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Abstract—Brucellosis is one of the major public health
problems in China. According to relevant literature, dogs with
brucellosis can not only infect other dogs, but also easily
infect human and also release pathogenic bacteria into the
environment. In this paper, we proposed a dynamical model of
sheep-dog-human brucellosis transmission. At the same time,
we considered the environmental bacterial infections of sheep,
dog and human in our model. The global asymptotic behavior
of model is determined by the size of the basic reproduction
number R0. If R0 < 1, the disease-free equilibrium is global
asymptotically stable. If R0 > 1, the model is uniformly
persistent and the endemic equilibrium is global asymptotically
stable.

Index Terms—Brucellosis, basic reproduction number, infect-
ed environment, global stability.

I. INTRODUCTION

BRUCELLOSIS, also known as Rock fever, is one of
the zoonotic diseases caused by different species of

Brucella[1]. Brucellosis is generally result in by B.abortus
in cattle, B.melitensis in sheep and goats, B.ovis in small
ruminant, B.suis in pig and B.canis in dog[2]. So it is
prevalent among sheep, cattle, dog and pig. In animals,
there are two ways of brucellosis infection: one is through
direct contact with infected animals or the feces, the second
is through the indirect transmission caused by the contact
with the infected environment such as soil, contaminated
water etc. The survival time of brucella differs from one
to four months in the contaminated soil and water, and
about two months in milk and meat. However, it is easily
killed by direct sunlight, high temperature and effective
disinfectant[3]. In the initial stage of infection, there are no
obvious clinical symptoms and it is difficult to diagnose[4].
Human brucellosis infection is mainly caused by occupation-
al exposure to infected livestock, ingestion of unpasteurised
dairy products and contaminated meats[5]. The infection
through laboratory exposure among veterinary students and
laboratory workers also attracts much attention in recent
years. There is also some reports on the human to human
transmission cases [6]. Therefore, as long as the disease is
eradicated from susceptible animals, the infection of human
brucellosis can be greatly reduced[7].

In China, the number of human brucellosis cases has
increased dramatically since 2000, and materials show that
brucellosis is widely distributed in the northern and western
parts of China. With the legal exhibition of animal husbandry
production, Xinjiang Uyghur Autonomous Region is known
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as the epidemic area of human brucellosis in China[8]. At
present, sheep brucellosis is very common. The documents
on the dog brucellosis infection also show that the overall
prevalence rate of canine Brucellosis in Urumqi is about 25
percent, besides, the brucella of canine and ovine species
coexists poses a severe threat to public health. Among the
different groups, the dog brucellosis prevalence in pastoral
areas was the highest[9]. According to an US report, the
brucellosis prevalence of dogs is higher among stray dogs
and free-roaming dogs[10]. In the early 20th century, reports
confirm human brucellosis patients in China. Two human
brucellosis cases were first reported in Chongqing province
in 1905 and a human brucellosis case was reported in Fujian
province in 1916 [11]. Human brucellosis is not fatal, almost
negligible, but the disease can last for several years[12]. It
has been suggested that the incidence of human brucellosis
will be correspondingly and significantly reduced when us-
ing vaccines and slaughter to control livestock brucellosis.
Nowadays, strict quarantine in the animal industry, combined
with slaughter policies and alternative vaccine strategies, has
been shown to be necessary to effectively prevent and control
the spread of brucellosis in China[13].

Mathematical modelling has turned into an important tool
for the comprehension of transmission dynamics of epidemic
diseases and to propose control strategies for the infectious
diseases, see for example[1-5,8,11,14-18]. Modeling real
world epidemics can be a challenging and complex task
and its usefulness is undisputable, because the more realistic
the modelling is, the more it can contribute to a better
understanding of the physical phenomenon itself[14]. Re-
cently, many researchers have made great achievements in the
study of brucellosis. For instance, Hou et al. [1] established
a dynamic model with the sheep-human transmission of
brucellosis. Nie et al. [15] proposed a dynamical model of
cattle brucellosis with Susceptible-Exposed-Infected-Virus.
Zinsstag et al. [16] studied a dynamic model of cattle-sheep-
human with seropositive and immunized groups. Li M.T. et
al. [11] set up a four-dimensional staged brucellosis model.
Considering the current situation of dog brucellosis infection,
we propose an eight-dimensional model of sheep-dog-human
brucellosis transmission.

