Entropy Generation of Unsteady MHD Couette Flow through Vertical Microchannel with Hall and Ion Slip Effects

Abiodun A. Opanuga, Member, IAENG, Samuel O. Adesanya, Member, IAENG, Sheila A. Bishop, Hilary I. Okagbue, Olasumbo O. Agboola, Member, IAENG

Abstract—In this work, the entropy generation of unsteady hydromagnetic Couette flow through vertical microchannel has been considered, the effects of Hall current and Ion-slip are also examined. One of the plates moves with uniform velocity in the direction of the fluid flow while the other plate is stationary. The partial differential equations governing the flow are obtained and transformed to ordinary differential equations. The obtained solutions for the velocity and energy equations via differential transform technique are used to calculate the entropy generation and Bejan number. The results are presented through plots and discussed. It is noticed that primary velocity decreases with increase in Hall current, ion-slip and magnetic field parameters whereas it increases as rarefaction parameter, wall-ambient temperature difference ratio, Brinkman number and Grashof number increase in values. Also secondary velocity receives a boost with increase in Hall current, Ion-slip, rarefaction parameters, wall-ambient temperature difference ratio, Brinkman and Grashof numbers. Furthermore, entropy generation is minimised as Hall current, Ion-slip and rarefaction parameters increase.

Index Terms— Couette flow, Bejan number, entropy generation, differential transform method (DTM), vertical microchannel.

I. INTRODUCTION

In fluid dynamics, Couette flow refers to flow between two parallel plates in which one of the plates is moving with uniform velocity and the other one held at rest. It was so named in honour of Maurice Marie Alfred Couette who was a Physics Professor at the French University of Angers [1]. Couette flow has applications in engineering, hydrodynamic lubrication, polymer and food processing. Specifically it is applicable in power generating industries where electric energy is produced directly from a moving conducting fluid, plasma industries, nuclear power plants, gas turbines etc. Research work in this direction has been tremendous in view of its significance resulting in the investigation of such flow by numerous researchers. These include Couette flow in horizontal parallel plates [2], Couette flow in vertical parallel plates [3], hydromagnetic Couette flow [4-5], Hall-hydmagnetic Couette flow [6-10], unsteady Couette flow [11-12], mixed convection Couette flow [13-14] and reactive Couette flow [15-17].

The subject of Microchannel flow has become a popular area of research in the past few decades due to its applications in areas such as medical and biomedical fields, computer chips and chemical separations, cooling of electronic devices, micro air vehicles (MAV), micro heat exchanger systems, micro-channel heat sinks, microjet impingement cooling, micro heat pipe and aircraft intake designing. The unique feature of this type of fluid is that the heat dissipated per unit area is directly proportion to the size of the devices; hence the performance of these devices is temperature dependent. In view of this fact, it is pertinent to study the heat transfer characteristics of such fluid flow for accurate prediction of performance during the design process. The Knudsen number \((kn)\) which has been used to classify different flow regimes in microchannel flow is an important quantity, it is the ratio of the molecular mean free path to the characteristic length. Mention may be made of the research studies by authors such as, Weng and Chen [18] who investigated variable physical properties in natural convective gas microflow. Adesanya [19] considered velocity slip and temperature jump effects on free convective vertical porous flow of heat generating fluid. Jha et al. [20] studied suction/injection effect on natural convection flow in vertical Micro-channel. Other related works to this present study are found in the following refs. [21-26].

However, entropy generation is encountered in many energy-related systems and designs, such as microchannel flow devices; and entropy generation diminishes the available work in any system. Factors such as heat transfer, dissipations, radiation, magnetic field etc. are responsible for fluid irreversibility. Since efficient utilization of energy is the principal goal in the design of any system, therefore when factors responsible for entropy generation are determined it will help to upgrade the performance of many industrial and engineering systems and devices. Bejan [27], demonstrated that entropy generation analysis minimization can be accomplished by the application of second law of thermodynamics. Several investigations have been conducted by other researchers to affirm that some flow pertinent parameters can be analyzed to minimize entropy production in any system. Das and Jana [28] studied slip effect on the entropy generation due to MHD flow. Arikoglu

