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Abstract—In this paper, we focus on lattice structures of the
set of monadic filters (monadic filters, stable monadic filters,
involutory monadic filters) of monadic BL-algebras and prove
that

(a) the classes of all monadic filters in monadic BL-algebras
forms a complete Heyting algebras with respect to inclusion;

(b) the class of all stable monadic filters relative a monadic
filter F in monadic BL-algebras is a complete Boolean algebra
with respect to inclusion;

(c) the class of all involutory monadic filters relative a
monadic filter F in monadic BL-algebras is a complete Boolean
algebra with respect to inclusion.

These results also provide the solid foundation to study the
variety of monadic BL-algebras.

Index Terms—monadic BL-algebras, filters, Heyting algebras,
Boolean algebras.

I. INTRODUCTION

MONADIC algebra, in the sense of Halmos [1], is a
Boolean algebra equipped with a closure operator ∃,

which abstracts algebraic properties of the standard existen-
tial quantifier “for some”. The name “monadic” comes from
the connection with predicate logics for languages having
one placed predicates and a single quantifier. After then,
monadic MV-algebras, the algebraic counterpart of monadic
Łukasiewicz predicate logic, were introduced and studied
in [2]. Subsequently, monadic BL-algebras, monadic NM-
algebras, monadic bounded hoops and monadic BCI-algebras
were introduced and investigated in [3], [4], [5], [6].

Nowadays filters are tools of extreme importance in many
areas of classical mathematics. For example, in topology they
enhance the concept of convergence and, in measure theory,
prime theory can be interpreted as basic components of
probability measures and in fuzzy mathematics, filters have
been conceived in various manners. Hájek [8] introduced the
notion of filters in BL-algebras and proved the completeness
of Basic Logic, BL. Broumand Saeid [7], [12], [14], [15]
proposed some types of filters in BL-algebras and gave
some characterization of them. Buşneag [11], [16] studied
the lattice of filters of BL-algebras and obtained some
interesting results. Monadic filters also play an important role
in studying monadic logical algebras. Note that the notion of
monadic filters in monadic BL-algebras is not the same as
that of filters in BL-algebras. So, it is interesting to study the
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lattice of monadic filters of monadic BL-algebras and obtain
some generalized result. These results also can provide the
solid foundation to study the variety of monadic BL-algebras.

The paper is organized as follows: In Section 2, we review
some result on monadic BL-algebras and obtain some new
results. In Section 3, we study the lattice structure of some
types of monadic filters in monadic BL-algebras.

II. MONADIC BL-ALGEBRAS

Adapting for the propositional case the axiomatization of
S5(BL), D. Castaño et al [6] also proposed a simplified set
of axioms for the above calculus, called S5′(BL), whose
axiom schemata are all the ones for logic BL together with
the following axiom schemata:

(S1) �α⇒ α,
(S2) �(α⇒ �β) ≡ (♦α⇒ �β),
(S3) �(�α⇒ β) ≡ (�α⇒ �β),
(S4) �(♦α t β) ≡ (♦α t�β)
(S5) ♦(α&α) ≡ (♦α&♦α)

and closed under Modus Ponens (α, α ⇒ β/β) and Neces-
sitation Rules (α/�α).

In order to show that S5′(BL) is complete, we apply a
general result from Abstract Algebraic Logic (shortly AAL).
We start from by showing that S5′(BL) is an implicative
logic in the sense of Rasiowa [10], which is a logic if
there is a binary (either primitive or definable by a formula)
connective ⇒ of its language such that the following hold:

(R) ` α⇒ α,
(MP) α, α⇒ β ` β,
(T) α⇒ β, β ⇒ γ ` α⇒ γ,
(Cong) α ⇒ β, β ⇒ α ` c(γ1, · · · , γi, α, · · · , γn) ⇒

c(γ1, · · · , γi, β, · · · , γn),
(W) α ` β ⇒ α.

Most of these properties hold for BL. In order to show
that S5′(BL) is an implicative logic, we only prove that two
new connectives � and ♦ and ⇒ are compatible.