This paper is organized as follows. In Section 2, we
construct the model and get the basic reproduction number
R0. In Section 3, we analyze the global asymptotic stability
of the disease-free equilibrium. In Section 4, we demonstrate
the existence and global asymptotic stability of the endemic
equilibrium. In Section 5, some numerical simulation will be
used to verify our analytical results. Finally, we give some
discussions.
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II. DYNAMIC MODEL

Based on the facts of brucellosis infection in the sheep
farms, we divided the sheep population into three compart-
ments: the susceptible, the infectious and the vaccinated
compartmentwhich is denoted by S(t), I(t), V (t). At the
same time, based on the characteristics of brucellosis trans-
mission in dogs, we can classify the dog population into
two compartments: the susceptible Sd and the infectious
Id. Human population is also divided into two groups:
susceptible Sh and infected Ih. As is known to all, infected
sheep and dog generates infection in two way: the direct
and indirect modes of transmission. We defined the average
number of brucella to be sufficient to infect the host as an
infected unit. So we use W (t) to denote the brucella in the
environment at time t. So a brucellosis model can be given
as a system of ordinary differential equations as follows:

dS
dt = A1 − βSI − νS − φSW − d1S

dI
dt = βSI + φSW − (d1 + α)I

dV
dt = νS − d1V

dW
dt = kI − (µ+ nτ)W + λId

dSd

dt = A2 − φdSdW − d2Sd

dId
dt = φdSdW − (d2 + c)Id

dSh

dt = A3 − βhShI − φhShW − βdShId + γIh − d3Sh

dIh
dt = βhShI + φhShW + βdShId − γIh − d3Ih

(1)
All the parameters are considered is nonnegative in system

(1), which are described in Table 1.
Because the first six equations are independent of the

last two equations, we just need to analyze the subsystem
composed of the first six equations, as shown in the following
model: 

dS
dt = A1 − βSI − νS − φSW − d1S

dI
dt = βSI + φSW − (d1 + α)I

dV
dt = νS − d1V

dW
dt = kI − (µ+ nτ)W + λId

dSd

dt = A2 − φdSdW − d2Sd

dId
dt = φdSdW − (d2 + c)Id

(2)

The initial condition for system (2) is S(0) > 0, I(0) > 0,
V (0) > 0,W (0) > 0, Sd(0) > 0, Id(0) > 0. It is obvious
that system (2) exists unique positive solution satisfies given
initial condition. Adding up the first three equations, we can
find that

d(S + I + V )

dt
= A1 − d1(S + I + V )− αI

it follows that

lim sup
t→∞

(S + I + V ) ≤ A1

d1
(3)

TABLE I
DESCRIPTIONS OF PARAMETERS IN SYSTEM (1)

parameters comments

A1 the input number of sheep

A2 the input number of dog

A3 the input number of human

β sheep-to-sheep transmission rate

βh transmission rate from sheep to human

βd transmission rate from dog to human

φ transmission rate of contaminated environment
to susceptible sheep

φd transmission rate of contaminated environment
to susceptible dog

φh transmission rate of contaminated environment
to susceptible human

ν sheep vaccination rate

d1 the natural death rate of sheep

d2 the natural death rate of dog

d3 the natural death rate of human

µ the natural decaying rate of brucella
in the environment

n disinfection times

τ the efficient disinfection rate

λ Brucella shedding rate of infectious dog
to the environment

k Brucella shedding rate of infectious sheep
to the environment

c the disease-related elimination rate of dog

α the disease-related elimination rate of sheep

γ human recovery rate

Combining the fifth and sixth equations of system (2) yields

d(Sd + Id)

dt
= A2 − d2(Sd + Id)− cId
≤ A2 − d2(Sd + Id)

then it follows that

lim sup
t→∞

(Sd + Id) ≤
A2

d2
(4)

From the fourth equation of system (2) we have

dW

dt
≤ kA1d2 + λA2d1

d1d2
− (µ+ nτ)W

Let p = max{k, λ}, then we have

lim sup
t→∞

W ≤ pA1d2 +A2d1
d1d2(µ+ nτ)

(5)

By equations (3)-(5), we can conclude that

X = {(S, I, V,W, Sd, Id) | S, I, V,W, Sd, Id ≥ 0,

0 ≤ S + I + V ≤ A1

d1
, 0 ≤ Sd + Id ≤

A2

d2
,

0 ≤W ≤ pA1d2 +A2d1
d1d2(µ+ nτ)