Manuscript received February, 2019; revised October 31, 2019. This work was supported by Covenant University Centre for Research and Innovation (CUCRID), A.A. Opanuga, S.A. Bishop, H.I. Okagbue and O.O. Agboola are with the Department of Mathematics, Covenant University, Ota, Nigeria (e-mail: abiodun.opanuga@covenantuniversity.edu.ng, shiela.bishop@covenantuniversity.edu.ng, olara.okagbue@covenantuniversity.edu.ng). S.O. Adesanya is with the Department of Mathematics, Redeemer’s University, Ede, Nigeria. (e-mail: adesanyaolumide@yahoo.com).
et al. [29] considered the effect of slip on entropy generation in a single rotating disk in MHD flow. Adesanya and Makinde [30] investigated stress irreversibility analysis along an inclined heated plate with adiabatic free surface. Also MHD third grade fluid irreversibility analysis through porous medium was presented by Adesanya and Falade [31]. Others are Ajibade et al. [32], Bouabdib et al. [33], Rashidi and Freidoonimehr [34] and recently Opanuga et al. [35-38]. The aim of this study is the application of second law analysis to vertical microchannel Couette flow with Hall and Ion-slip effects. To the best of authors’ knowledge, no studies have been presented exclusively on the entropy generation analysis of hydromagnetic vertical microchannel Couette flow with Hall and ion-slip effects.

Several techniques have been recorded in literature for solving various models arising from fluid flows. These include techniques such as Revised Variational Iteration Method [39], Laplace-Adomian Pade Method [40], Homotopy Perturbation Technique [41] and Finite Difference Technique [42]. However in this work Differential Transform Technique is applied due to its rapid convergence and simplicity in handling linear and non-linear models.

The rest of the paper is organised as follows: section 2 consists of model formulation, section 3 is devoted to differential transform solution, results and discussion are given in section 4 while section 5 is for the conclusion.

II. ANALYSIS OF MODEL

An unsteady hydrodynamic viscous incompressible Couette flow of electrically conducting fluid past an infinite vertical microchannel plate in the presence of a uniform transverse magnetic field separated by a distance \(h \) is considered. Both the fluid and channel rotate in unison about an axis normal to the plates with a uniform angular velocity \(\Omega \). A Cartesian co-ordinates system with \(x \)-axis vertically upward along the plate in the flow direction is chosen, the \(z \)-axis is perpendicular to the plate and the \(y \)-axis normal to \(xy \)-plane, see Fig. 1. It is assumed that one of the plates moves with a constant velocity in the flow direction in the presence of a transverse magnetic field while the other is stationary. It is further assumed that relatively high electron-atom collision frequency is strong so that the effects of Hall current and ion slip are significant. The plates are asymmetrically heated with one plate maintained at a temperature \(T_1 \) while the other plate is at a temperature \(T_2 \) such that \(T_1 > T_2 \). The flow is fully developed hydrodynamically and thermally, therefore the fluid velocity and the temperature in the channel are functions of \(y \) only.

The governing equations for the fluid flow in the presence of velocity slip and temperature jump under Boussinesq’s approximation are obtained as follows:

\[
\frac{\partial v}{\partial y} = 0 \tag{1}
\]

\[
\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} - 2\Omega w = \nu \left(\frac{\partial^2 u}{\partial y^2} + g \beta (T - T_0) - \frac{\sigma B_0^2}{\rho (1 + m^2)} (u + mw) \right) \tag{2}
\]

\[
\frac{\partial w}{\partial t} + v \frac{\partial w}{\partial y} + 2\Omega u = \nu \left(\frac{\partial^2 w}{\partial y^2} + \frac{\sigma B_0^2}{\rho (1 + m^2)} (mu - w) \right) \tag{3}
\]

\[
\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial y} = k \left(\frac{\partial^2 T}{\partial y^2} + \mu \left(\frac{\partial u}{\partial y} + \frac{\partial w}{\partial y} \right)^2 \right) + \frac{\sigma B_0^2}{\rho C_p (1 + m^2)} \left(u^2 + w^2 \right) \tag{4}
\]

![Fig 1: Flow Configuration](image)