Proposition 2.1: The following formulas are provable in
S5′(BL):

1) ` �1,
2) ` �α⇒ (�α&�α),
3) α⇒ β ` �α⇒ �β,
4) �α, α⇒ β ` �β,
5) �α,�(α⇒ β) ` �β,
6) �α⇒ β ` �α⇒ �β,
7) ` �(α⇒ β)⇒ (�α⇒ �β),
8) ` ♦α ≡ �♦α,
9) α⇒ ♦α,

10) ` ♦1,
11) α⇒ β ` ♦α⇒ ♦β,
12) ¬α ` ¬♦α,
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13) ♦α, α⇒ β ` ♦β.
Proposition 2.1(3),(11) show that (Cong) is satisfies for

� and ♦. Thus S5′(BL) is an implicative logic and hence
is algebraizable in the sense of Blok and Pigozzi [4]. This
gives us immediately the completeness with respect to its
associated class of algebras, which will be called monadic
BL-algebras [6].

Definition 2.2: A monadic BL-algebra is a pair (L,∀,∃),
where is L a BL-algebra, ∀ : L → L and ∃ : L → L are
two unary operations on L such that the following conditions
hold, for any x, y ∈ L,

1) ∀(x) ≤ x,
2) ∀(x→ ∀y) = ∃x→ ∀y,
3) ∀(∀x→ y) = ∀x→ ∀y,
4) ∀(∃x ∨ y) = ∃x ∨ ∀y,
5) ∃(x� x) = ∃x� ∃x.

Algebraizability implies completeness of S5′(BL) with
respect to the variety of monadic BL-algebras.

Theorem 2.3: Let T be a theory and α be a formula over
S5′(BL). Then the following statements are equivalent: (1)

1) T ` α,
2) for each monadic BL-algebra (L,∀,∃) and for every

model e of T , e(α) = 1,
3) [α]T = [1]T in S5′(BL).

In S5′(BL), the usual form of the deduction theorem does
not hold. Indeed,

α ` �α, but 0 α⇒ �α,

see the following example.

Example 2.4: Let L3 be a three-element G-algebra. If we
define ∀ and ∃ on L3 in the following way:

∀x =


0, x = 0

0, x = 1
2

1, x = 1

∃x =


0, x = 0

1, x = 1
2

1, x = 1

.

Then (L3,∀,∃) is a monadic G-algebra. Also, for any
model e in this algebra, if e(α) = 1, then e(∀α) = 1. But for
e(α) = 1

2 we have e(∀α) = 0, and hence e(α⇒ ∀α) = 0.

However, S5′(BL) enjoys the same form of deduction
theorem holding for logics with the 4 operator in [8].

Theorem 2.5: T, α ` β if and only if T ` �α⇒ β.
Proof: We prove by induction on every formula αi (1 ≤

i ≤ n) of the given derivation of β from T ∪ α that T `
�α⇒ αi.

If αi = α, then the result follows due to (S1). If αi ∈
T or is an instance of an axiom, then the result follows
using Modus Ponens and the derivability of the schema αi ⇒
(�α⇒ αi).

If αi comes by application of modus ponens on previous
formulas in the derivation, then the result follows, because
from �α ⇒ αk and �α ⇒ (αk ⇒ αi) we may derive
(�α&�α) ⇒ (αk&(αk ⇒ αi) and hence also �α ⇒ αi,
using transitivity of ⇒ applied to Proposition 2.1(2) and
(αk&(αk ⇒ αi)⇒ αi.

If αi = �αk comes using Necessitation Rules from αk,
then from �α ⇒ αk, we may derive �α ⇒ �αk using
Proposition 2.1(7).

Conversely, to the derivation given by the hypothesis add
a step with α. In the next step put �α, which follows from
the previous formula using Necessitation Rule. Then derive
β using Modus Ponens.

III. MONADIC FILTERS IN MONADIC BL-ALGEBRAS

Algebraizability also gives us the notion of filters in
monadic BL-algebras, which will have natural interpretation
as the sets of all provable formulas in the logic S5′(BL). In
this section, we focus on lattice structures of the set of all
monadic filters in monadic BL-algebras.