}

is the positively invariant set respect to system (2). It
is evident that system (2) has a disease-free equilibrium
P0 = (S0, 0, V 0, 0, S0

d , 0), where

S0 =
A1

d1 + ν
, V 0 =

A1ν

(d1 + ν)(d1 + α)
, S0
d =

A2

d2
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Following the method of Van den Driessche and Wat-
mough [19], we have

F =

 βS0 φS0 0
0 0 0
0 φdS

0
d 0



V =

 d1 + α 0 0
−k µ+ nτ −λ
0 0 d2 + c


Therefore, the next generation matrix is

FV −1 =

 A11 A12 A13

0 0 0
A31 A32 A33


The characteristic polynomial of FV −1 is

P (Λ) = Λ[Λ2 − (A11 +A33)Λ

+ (A11A33 −A13A31)]

So the basic reproduction number of system (2) is defined
as following

R0 =
A11 +A33 +

√
(A11 −A33)2 + 4A13A31

2

where

A11 =
βS0

d1 + α
+

φS0k

(µ+ nτ)(d1 + α)

A13 =
λφS0

(d2 + c)(µ+ nτ)

A31 =
φdS

0
dk

(d1 + α)(µ+ nτ)

A33 =
φdS

0
dλ

(d2 + c)(µ+ nτ)

III. GLOBAL STABILITY OF THE DISEASE-FREE
EQUILIBRIUM

In this section, we demonstrate the global stability of the
disease-free equilibrium.

Let M = F − V , we have

M =

 βS0 − (d1 + α) φS0 0
k −(µ+ nτ) λ
0 φdS

0
d −(d2 + c)


Define s(M) = max{ReΛ : Λ is an eigenvalue of M},

with s(M) is a simple eigenvalue of M with a positive
eigenvector, by the Theorem 2[19], we have

R0 > 1⇔ s(M) > 0, R0 < 1⇔ s(M) < 0.

For the disease-free equilibrium of system (2), the following
results can be established:
Theorem 3.1 The disease-free equilibrium P0 is locally
asymptotically stable when R0 < 1, and unstable when
R0 > 1.
Proof: It’s obvious that the hypothesis (A1-A4) of Lemma
2 in [19] is satisfied. Next we verify hypothesis (A5), thus
we only need to prove

J |P0
=

(
M 0
J3 J4

)

have negative real parts, where J3 = −F .

J4 =

 −d1 − ν 0 0
ν −d1 0
0 0 −d2


By calculating the eigenvalues of J4, we have s(J4) =
max{−d1,−(d1 + ν),−d2} < 0. Therefore, if R0 < 1,
then s(M) < 0 and s(J |P0) < 0, and the disease-free
equilibrium P0 of system (2) is locally stable. If R0 > 1,
then s(M) > 0, which means that P0 is unstable.
Theorem 3.2 The disease-free equilibrium P0 of system (2)
is globally asymptotically stable when R0 < 1.
Proof: Firstly, notice that the condition R0 < 1 implies
A11 ≤ 1, A33 ≤ 1, and −P (1)

A13
< 0.

Consider a Lyapunov function as follows:

L1 =a1(S − S0 − S0 ln
S

S0
) + a2(V − V 0 − V 0 ln

V

V 0
)

+ a3(Sd − S0
d − S0

d ln
Sd
S0
d

) + a4I + a5W + a6Id

where

a1 = a2 = a4 =
1−A33

(d1 + α)A13

a3 = a6 =
φdS

0
d

(µ+ nτ)(d1 + α)
)

+
λ

d2 + c
(

(1−A33)φS0

A13(d1 + α)(µ+ nτ)

a5 =
(1−A33)φS0

A13(d1 + α)(µ+ nτ)
+

φdS
0
d

(µ+ nτ)(d1 + α)
.