Introducing the following time-independent similarity and dimensionless variables,

\[
\eta = \frac{y}{2\sqrt{vt}}, u = \frac{Uf(\eta)}{v}, w = \frac{Ug(\eta)}{v}, \theta(\eta) = \frac{T - T_0}{T_1 - T_0},
\]

\[
Pr = \frac{v}{\nu}, \gamma_s = -c\sqrt{\frac{v}{v}}, K = 8\Omega^* t, Gr = 4g \beta (T_w - T_0) \frac{U}{h^2},
\]

\[
H^2 = \frac{4\sigma \nu B_0 t}{\rho}, Br = \frac{\mu U^2}{kh^2 (T_1 - T_0)}, \beta_v = \frac{2 - F_v}{F_v},
\]

\[
\beta_l = \frac{2 - F_l}{F_l} \frac{1}{1 + \frac{1}{Pr} \frac{\gamma_s}{\gamma_s}}, K_n = \frac{\lambda}{b},
\]

\[
\xi = \frac{T_2 - T_0}{T_1 - T_0}, \ln = \frac{\beta_l}{\beta_v},
\]

equations (2)-(4) reduce to

\[
f^* + 2(\eta + c) f' - K^2 g + Gr \theta - \frac{H^2}{(1 + m^2)} (f + mg) = 0 \tag{6}
\]

\[
g^* + 2(\eta + c) g' + K^2 f + \frac{H^2}{(1 + m^2)} (mf - g) = 0 \tag{7}
\]

\[
\theta^* + 2\Pr (\eta + c) \theta' + Br \left((f')^2 + (g')^2 \right) + \frac{H^2}{(1 + m^2)} (f^2 + g^2) = 0 \tag{8}
\]

The dimensionless boundary conditions that describe the slip velocity and temperature jump at fluid-wall interface are [43]
\[f(0) = \beta_1 Kn g(0), \quad g(0) = \beta_1 Kn g'(0), \]
\[\theta(0) = \xi + \beta_2 Kn \ln \theta'(0), \quad f(1) = -\beta_1 Kn g'(1), \quad g(1) = -\beta_1 Kn g'(1), \quad \theta(1) = 1 - \beta_1 Kn \ln \theta'(1) \]

where \(R^2 \) is the uniform transverse magnetic field, \(u, w \) are velocity components, \(f, g \) are dimensionless velocity, \(U \) is the characteristic velocity, \(h \) is channel width, \(F_n, F_r \) are thermal and tangential momentum accommodation coefficients, respectively, \(\ln \) is fluid–wall interaction parameter, \(K \) is rotation parameter, \(k \) is coefficient of thermal conductivity, \(Kn \) is Knudsen number, \(m \) is Hall current parameter, \(H \) is Hartmann number, \(Pr \) is Prandtl number, \(T \) is fluid temperature, \(T_0 \) is reference temperature, \(Br \) is Brinkman number, \(c \) is suction parameter, \(\lambda \) is molecular mean free Path, \(g \) is acceleration due to gravity, \(E_{ce} \) is local volumetric entropy generation rate, \(Be \) is Bejan number, \(C_p, C_v \) are specific heats at constant pressure and volume respectively, \(N_s \) is dimensionless entropy generation parameter, \(\rho \) is fluid density, \(\beta_1, \beta_3 \), are dimensionless variables, \(\gamma_s \) is ratio of specific heats, \(\mu \) is coefficient of viscosity, \(\xi \) is wall-ambient temperature difference ratio, \(\sigma \) is electrical conductivity, \(\Omega \) is temperature difference, \(\Omega^* \) is angular velocity, \(\beta \) is coefficient of thermal expansion and \(\alpha \) is thermal diffusivity.