Given a monadic BL-algebra (L,∀,∃), a filter F is called
a monadic filter of (L,∀,∃) if it closed under ∀. For any
nonempty subset X of L, we denote by 〈X〉∀ the monadic
filter of (L,∀,∃) generated by X , that is, 〈X〉∀ is the smallest
monadic filter of (L,∀,∃) containing X . Indeed,

〈X〉∀ = {x ∈ L|x ≥ ∀x1�∀x2�· · ·�∀xn, xi ∈ X,n ≥ 1}.

In particular, 〈a〉∀ = {x ∈ L|x ≥ (∀a)n, n ≥ 1}. Also, if F
is a monadic filter of (L,∀,∃) and x /∈ F , then we put

F ∨ [∀x) := 〈F ∪ {x}〉∀ = {y ∈ L|x ≥ f � (∀x)n, f ∈ F}.

We denote the set of all monadic filters of (L,∀,∃) by
MF [L,∀,∃] and easily prove that MF [L,∀,∃] is a complete
lattice with respect to inclusion.

The following example shows that monadic filters exist in
monadic BL-algebras. Also, it indicates that the concept of
monadic filters in monadic BL-algebras is not the same as
that of filters in BL-algebras.

Example 3.1: Let L = {0, a, b, c, 1}, where 0 ≤ a ≤
b, c ≤ 1. Define operations � and → are as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a 1
c 0 a a c 1
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 c 1 1
b 0 a 1 c 1
c 0 b b 1 1
1 0 a b c 1

Table 1. The operations � and → of Example 3.1
Then (L,∧,∨,�,→, 0, 1) is a BL-algebra. Define ∀ and ∃
are as follows:

∀x =


01, x = 0, a, b

c, x = c

1, x = 1

∃x =


0, x = 0

c, x = a, c

1, x = b, 1

.

Then (L,∀,∃) is a monadic BL-algebra. It is easily checked
that monadic filters of (L,∀,∃) are {c, 1}, {1} and L.
However, {a, b, c, 1} is a filter of L, but not a monadic filter
of (L,∀,∃), since ∀a = ∀b = 0 /∈ {a, b, c, 1}.

Theorem 3.2: Let (L,∀,∃) be a monadic BL-algebra.
Define operations ∧,∨, 7→ on MF [L,∀,∃] are as follows:
for all F1, F2 ∈MF [L,∀,∃],
F1 ∧ F2 = F1 ∩ F2,
F1 ∨ F2 = 〈F1 ∪ F2〉∀,
F1 7→ F2 = {x ∈ L|∀x ∨ f1 ∈ F2 for any f1 ∈ F1}.
Then (MF [L,∀,∃],∧,∨, 7→, 1, L) is a complete Heyting

algebra.
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Proof: Let {Fi}i∈I be a family of monadic filters of
(L,∀,∃). Then easily obtain that the infimum and supermum
are

{Fi}i∈I = ∩i∈IFi, ∨i∈IFi = ∪i∈IFi
.

Hence (MF [L,∀,∃],∧,∨, 1, L) is a complete lattice under
the inclusion order ⊆.

Then we define

F1 7→ F2 = {x ∈ L|∀x ∨ f1 ∈ F2 for any f1 ∈ F1}

for any F1, F2 ∈MF [L,∀,∃], and shall prove that

F1 ∧ F2 ≤ F3 if and only if F2 ≤ F1 7→ F3

for all F1, F2, F3 ∈MF [L,∀,∃].
We show that F1 7→ F2 is a monadic filter of (L,∀,∃).

Clearly 1 ∈ F1 7→ F2. If x ∈ F1 7→ F2 and x ≤ y, then
for any f1 ∈ F1 such that ∀x ∨ f1 ∈ F2. Since ∀x ∨ f1 ≤
∀y ∨ f1 ∈ F2, we have y ∈ F1 7→ F2. If x, y ∈ F1 7→ F2,
then for any f1 ∈ F1, ∀x ∨ f1,∀y ∨ f1 ∈ F2, and hence
∀(x � y) ∨ f1 ∈ F2. So x � y ∈ F1 7→ F2. Obviously, if
x ∈ F1 7→ F2, then ∀x ∈ F1 7→ F2. Thus F1 7→ F2 is a
monadic filter of (L,∀,∃).

