that    

 
      

 

 
      

 
- We note that      

      
 

  
 satisfies this requirement, so 

 
     

 

       
 
 
 
 
 

 

  
      

 

  
 

   

   
 
 
 
 

 
 

  
    

 

 
     

 

 
   

 
   

 
  

 

 
 

Let´s now introduce the following important property of 

moduli of   fractional integrals of the complex-valued 

functions of a real variable.  

Theorem 4.4. Let       and           be 

continuous complex-valued function. Then for          

 

  
    

    

 

 
      

      

    

 

 
                                           (21) 

Proof. If  
    

    

 

 
     , the inequality is trivial.  

If  
    

    

 

 
     , the complex number    

    

    

 

 
    can be 

written in the form     , where       and   is an 

argument for  . By (17) then we have  

         
        

    
     

            

    
    

 

 

 
 

 

 

because  

 
            

    
      

 

 

 

Since the integral of          is the number real    .  

Therefore, we have:  

  
    

    

 

 
       

            

    
    

 

 
   

              

    
    

 

 
 

 
          

    

 

 
     

            

    

 

 
     

      

    

 

 
     

where we used                   for every     

and         .  

Remark 4.2. With only minor modification, the above 

discussion yields inequalities such that  

  
    

    

  

 
      

      

    

  

 
             (22) 

provided that both improper integrals exist.  

Corollary 4.1. Let       and           be 

continuous complex-valued function such that 

     
     

    

Then for          

  
    

    

 

 
       

  

 
 

  

 
          (23) 

Proof. From above theorem, we have the following for  

        :  

  
    

    

 

 

      
      

    

 

 

              
 

 

  
  

 
 

  

 
  

Remark 4.3. It is easy to propose the following conformable 

version of the classical Mean Value Theorem for definite 

real integrals. 

Theorem 4.5. Let     and          be a given 

function that satisfies  

-  
    

    

 

 
            ,  exists for some         .  

-                  ,  for certain real numbers 

  and  .  

Then there exists         such that  

 
    

    

 

 
    

  

 
 

  

 
 

  

 
           (24) 

Proof. By the monotonicity property of the usual definite 

integrals, [19], we have   

 

 
         

 

    

 

 

     
    

    

 

 

     
 

    

 

 

   

 
 

 
        

Multiplying by 
 

     , then       , where    
 

      
    

    

 

 
   . Hence, (24) is obtained and the proof is 

completed.  
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Corollary 4.2. If   is a continuous function on the closed 

interval      , then there exists          such that  

 
    

    

 

 
    

    

 
                (25)  

Proof. Simply apply the classical Maximum and Minimum 

Value Theorem, [23], to (24).  

Finally, the following example we will show that theorem 

4.5 cannot be applied to complex-valued functions of a real 

variable.  

Example 4.3. Consider a function        
  

  on the closed 

interval         
 

  0, for some          and observe that 

 

 
    

    

     
 
 

 

     
  

  

 

    

     
 
 

 

    
  

  

 

 
 

 

     
 
 

   

  

Since            
 

         
  

       
 

       
 

 for 

every real number  , it is clear that there is no number c in 

the closed          
 

   such that 

 
  

  

 

    

     
 
 

 

              
 
     

V. COMPLEX CONFORMABLE INTEGRAL 

In this section, using the results above, we will introduce 

integrals of complex-valued functions of a complex variable 

in the sense of conformable definition. 

First, let us recall some classical notions about classes of 

curves that are adequate for the study of these integrals, [24]. 

Remark 5.1.  

(i) A continuous mapping           is called a 

curve in  , with parameter interval      . The point 

set          is denoted   . The points      and 

     are called the starting point and end point, 

respectively. The curve   is called closed if 

         . 

(ii) A curve           is called smooth if   

          and                 . 
(iii) A contour, or piecewise curve, is a curve consisting 

of a finite number of smooth curves joined end to 

end. 

Remark 5.2. Operations with curves 

(i) Let           and           be two curves. 

We will say that the curves   and   are equivalent 

if there exists a differentiable function         
      such that 

-         

-               

-       

(ii) Let           be a curve. Then the curve 

           such that               , 

denote the reverse curve of  . 

(iii) Let           and           be two curves, 

with           . We can define a new curve 

called the sum of its legs   and  , and is dented by 

    , given by 

           
         

                 
  

In the following results, we consider a contour         
 , with     and            ]. 

Definition 5.1. Let           be a contour and let 

        be continuous. We define the contour    integral 

of   along   as soon as we understand the complex number 

     
  

             
 

  

        

      
   

  

            (26) 

Note that, since   is a contour,          is also piecewise 

continuous on the interval      , and so the existence of 

integral (26) is ensured. 

From the definition (26) and the properties of the integrals 

of the complex-valued functions of a real variable studied in 

section 4, the following results can be easily established. 

Theorem 5,1. Let           be a contour and let  

          be continuous. Then 

           
 

  

    
       

 

  

    
       

 

  

    
 

for any complex constants   and  . 

Theorem 5.2. Let           and           be two 

equivalent contours and let         be continuous. Then 

     
 

  

    
      

 

  

    
 

Proof. Since      , the contour    integral of   along   

is well-defined. By hypothesis, there is a differentiable 

function               such that         and     

 . So, 

     
  

    
         

 

  

        

      
   

  

    
  

       

            
  

    

 

            
            

          
   

      

      

          

      
   

  

    

         
        

      
   

  

    

 

 

      
 

  

    
 

IAENG International Journal of Applied Mathematics, 50:3, IJAM_50_3_18

Volume 50, Issue 3: September 2020

 
______________________________________________________________________________________ 



Theorem 5.3. Let           and           be two 

contours, with           , and let             be 

continuous. Then 

     
   

  

    
      

 

  

    
      

 

  

    
 

Proof. From Remark 5.1 (iii), we have 

     
   

  

    
             

     

 

            

          
   

  

    

         
        

      
   

  

    

 

 

 

             
            

          
   

  

          

     

 

  
       

     
  

      
        

      
   

  

    

 

 

         
        

      
   

  

    

 

 

 

      
 

  

    
      

 

  

    
 

Theorem 5.4. Let    denote the reverse contour of  . Then 

     
  

  

    
       

 

  

    
 

Proof. From Remark 5.1 (ii), we have 

     
  

  

    
          

         

       
   

  

    

 

 

 

             
            

          
   

  

           

 

 

  
       

     
  

         
 

 

        

      
   

  

    
       

 

  

    
 

VI. CONCLUSIONS  

New interesting results for fractional formulations of 

complex-valued functions of a real variable in the sense of 

conformable derivatives and integrals have been 

successfully proposed in this research article. Thus, a future 

work is opened to construct the theory of conformable 

integration by studying the functions of a complex variable 

due to importance of this research study and its applications 

in the field of natural sciences or engineering.  
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