III. SOLUTION PROCEDURE

In Table 1, the basic definitions and properties of differential transform technique relevant to this work are presented

<table>
<thead>
<tr>
<th>Table 1: Operations and Properties of Differential Transform Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original function</td>
</tr>
<tr>
<td>(f(y) = \frac{d^{n+m}y}{dy^{n}})</td>
</tr>
<tr>
<td>(f(y) = \frac{d^{n+m}y}{dy^{n}})</td>
</tr>
<tr>
<td>(f(y) = u^2)</td>
</tr>
<tr>
<td>(f(y) = \left(\frac{du}{dy} \right)^2)</td>
</tr>
</tbody>
</table>

In applying DTM, the stated properties in Table 1 are invoked to transform the differential equations (6)-(8) which yield the following recursive relations:

\[\begin{align*}
G(n+2) = & \frac{1}{(n+2)!} \\
& \frac{-2\eta(n+1)G(n+1)}{G(n+1) + 2K^2G(n) - Gr(n)} \\
& + \frac{2K^2}{1 + m^2} (F(n) + mG(n)) \\
\end{align*} \]

\[\theta(n+2) = \frac{1}{(n+2)!} \left[-2\eta(n+1)G(n+1) - 2c(n+1) \right. \\
- \left. 2\eta(n+1)G(n+1) + 2c(n+1)G(n+1) - 2K^2F(n) \right. \\
- \left. \frac{n^2}{1 + m^2} (mF(n) - G(n)) \right] \]

\[\Theta(n+2) = \frac{1}{(n+2)!} \left[-2Pr(n+1)\Theta(n+1) - 2cPr(n+1)\Theta(n+1) \right. \\
+ \left. \sum_{i=0}^{n} (t+1)(n-t+1)F(n-t+1)F(n-t+1) \right] \\
& + \left. \sum_{i=0}^{n} (t+1)(n-t+1)G(t+1)G(n-t+1) \right] \\
& - \left. \frac{BrH^2}{1 + m^2} \right. \\
& \left. \sum_{i=0}^{n} (G(t)F(n-t) + G(n-t)F(t)) \right] \]

Note \(F(n), \ G(n) \) and \(\Theta(n) \) are the dimensionally transformed functions of \(f(y), g(y) \) and \(\theta(y) \) respectively, they are given as

\[f(y) = \sum_{n=0}^{\infty} \gamma^n F(n), \quad g(y) = \sum_{n=0}^{\infty} \gamma^n G(n), \]

\[\theta(y) = \sum_{n=0}^{\infty} \gamma^n \Theta(n) \]

The following are the initial conditions chosen based on the model

\[F(0) = a_1, \quad F'(1) = a_2, \quad G(0) = a_1, \quad G'(1) = a_2, \quad \Theta(0) = a_1, \quad \Theta'(1) = a_2 \]

Equations (13) are substituted into equations (10)-(12) to determine the values of \(F(n), G(n) \) and \(\Theta(n) \) for \(n = 0,1,\ldots \), recursively. The values of \(F(n), G(n) \) and \(\Theta(n) \) for \(n = 0,1,\ldots \), are further substituted into equations (13) to obtain the following series solution in the form:

\[f(y) = \sum_{n=0}^{\infty} \gamma^n F(k), \quad g(y) = \sum_{n=0}^{\infty} \gamma^n G(n), \]

\[\theta(y) = \sum_{n=0}^{\infty} \gamma^n \Theta(n) \]

The transformed form of boundary conditions are invoked on (15) to obtain the values of all the unknown coefficients given in (14).

Finally equations (10-14) are coded in symbolic Maple software to yield the approximate solution. The results are presented in Figures 2-36.

The entropy generation for the model is given as following Bejan [27].

\[E_s = \frac{k}{T_0} \left(\frac{\partial T}{\partial y} \right)^2 + \frac{\mu}{T_0} \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \]

\[\sigma B^2 \left(w^2 + u^2 \right) \]

Using equation (5) in (16) yields
The ratio of heat transfer irreversibility \((N_1)\) to fluid friction irreversibility \((N_2)\) is stated as
\[
\Phi = \frac{N_2}{N_1}
\]
(18)

However, Bejan number gives the alternative entropy generation distribution ratio parameter; it describes the ratio of heat transfer irreversibility \((N_1)\) to the total entropy generation \((N_S)\) due to heat transfer and fluid friction
\[
Be = \frac{N_1}{N_S} = \frac{1}{1+\Phi}, \quad \Phi = \frac{N_2}{N_1}.
\]
(19)

IV. RESULTS AND DISCUSSION

In this section, the description of the graphical results of some thermophysical parameters for velocity, temperature, entropy generation and Bejan number are presented. The following reference values are chosen for the computations \(Pr = 0.71, \Omega = 1, c = 0.25\) while the intervals for the parameters are \(0 \leq \beta \nu Kn \leq 0.1, \quad 0 \leq \xi \leq 0.1, \quad 1 \leq Br \leq 5, \quad 0.5 \leq K \leq 1.5, \quad 0.1 \leq m \leq 0.5, \quad 0.4 \leq H \leq 2, \quad \text{and} \quad 0.5 \leq Gr \leq 1.5\).