Then we will prove that F1∧F2 ≤ F3 if and only if F1 ≤
F2 7→ F3. Assume that F1 ∧ F2 ≤ F3. Let f1 ∈ F1. Then
∀f1 ∈ F1, and for any f2 ∈ F2, we have f2 ∨ ∀f1 ≥ ∀f1,
f2 ∨ ∀f1 ≥ f2, and hence f2 ∨ ∀f1 ∈ F1 ∧ F2 ≤ F3. Thus
f1 ∈ F2 7→ F3. Conversely, assume that F1 ≤ F2 7→ F3. Let
x ∈ F1 ∧ F2, then x ∈ F2 7→ F3. For any y ∈ F2, we have
∀x∨y ∈ F3. Taking y = x ∈ F2, we have x∨∀x = x ∈ F3.
Thus F1 ≤ F2 7→ F3.

Corollary 3.3: Let (L,∀,∃) be a monadic BL-algebra.
Then (MF [L,∀,∃],⊆) is a pseudocomplemented lattice.
Moreover, for any F ∈MF [L,∀,∃], the pseudocomplement-
ed of F is

F 7→ 1 = {x ∈ L|∀x ∨ f = 1 for any f ∈ F}.
Let (L,∀,∃) be a monadic BL-algebra and F be a monadic

filter of (L,∀,∃). Given a nonempty subset X of L, we put

X⊥∀
F = {a ∈ L|∀a ∨ x ∈ F , for any x ∈ X},

which is called a monadic co-annihilator of X with respect
to F . Clearly, 1 ∈ X⊥∀

F . In particular, it is easy to prove
that X⊥∀

F is a monadic filter and F ⊆ X⊥∀
F , which will

generalized the related results in [13].

Then we give some properties of monadic co-annihilators
in monadic BL-algebras.

Proposition 3.4: Let (L,∀,∃) be a monadic BL-algebra,
F and G be monadic filters of (L,∀,∃). Given nonempty
sets X,Y of L, we have:

1) F ⊆ G implies X⊥∀
F ⊆ X⊥∀

G ,
2) X ⊆ Y implies Y ⊥∀

F ⊆ X⊥∀
F ,

3) ((X⊥∀
F )⊥∀

F )⊥∀
F = X⊥∀

F ,
4) if F ⊆ G, then G ∩G⊥∀

F = F ,
5) (X⊥∀

F )⊥∀
F ∩X⊥∀

F = F ,
6) X⊥∀

F = L if and only if X ⊆ F ,
7) (∪i∈IXi)

⊥∀
F = ∩i∈I(Xi)

⊥∀
F .

Proof: (1) If F ⊆ G and a ∈ X⊥∀
F , then ∀a ∨ x ∈ F

for any x ∈ X , and hence ∀a ∨ x ∈ G for any x ∈ X , that
is, a ∈ X⊥∀

G . Thus, X⊥∀
F ⊆ X⊥∀

G .

(2) If X ⊆ Y and a ∈ Y ⊥∀
F , then ∀a ∨ y ∈ F for any

y ∈ Y , and hence ∀a ∨ x ∈ G for any x ∈ X , that is,
a ∈ X⊥∀

F . Thus, Y ⊥∀
F ⊆ X⊥∀

F .
(3) If x ∈ X , then ∀a ∨ x ∈ F for any a ∈ X⊥∀

F , which
implies x ∈ (X⊥∀

F )⊥∀
F , and hence X ⊆ (X⊥∀

F )⊥∀
F . Applying

(2), we have ((X⊥∀
F )⊥∀

F )⊥∀
F ⊆ X⊥∀

F . On the other hand,
taking X = X⊥∀

F in X ⊆ ((X⊥∀
F )⊥∀

F )⊥∀
F , we obtain X⊥∀

F ⊆
((X⊥∀

F )⊥∀
F )⊥∀

F . Thus ((X⊥∀
F )⊥∀

F )⊥∀
F = X⊥∀

F .
(4) If x ∈ G∩G⊥∀

F , then x ∈ G and x ∈ G⊥∀
F . It follows

that ∀a∨x ∈ F for any a ∈ G. In particular, taking x = a in
∀a∨x ∈ F , we have ∀x∨x = x ∈ F , that is, x ∈ F , which
implies G∩G⊥∀

F ⊆ F . On the other hand, since F ⊆ G, we
have F = F ∩G = G⊥∀

F ∩G. Thus, G ∩G⊥∀
F = F .