Then the derivative of L1 along with the solution of system
(2) is

dL1

dt
=a1(1− S0

S
)(A1 − βSI − νS − φSW − d1S)

+ a3(1− S0
d

Sd
)(A2 − φdSdW − d2Sd)

+ a2(1− V 0

V
)(νS − d1V ) + a6(φdSdW

− (d2 + c)Id) + a4(βSI + φSW − (d1 + α)I)

+ a5(kI − (µ+ nτ)W + λId)

=a1[A1(S − S0)(
1

S
− 1

S0
) + ν(V − V 0)(

S

V
− S0

V 0
)]

+ a4(βSI + φSW − (d1 + α)I)

+ a3A2(Sd − S0
d)(

1

Sd
− 1

S0
d

)

+ a5(kI − (µ+ nτ)W + λId)

+ a6(φdSdW − (d2 + c)Id)

− a1(S − S0)(βI + φW )− a3(Sd − S0
d)φdW

=a1d1V
0(3− V

V 0
− SV 0

V S0
− S0

S
)

+ a1d1S
0(2− S0

S
− S

S0
)− a1(S − S0)βI

+ a1(βSI + φSW − (d1 + α)I)

+ a3(φdSdW − (d2 + c)Id)

+ a3A2(Sd − S0
d)(

1

Sd
− 1

S0
d

)

IAENG International Journal of Applied Mathematics, 50:3, IJAM_50_3_21

Volume 50, Issue 3: September 2020

 
______________________________________________________________________________________ 



+
d2 + c

λ
a3(kI − (µ+ nτ)W + λId)

− a1(S − S0)φW − a3(Sd − S0
d)φdW

After a careful calculation, it yields that

dL1

dt
=a1d1S

0(2− S0

S
− S

S0
)

+ a1d1V
0(3− V

V 0
− SV 0

V S0
− S0

S
)

+ a3A2(Sd − S0
d)(

1

Sd
− 1

S0
d

)− P (1)

A13
I.

So, when R0 < 1, dL1

dt < 0, and dL1(t)
dt = 0 holds if and

only if S = S0, I = 0, V = V 0,W = 0, Sd = S0
d , Id = 0.

Thus the disease-free equilibrium P0 is global asymptotically
stable by LaSalle’s Invariance Principle [20]. This completes
the proof.

IV. THE GLOBAL STABILITY OF ENDEMIC EQUILIBRIUM

In this section, we firstly study the uniformly persistence
of the system (2), then prove the existence and the global
stability of endemic equilibrium.

Define X0 = {(S, I, V,W, Sd, Id) ∈ X | I,W, Id > 0}
and ∂X0 = X|X0.
Theorem 4.1 When R0 > 1, there exists a positive constant
ε1 such that when |I(0)| < ε1, |W (0)| < ε1, |Id(0)| < ε1
for (S(0), I(0), V (0),W (0), Sd(0), Id(0)) ∈ X0,

lim sup
t→∞

max{I(t),W (t), Id(t)} > ε1.

Proof: Consider a system:

dS
dt = A1 − (ν + d1)S

dV
dt = νS − d1V

dSd

dt = A2 − d2Sd

(6)

It is easy to see that system (6) has a unique positive
equilibrium (S0, V 0, S0

d) which is globally asymptotically
stable.
Since R0 > 1 ⇔ s(M) > 0, choose small enough ε > 0
such that s(M2) > 0, whereM2 = M − εM0,

M0 =

 β φ 0
0 0 0
0 φd 0


Next consider a perturbed system:

dS
dt = A1 − (ν + d1)S − ε1S(β + φ)

dV
dt = νS − d1V

dSd

dt = A2 − d2Sd − ε1Sdφd

(7)

Because the positive equilibrium of system (6) is glob-
ally asymptotically stable, choose small enough ε1 > 0
such that system (7) exist a unique positive equilibrium
(S0(ε1), V 0(ε1), S0

d(ε1)) which is globally asymptotically
stable. S0(ε1) and S0

d(ε1) are continuous in ε1, we can
restrict ε1 small enough such that S0(ε1) > S0 − ε and
S0
d(ε1) > S0

d − ε.

Suppose Theorem 4.1 is not true, then there is a T > 0
such that I(t) < ε1,W (t) < ε1, Id(t) < ε1, for all t ≥ T .
When t ≥ T ,

dS
dt ≥ A1 − (ν + d1)S − ε1S(β + φ)

dV
dt = νS − d1V

dSd

dt ≥ A2 − d2Sd − ε1Sdφd

(8)

Because the equilibrium of system (7) is globally asymptot-
ically stable and S0(ε1) > S0 − ε, S0

d(ε1) > S0
d − ε. Then

exists a T1 > T > 0 such that S(t) > S0−ε, Sd(t) > S0
d−ε

for t > T1. Therefore, for t > T1, we have

dI
dt ≥ (βI + φW )(S0 − ε)− (d1 + α)I

dW
dt = kI − (µ+ nτ)W + λId

dId
dt ≥ φdW (S0

d − ε)− (d2 + c)Id

(9)