Validation of this present work is presented in Table 2 by comparing the exact solution and the differential transform solution of the temperature profile in equation (8).

Table 2: Comparison of exact solution and DTM solution for \(Pr = 0.71, c = 0.25, Br = 0, H = 0\)

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>EXACT SOLUTION</th>
<th>DTM SOLUTION</th>
<th>ABSOLUTE ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.505277111</td>
<td>0.505277111</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.60198292</td>
<td>0.60198292</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.682960592</td>
<td>0.682960592</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.750768137</td>
<td>0.750768137</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.807547531</td>
<td>0.807547531</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.855092381</td>
<td>0.855092381</td>
<td>9.99201×10^{-16}</td>
</tr>
<tr>
<td>0.6</td>
<td>0.894904584</td>
<td>0.894904584</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.92824177</td>
<td>0.92824177</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.956157029</td>
<td>0.956157029</td>
<td>1.55431×10^{-15}</td>
</tr>
<tr>
<td>0.9</td>
<td>0.956157029</td>
<td>0.979532178</td>
<td>0.023375149</td>
</tr>
<tr>
<td>1</td>
<td>0.999105617</td>
<td>0.999105617</td>
<td>9.99201×10^{-16}</td>
</tr>
</tbody>
</table>

Figures 2 and 3 depict the variation in fluid primary and secondary velocity as Hall parameter takes higher values. In Hall current, there is a drift of charged particles leading to the reduction in the conductivity of current parallel to the electric field which induces current in the direction normal to both electric and magnetic fields. In view of this it is therefore observed that primary velocity decelerates while secondary velocity is enhanced. This result confirms the usual nature of Hall current which is to induce fluid flow in the secondary flow direction. Furthermore, in Figure 4 fluid temperature is unaffected by the variation in Hall current parameter, however a slight reduction in the entropy is noticed with the increasing values of Hall parameter in the entire channel as illustrated in Figure 5. Figure 6 depicts the influence of Hall current on Bejan number, it is clearly depicted that Bejan number is enhanced with increase in Hall parameter which points to the fact that heat transfer irreversibility is stronger than fluid friction irreversibility. It is noteworthy that Bejan number is not affected in the region \(\eta = 0.85\) and \(\eta = 0.95\).

Fig 2: Primary velocity profile for various values of \(m\)

\[\beta \nu Kn = 0.05, \quad K = 2, \quad Br = 0.5, \quad \xi = 0.5, \quad H = 2.5, \quad Gr = 1\]

Fig 3: Secondary velocity profile for various values of \(m\)
The effect of Ion-slip on fluid velocity, fluid temperature, entropy generation and irreversibility ratio is illustrated in Figures 7-11. In Figure 7 there is a significant reduction in fluid velocity as Ion-slip parameter increases while a reverse phenomenon is experienced in Figure 8. Coriolis force is responsible for such observation as it tends to reduce fluid velocity in the primary flow direction whereas it has reverse effect on the fluid velocity in the secondary flow direction. Figure 9 indicates that increase in Ion-slip parameter does not have any significant impact on fluid temperature, however the effect becomes more pronounced as the values of K increase. Entropy generation is found to reduce with increasing values of Ion-slip parameter as depicted in Figure 10, on the other hand Bejan number is enhanced almost in the entire channel except at $\eta = 0.95$. It can be deduced that fluid entropy generation is mainly contributed by heat transfer irreversibility.
The influence of rarefaction parameter on fluid velocity, temperature, entropy generation and Bejan is depicted in Figures 12 to 16. It is observed in Figures 12 and 13 that fluid motion is accelerated significantly as \(Kn \) increases. This can be traced to the fact that a rise in the values of \(Kn \) accelerates fluid particles slip at the channel wall thereby discouraging the retardation effect of the wall. Furthermore, increasing the rarefaction parameter brings about an increase in the temperature jump and this reduces the amount of heat transfer from the microchannel surfaces to the fluid. In Figures 14, 15 and 16 fluid temperature, entropy generation and Bejan number are reduced as \(Kn \) increases. Specifically in Figure 14 the reduction is only noticed at the point \(\eta > 0.3 \) whereas entropy generation is experienced between \(0 \leq \eta \leq 0.3 \) and \(\eta > 0.9 \) as displayed in Figure 15. Figure 16 depicts a point where Bejan number is unaffected by the increase in the values of rarefaction parameter \(Kn \). It is concluded that fluid friction irreversibility becomes the major contributor to entropy generation as \(Kn \) takes higher values.
Fig 14: Temperature profile for various values of β, Kn