(5) Since X⊥∀
F is a monadic filter of (L,∀,∃) and F ⊆

X⊥∀
F , we can obtain (X⊥∀

F )⊥∀
F ∩X⊥∀

F = F by (4).
(6) If X⊥∀

F = L and a ∈ X ⊆ L, then a ∈ X⊥∀
F , and

hence ∀a∨ a = a ∈ F . Thus X ⊆ F . Conversely, if X ⊆ F
and x ∈ L, we have x ∈ X⊥∀

F . Therefore, X ⊆ F .
(7) It follows from (2) that (∪i∈IXi)

⊥∀
F ⊆ (Xi)

⊥∀
F for

any i ∈ I . We deduce that (∪i∈IXi)
⊥∀
F = ∩i∈I(Xi)

⊥∀
F .

Conversely, let a ∈ ∩i∈I(Xi)
⊥∀
F , we have a ∈ (Xi)

⊥∀
F for

any i ∈ I . Hence ∀a ∨ x ∈ F for any xi ∈ X and i ∈ I ,
which implies a ∈ (∪i∈IXi)

⊥∀
F . Therefore, (∪i∈IXi)

⊥∀
F =

∩i∈I(Xi)
⊥∀
F .

We will study the lattice structures of two special types
of monadic filters in monadic BL-algebras via monadic co-
annihilators.

Theorem 3.5: Let (L,∀,∃) be a monadic BL-algebra and
F be a monadic filter of (L,∀,∃). Given a nonempty set X
of L, we have

〈X〉∀ 7→ F = X⊥∀
F

in the Heyting algebra (MF [L,∀,∃],∧,∨, 7→, 1, L).
Proof: If a ∈ 〈X〉∀ 7→ F , then 〈a〉∀ ⊆ 〈X〉∀ 7→ F ,

and hence 〈a〉∀ ∩ 〈X〉∀ ⊆ F . For any x ∈ X , we have
∀a ∨ x ∈ 〈∀a ∨ x〉∀ ⊆ 〈a〉∀ ∩ 〈X〉∀ ⊆ F for any x ∈ X ,
and hence ∀a ∨ x ∈ F , which implies a ∈ X⊥∀

F . Thus,
〈X〉∀ 7→ F ⊆ X⊥∀

F .
Conversely, if a ∈ X⊥∀

F , then ∀a ∨ x ∈ F , which implies
a ∈ 〈X〉∀ 7→ F . Thus X⊥∀

F ⊆ 〈X〉∀ 7→ F . Therefore,
〈X〉∀ 7→ F = X⊥∀

F .

Corollary 3.6: Let (L,∀,∃) be a monadic BL-algebra and
F be a monadic filter of (L,∀,∃). Given a monadic filter G
of L, we have

G 7→ F = G⊥∀
F

in the Heyting algebra (MF [L,∀,∃],∧,∨, 7→, 1, L).

In what follows, using monadic co-annihilators, we in-
troduce stable monadic filters relative a nonempty set X in
monadic BL-algebras.

Definition 3.7: Let (L,∀,∃) be a monadic BL-algebra
and F be a monadic filter of (L,∀,∃). Then F is called
a stable monadic filter relative X if X⊥∀

F = F , that
is, 〈X〉∀ 7→ F = F in the complete Heyting algebra
(MF [L,∀,∃],∧,∨, 7→, 1, L).

We will denote the set of all stable monadic filters relative
X of (L,∀,∃) by SXMF [L,∀,∃].

Example 3.8: Let (L,∀,∃) be a monadic BL-algebra and
F = {c, 1} be a moandic filter in Example 3.1. If X = {a},
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then X⊥∀
F = {c, 1} = F , that is, F is stable monadic filter

relative X .

Theorem 3.9: Let (L,∀,∃) be a monadic BL-algebra and
X be a nonempty set of L. Then a stable filter F is stable
relative X if and only if has a form 〈X〉∀ 7→ F in the
complete Heyting algebra (MF [L,∀,∃],∧,∨, 7→, 1, L).