Considering the following system:

dI
′

dt = (βI
′
+ φW

′
)(S0 − ε)− (d1 + α)I

′

dW
′

dt = kI
′ − (µ+ nτ)W

′
+ λI

′

d

dI
′
d

dt = φdW
′
(S0
d − ε)− (d2 + c)I

′

d

(10)

Because s(M) > 0, it’s easy to see that
(I

′
(t),W

′
(t), I

′

d(t)) → (∞,∞,∞) as t → ∞. Using the
comparison principle of Smith and Waltman [21], we can
draw the conclusion that (I(t),W (t), Id(t)) → (∞,∞,∞)
as t → ∞, which leads to a contradiction. Thus, we
conclude that

lim sup
t→∞

max{I(t),W (t), Id(t)} > ε1.

Theorem 4.2 If R0 > 1, then system (2) admits
at least one positive equilibrium and there is
a positive constant ε such that every solution
(S(t), I(t), V (t),W (t), Sd(t), Id(t)) of the system (2)
with ((S(0), I(0), V (0),W (0), Sd(0), Id(0))) ∈ X0

min{lim inf
t→∞

I(t), lim inf
t→∞

W (t), lim inf
t→∞

Id(t)} > ε,

which implies that the system (2) is uniformly persistent.
Proof: Consider system (2), it is easy to see that both X and
X0 are positively invariant and ∂X0 is relatively closed in
X . In addition, system (2) is point dissipative.
Define Ω∂ = {(S(0), I(0), V (0),W (0), Sd(0), Id(0)) |
(S(t), I(t), V (t),W (t), Sd(t), Id(t)) ∈ ∂X0,∀t ≥ 0}.
Now we will prove that
Ω∂ = {(S(0), 0, V (0), 0, Sd(0), 0) | S(t), V (t), Sd(t) ≥ 0}.
It is easy to see that
{(S(0), 0, V (0), 0, Sd(0), 0) | S(t), V (t), Sd(t) ≥ 0} ⊆ Ω∂ ,
thus we just only need to prove the following:

Ω∂ ⊆ {(S(0), 0, V (0), 0, Sd(0), 0) | S(t), V (t), Sd(t) ≥ 0}
(11)

As (S(0), I(0), V (0),W (0), Sd(0), Id(0)) ∈ Ω∂ , we need to
prove that I(t) = 0,W (t) = 0, Id(t) = 0 for all t ≥ 0. If
is not true, then there exist a t0 ≥ 0 such that one of the
following holds:
(i) I(t0) > 0, (ii)W (t0) > 0, (iii) Id(t0) > 0.
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If the case (i) holds, then from the second equation of system
(2), we have:

dI(t)

dt
≥ −(d1 + α)I(t),

then

I(t) ≥ I(t0)e−(d1+α)(t−t0) > 0,∀t ≥ t0

Further,from the fourth equation of system 2, we have

dW (t)

dt
> −(µ+ nτ)W (t),∀t ≥ t0,

it follows

W (t) > W (t0)e−(µ+nτ)(t−t0) ≥ 0,∀t ≥ t0

Finally, from the sixth equation of system (2), we also have

dId(t)

dt
> −(d2 + c)Id(t),∀t ≥ t0,

this gives

Id(t) > Id(t0)e−(d2+c)(t−t0) ≥ 0,∀t ≥ t0

Thus, for all t > t0, we have (I(t),W (t), Id(t)) > 0.
So (S(t), I(t), V (t),W (t), Sd(t), Id(t)) does not belong to
∂X0, for t > t0, which is a contradiction. For the cases (ii)
and (iii), one can also have the similar contradictions, this
concludes equality (11) holds.