Proof: If F is a stable state filter relative X of (L,∀,∃),
then follows from Definition 3.7 that F = 〈X〉∀ 7→ F for a
nonempty set X of L.

Conversely, if G = 〈X〉∀ 7→ F , then 〈X〉∀ → G =
〈X〉∀ 7→ (〈X〉∀ 7→ F ) = (〈X〉∀ ∧ 〈X〉∀) 7→ F = 〈X〉∀ 7→
F = G. Thus, G is a stable filter relative X of (L,∀,∃).

Applying Theorem 3.9, we have

SXMF [L,∀] = {〈X〉∀ 7→ F |F ∈MF [L,∀]}.

The next result shows that (SXMF [L,∀,∃],⊆) forms a
complete Heyting algebra.

Theorem 3.10: Let (L,∀,∃) be a monadic BL-algebra
and X be a nonempty set of L. Define ∧ and t on
SXMF [L,∀,∃] are as follows: for any 〈X〉∀ 7→ F1, 〈X〉∀ 7→
F2,

(〈X〉∀ 7→ F1) ∧ (〈X〉∀ 7→ F2) = 〈X〉∀ 7→ (F1 ∧ F2) =
〈X〉∀ 7→ (F1 ∩ F2),
(〈X〉∀ 7→ F1) t (〈X〉∀ 7→ F2) = 〈X〉∀ 7→ (F1 ∨ F2) =
〈X〉∀ 7→ 〈F1 ∪ F2}∀.
Then (SXMF [L,∀,∃],∧,t, 7→) is a complete Heyting alge-
bra.

Proof: If {〈X〉∀ 7→ Fi}i∈I ⊆ SXMF [L,∀,∃], then

∧i∈I{〈X〉∀ 7→ Fi}i∈I = 〈X〉∀ 7→ ∧i∈IFi.

Thus (SXMF [L,∀,∃],⊆) is a complete lattice.
Next, we show that 〈X〉∀ 7→ (F1 ∨ F2) is the supremum

of {〈X〉∀ 7→ F1, 〈X〉∀ 7→ F2}. Notice that

〈X〉∀ 7→ F1 ⊆ 〈X〉∀ 7→ (F1 ∨ F2),
〈X〉∀ 7→ F2 ⊆ 〈X〉∀ 7→ (F1 ∨ F2).

Conversely, if 〈X〉∀ 7→ F is any stable monadic filter relative
X of (L,∀,∃) and

〈X〉∀ 7→ F1, 〈X〉∀ 7→ F2 ⊆ 〈X〉∀ 7→ F ,

then 〈X〉∀∧(〈X〉∀ 7→ F1 ⊆ F and 〈X〉∀∧(〈X〉∀ 7→ F2 ⊆ F ,
which implies 〈X〉∀ ∧ F1 ⊆ F and 〈X〉∀ ∧ F2 ⊆ F . Since
Heyting algebra is a distributive lattice, we have

〈X〉∀ ∧ (F1 ∨ F2) = (〈X〉∀ ∧ F1) ∨ (〈X〉∀ ∧ F2) ⊆ F ,

and hence 〈X〉∀ 7→ (F1 ∨ F2) = (〈X〉∀ 7→ (〈X〉∀ ∧ (F1 ∨
F2)) ⊆ 〈X〉∀ 7→ F . Thus, (〈X〉∀ 7→ F1) t (〈X〉∀ 7→
F2) = 〈X〉∀ 7→ (F1 ∨ F2) is the supremum of {〈X〉∀ 7→
F1, 〈X〉∀ 7→ F2}.

Finally, we prove that

F ∧G ⊆ K if and only if F ⊆ G 7→ K

for any F,G,K ∈ SXMF [L,∀,∃]. If F,G,K ∈
SXMF [L,∀,∃], then there exists F1, F2, F3 such that F =
〈X〉∀ 7→ F1, G = 〈X〉∀ 7→ F2, K = 〈X〉∀ 7→ F3.
Clearly, G 7→ K ∈ SXMF [L,∀,∃]. Indeed, G 7→ K =
(〈X〉∀ 7→ F2) 7→ (〈X〉∀ 7→ F3) = (〈X〉∀ ∧ (〈X〉∀ 7→
F2) 7→ F3). Since F2 7→ F3 ∈ MF [L,∀,∃], we have
G 7→ K ∈ SXMF [L,∀,∃]. Also, F ∧ G ⊆ K if and