Since P0 is globally asymptotically stable for system (2),
and it is the only equilibrium in Ω∂ , by afore-mentioned
claim, it then follows that P0 is isolated invariant set in X ,
W s(P0)∩X0 = ∅. Clearly, every orbit in Ω∂ converges to P0,
P0 is acyclic in Ω∂ . Using Theorem 4.6 in Thieme [22], we
conclude that system (2) is uniformly persistent with respect
to (X0, ∂X0). By Theorem 2.4 in Zhao [23], system (2) has
an equilibrium (S∗, I∗, V ∗,W ∗, S∗d , I

∗
d ) ∈ X0. We further

claim that S∗, V ∗, S∗d > 0. Suppose that S∗ = V ∗ = S∗d = 0,
from system (2), it can be seen that I∗ = W ∗ = I∗d = 0. This
contradiction proves that P ∗ = (S∗, I∗, V ∗,W ∗, S∗d , I

∗
d ) is a

positive equilibrium of system (2).
Theorem 4.3 The endemic equilibrium P ∗ of system (2) is
globally asymptotically stable when R0 > 1.
Proof: Define a Lyapunov function as follows:

L2 =b1(S − S∗ − S∗ ln
S

S∗
) + b2(I − I∗ − I∗ ln

I

I∗
)

+b5(Sd − S∗d − S∗d ln
Sd
S∗d

) + b6(Id − I∗d − I∗d ln
Id
I∗d

)

+b3(V − V ∗ − V ∗ ln
V

V ∗
) + b4(W −W ∗ −W ∗ ln

W

W ∗
)

where

b1 = b2 = b3 =
kI∗

φW ∗S∗
,

b4 = 1, b5 = b6 =
λI∗d

φdW ∗S∗d

then the derivative of L2 along with the solution of system
(2) is

dL2

dt
=b1(1− S∗

S
)[(A1 − βSI − νS − φSW − d1S)

− (A1 − βS∗I∗ − νS∗ − φS∗W ∗ − d1S∗)]

+ b4(1− W ∗

W
)(kI − kI∗ + λI∗dW

W ∗
+ λId)

+ b2(1− I∗

I
)(βSI + φSW − S∗(βI∗ + φW ∗)

I∗
I)

+ b3(1− V ∗

V
)(νS − νS∗

V ∗
V )

+ b5(1− S∗d
Sd

)[(A2 − φdSdW − d2Sd)

− (A2 − φdS∗dW ∗ − d2S∗d)]

+ b6(1− I∗d
Id

)(φdSdW −
φdS

∗
dW

∗

I∗d
Id)

≤b1βS∗I∗(2−
S∗

S
− S

S∗
) + b1d1S

∗(2− S∗

S
− S

S∗
)

+ b1φS
∗W ∗(ln

I

I∗
− I

I∗
+

W

W ∗
− ln

W
∗W

)

+ b1νS
∗(3− S∗

S
− V

V ∗
− V ∗S

S∗V
)

+ b4kI
∗(
I

I∗
− ln

I

I∗
) + b4λI

∗
d (
Id
I∗d
− ln

Id
I∗d

)

+ (b4kI
∗ + b4λI

∗
d )(ln

W

W ∗
− W

W ∗
)

+ b5d2S
∗
d(2− S∗d

Sd
− Sd
S∗d

)

+ b5φdS
∗
dW

∗(
W

W ∗
− ln

W

W ∗
− Id
I∗d

+ ln
Id
I∗d

)

So, we can obtain

dL2

dt
≤(b1βS

∗I∗ + b1d1S
∗)(2− S∗

S
− S

S∗
)

+ b5d2S
∗
d(2− S∗d

Sd
− Sd
S∗d

)

+ b1νS
∗(3− S∗

S
− V

V ∗
− V ∗S

S∗V
)

≤0.

The equation dL2

dt = 0 holds if and only if S = S∗, I =
I∗, V = V ∗,W = W ∗, Sd = S∗d , Id = I∗d . Thus the endemic
equilibrium P ∗ is globally asymptotically stable in X by
LaSalle’s Invariance Principle [20]. This completes the proof.

As for the subsystem composed of last two equations of
system (1):

dSh

dt = A3 − βhShI − φhShW − βdShId + γIh − d3Sh

dIh
dt = βhShI + φhShW + βdShId − γIh − d3Ih

(12)
Using the method of limit system, we easily have the
following result:
Theorem 4.4 The disease free equilibrium (S0

h, 0) of system
(12) is globally asymptotically stable when R0 < 1. The
endemic equilibrium (S∗h, I

∗
h) of system (12) is globally

asymptotically stable when R0 > 1.
where S0

h = A3

d3
and

S∗h =
A3(γ + d3)

d3(βhI∗ + φhW ∗ + βdI∗d + γ + d3)
,
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I∗h =
A3(βhI

∗ + φhW
∗ + βdI

∗
d )

d3(βhI∗ + φhW ∗ + βdI∗d + γ + d3)

Therefore, we have the following result for system (1):
Theorem 4.5 The disease free equilibrium (S0, 0, V 0, 0, S0

d ,
0, S0

h, 0) is globally asymptotically stable when R0 < 1.
The endemic equilibrium (S∗, I∗, V ∗,W ∗, S∗d , I

∗
d , S

∗
h, I
∗
h) is

globally asymptotically stable when R0 > 1.