only if (〈X〉∀ 7→ F1) ∧ (〈X〉∀ 7→ F2) ⊆ 〈X〉∀ 7→ F3

if and only if 〈X〉∀ 7→ (F2 ∧ F2) ⊆ 〈X〉∀ 7→ F3 if and
only if 〈X〉∀ ∧ (〈X〉∀ 7→ F1 ∧ F2) ⊆ F3 if and only if
〈X〉∀∧ (F1∧F2) ⊆ F3 if and only if 〈X〉∀∧F1 ⊆ F2 7→ F3

if and only if 〈X〉∀ ∧ (〈X〉∀ 7→ F1) ⊆ F2 7→ F3 if and
only if 〈X〉∀ 7→ F1 ⊆ 〈X〉∀ 7→ (F2 7→ F3) if and only if
F ⊆ G 7→ K for any F,G,K ∈ SXMF [L,∀,∃].

By using monadic co-annihilators, we introduced involu-
tory monadic filters in monadic BL-algebras.

Definition 3.11: Let (L,∀,∃) be a monadic BL-algebra
and F be a monadic filter of (L,∀,∃). A monadic filter G
of (L,∀,∃) is called an involutory monadic filter relative F
if (G⊥∀

F )⊥∀
F = G.

We will denote the set of all stable monadic filters relative
X of (L,∀,∃) by IFMF [L,∀,∃].

Example 3.12: Let (L,∀,∃) be a monadic BL-algebra
and F = {c, 1} be a monadic filter in Example 3.1. If
F = {c, 1} and G = {1}, then (G⊥∀

F )⊥∀
F = G, that is,

G is stable monadic filter relative F .

Proposition 3.13: Let (L,∀,∃) be a monadic BL-algebra
and F be a monadic filter of (L,∀,∃). For any G,H ∈
IFMF [L,∀,∃], we have that G ∩ H ⊆ F if and only if
H ⊆ G⊥∀

F .
Proof: In the Heyting algebra (MF [L,∀,∃],∧,∨,→),

G ∩ H ⊆ F if and only if H ⊆ G 7→ F for all G,H ∈
MF [L,∀,∃]. From Corollary 3.6, we have G 7→ F = G⊥∀

F .
Thus, G∩H ⊆ F if and only if H ⊆ G⊥∀

F for all F,G,H ∈
MF [L,∀,∃].

Theorem 3.14: Let (L,∀,∃) be a monadic BL-
algebra and F be a monadic filter of (L,∀,∃). Then
(IFMF [L,∀,∃],⊆) is a complete Boolean algebra,
where ∨i∈IGi = (∪i∈IGi)

⊥∀
F )⊥∀

F = (∩i∈I(Gi)
⊥∀
F )⊥∀

F ,
∧i∈IGi = ∩i∈IGi, Gi

⊥∀
F is the complement of G, for all

Gi and G ∈ IFMF [L,∀,∃] and F,L are the bottom and
top elements in IFMF [L,∀,∃], respectively.

Proof: Assume that {Gi|i ∈ I} ⊆ IFMF [L,∀,∃]. Then
we have Gi = ((Gi)

⊥∀
F )⊥∀

F . It follows from Proposition
3.4(7) that

∩i∈IGi = ∩i∈I((Gi)
⊥∀
F )⊥∀

F = (∪i∈I((Gi)
⊥∀
F )⊥∀

F = ∩i∈IGi.

Hence ∩i∈IGi is an involutory monadic filter relative F . It
is easy to check that ∩i∈IGi is the infimum of {Gi|i ∈ I}
in IFMF [L,∀,∃]. Clearly, (∪i∈IGi)

⊥∀
F )⊥∀

F is an involu-
tory monadic filter relative F of (L,∀,∃). Since Gi ⊆
∪i∈IGi ⊆ (∪i∈IGi)

⊥∀
F )⊥∀

F for any i ∈ I , we obtain
that (∪i∈IGi)

⊥∀
F )⊥∀

F is the upper bound of {Gi|i ∈ I} in
IFMF [L,∀,∃]. Thus (IFMF [L,∀,∃],⊆) is a lattice.