V. NUMERICAL SIMULATIONS

In this section, we carry out numerical simulations to
support our theoretical results. From cases of brucellosis
reported in the People’s Republic of China, we can
obtain the data on human brucellosis cases in 2005 to
2014. Therefore, some parameters are come from real
data [8] and some others are fitted. Taking parameter
as follows: β = 0.18 × 10−6, βh = 1.88 × 10−9, βd =
0.79 × 10−8, φ = φd = 0.1 × 10−6, φh = 0.7 × 10−9, n =
0, τ = 0, d1 = 0.6, d2 = 0.8, d3 = 0.00559, k = 12, λ =
12, µ = 3.6, c = 15, γ = 0.4. Using system (1), we
evaluate the human brucellosis data in China from 2005
to 2014 and make a prediction about the trend of human
brucellosis infection. Using MATLAB, we get Figure 1,
seeing that our model has reasonable parameter values
and the simulation results are consistent with the national
data of brucellosis infection cases from 2005 to 2014.
Taking A1 = A2 = 1.976 × 107, β = 0.18 × 10−6, φ =
φd = 0.1 × 10−6, ν = 0.316, α = 20, n = 0, τ = 0, d1 =
0.6, d2 = 0.8, k = 12, λ = 12, µ = 3.6, c = 15, γ = 0.4,
through numerical calculation, the basic reproduction
number R0 < 1. It can be seen from the Figure 2 that
the density of infected populations will approach to zero,
the disease-free equilibrium P0 of system (2) is globally
asymptotically stable. Changing some parameter values:
ν = 0.316 × 0.25, α = 15 and keep the other parameters
the same as mentioned above, then the value of basic
reproduction number R0 becomes bigger than unity. It
can be seen from the Figure 3 that density of infected
populations will approach to a positive value. So, the
endemic equilibrium point P ∗ of system (2) is globally
asymptotically stable. At the same time, we also considered
the dynamic model of the dogs direct contact with the
infected sheep. The infection rate of brucella between sheep
and dogs was defined as ρ. As can be seen from Figure
4, when R0 = 1.4587 > 1, ρ = 0.15 × 10−6 the endemic
equilibrium is globally asymptotically stable.

VI. CONCLUSION AND DISCUSSION

The spread of brucellosis has become a major concern
in China and Brucella of sheep has a high infection rate
to humans and other animals. Although dogs have a strong
resistance to brucella infection, dogs can also cause human
infection. Xinjiang is one of the five major pastoral areas
in China, and there are a large number of dogs in the
pastoral areas. Especially in the suburbs of Xinjiang, where
are large amount of crossing areas of farming and animal
husbandry, dogs also play the role of intermediate media
in brucellosis transmission. The investigation on brucella
Canis is of great significance for promoting the development
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Fig. 1. A comparison of factors with and without dogs
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Fig. 2. When R0 = 0.9576 < 1, the density of infected populations will
approach to zero.

of animal husbandry and ensuring human health. Thus,
we considered a brucellosis infection model with sheep-
dog-human in present paper. According to the numerical
simulation of model (1), it is also confirmed that dogs can
play an important role in human brucellosis infection. By
careful calculation, we get the basic reproduction number R0

of the model (2). We proved the global asymptotic stability
of the equilibrium points by constructing suitable Lyapunov
functions. The global asymptotic behavior of model (2) is
determined by the size of R0. If R0 < 1, the disease-free
equilibrium is globally asymptotically stable. If R0 > 1, the
endemic equilibrium is globally asymptotically stable.

Because there is no ideal therapy or drug for canine
brucellosis, it is convinced that the dogs with brucellosis
should be culled when detected. It is also advised that both
the pet dogs and shepherd dogs should be checked regularly
in daily life to avoid the harm they bring to human health.
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Fig. 3. When R0 = 1.3490 > 1, the density of infected populations in
model (2) will approach to a positive value.
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Fig. 4. When R0 = 1.4587 > 1, ρ = 0.15 ∗ 10−6, the endemic equi-
librium of the sheep - dog direct infection model is globally asymptotically
stable.
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