Next, let G be any involutory monadic filter relative F and
Gi ⊆ G for all i ∈ I . Then G⊥∀

F ⊆ (Gi)
⊥∀
F for all i ∈ I .

Hence Gi
⊥∀
F ⊆ ∩i∈I(Gi)

⊥∀
F . It follows that

(∪i∈IGi)
⊥∀
F )⊥∀

F = (∩i∈I(Gi)
⊥∀
F )⊥∀

F ⊆ G⊥∀
F )⊥∀

F = G.

Hence (∪i∈IGi)
⊥∀
F )⊥∀

F is the supremum of {Gi|i ∈ I}
in IFMF [L,∀,∃]. Thus (IFMF [L,∀,∃],⊆) is a complete
lattice.

Moreover, by Propositions 3.4(4) and (6), we have F⊥∀
F =

L and L⊥∀
F = F . Hence we can obtain that (F⊥∀

F )⊥∀
F = F

and (L⊥∀
F )⊥∀

F = L, which implies F,L ∈ IFMF [L,∀,∃].
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For all G ∈ IFMF [L,∀,∃], we have F = (G⊥∀
F )⊥∀

F ∩
G⊥∀

F = G ∩ G⊥∀
F ⊆ G by Proposition 3.4(5). Thus, F

and L are the bottom and top elements in IFMF [L,∀,∃],
respectively. Also, by Proposition 3.4(4), we can obtain
G ∩ G⊥∀

F = F . For any G ∈ IFMF [L,∀,∃], we have that
G ∨ G⊥∀

F = ((G ∪ G⊥∀
F )⊥∀

F )⊥∀
F = (G⊥∀

F ∩ G⊥∀
F )⊥∀

F )⊥∀
F =

(G⊥∀
F ∩G)⊥∀

F ) = F⊥∀
F = L, that is, G⊥∀

F is the complement
of G. Thus, (IFMF [L,∀,∃],⊆) is a complemented lattice.

Finally, we shall prove that (IFMF [L,∀,∃],⊆) is also
a distributive lattice. For any G1, G2, G3 ∈ IFMF [L,∀,∃],
let G = (G1 ∩ G2) ∨ (G1 ∩ G3). Then G1 ∩ G2 ⊆ G and
G1∩G3 ⊆ G. It follows that G1∩G2∩G⊥∀

F ⊆ G∩G⊥∀
F = F

and G1 ∩ G3 ∩ G⊥∀
F ⊆ G ∩ G⊥∀

F = F , that is, G2 ∩ (G1 ∩
G⊥∀

F ) ⊆ F and G3 ∩ (G1 ∩G⊥∀
F ) ⊆ F . Then (G2 ∨G3) ⊆

(G1 ∩G⊥∀
F )⊥∀

F ⊆ F . From Proposition 3.13, we obtain that
G2 ⊆ (G1∩G⊥∀

F ) ⊆ F , that is, (G1∩(G2∨G3))∩G⊥∀
F ⊆ F .

Thus, G1∩(G2∨G3) ⊆ (G⊥∀
F )⊥∀

F = G = (G1∩G2)∨(G1∩
G3). Conversely, G1∩G2)∨ (G1∩G3) ⊆ G1∩ (G2∨G3) is
obvious. Hence, we obtain G1∩G2)∨(G1∩G3) = G1∩(G2∨
G3), that is, (IFMF [L,∀,∃],⊆) is a distributive lattice.

Therefore, (IFMF [L,∀,∃],⊆) is a complete Boolean
algebra.

IV. CONCLUSION

Motivated by previous research on monadic BL-algebras,
we discussed the lattice structure of monadic filters in
monadic BL-algebras. Since the above topics are of current
interest, we suggest further directions of research:

1) Introducing and studying polyadic BL-algebras, name-
ly generalizations of monadic BL-algebras given by
polyadic structures.

2) Focusing on varieties of monadic BL-algebras. In
particular, we can investigate locally finite, finitely
approximated and splitting varieties of monadic BL-
algebras as well as varieties with the disjunction and
existence properties.
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