$K = 2, \ m = 0.5, \ \zeta = 0.5, \ Br = 0.5, \ H = 2.5, \ Gr = 1,$

$\Omega = 1$

Fig 15: Entropy generation for various values of β, Kn

$K = 2, \ m = 0.5, \ \zeta = 0.5, \ Br = 0.5, \ H = 2.5, \ Gr = 1,$

$\Omega = 1$

Fig 16: Bejan number for various values of β, Kn

Next is the influence of wall-ambient temperature difference ratio (ζ) on fluid motion, fluid temperature, entropy generation and Bejan number. It is noted in Figures 17, 18 and 19 that primary velocity, secondary velocity and fluid temperature are enhanced as wall-ambient temperature difference ratio (ζ) increases. However increase in wall-ambient temperature difference ratio (ζ) reduce the entropy generation and Bejan number as displayed in Figures 20 and 21. This is an indication that fluid friction irreversibility is the major contributor to entropy generation.

$m = 0.5, \ \beta, Kn = 0.05, \ K = 2, \ Br = 0.5, \ H = 2.5,$

$Gr = 1$
Furthermore, the effect of Brinkman number on fluid velocity, temperature, entropy generation and Bejan number is displayed in Figures 22-26. For various values of Brinkman number (Br) the primary velocity, secondary velocity, fluid temperature and entropy generation in Figures 22, 23, 24 and 25 increase. The term which represents the Brinkman number in the energy equation is a strong source of heat, therefore an increase in Brinkman number increases the velocity, temperature and entropy generation of the fluid. On the other hand, it is shown in Figure 26 that Bejan number increases in the region $0 \leq \eta < 0.2$ but reduces in the region $0.2 < \eta \leq 1$. This indicates that heat irreversibility dominates entropy generation within the interval $0 \leq \eta < 0.2$ while fluid friction irreversibility is dominant at $0.2 < \eta \leq 1$.

Fig 20: Entropy generation for various values of ξ

Fig 21: Bejan number for various values of ξ

Fig 22: Primary velocity profile for various values of Br

Fig 23: Secondary velocity profile for various values of Br

Fig 24: Temperature profile for various values of Br
Fig 25: Entropy generation for various values of Br

η vs Ns

Fig 26: Bejan number for various values of Br

η vs Be

Fig 27: Primary Velocity Profile for various values of H

η vs f

Fig 28: Secondary Velocity Profile for various values of H

η vs g

Fig 29: Temperature Profile for various values of H

η vs θ

The influence of Hartman number is depicted in Figures 27-31. Figures 27 and 28 reveal that fluid velocity is brought under control by increasing the Hartman number. Application of magnetic field in the perpendicular direction to the flow of fluid induces an opposing force in the flow direction, this is as a result of the effect of Lorentz force. The Lorentz force has the tendency to retard fluid motion when the magnetic field value is enhanced. In Figures 29 fluid temperature rises slightly leading to a rise in fluid entropy generation as depicted in Figure 30. A rise in Bejan number is noticed in Figure 31 with increasing values of the magnetic parameter, which is an indication that the entropy generation observed in Figure 30 is contributed by heat transfer irreversibility.
Finally, the response of fluid velocity, temperature, entropy generation and Bejan number to a rise in the values of Grashof number is displayed in Figures 32-36. Primary velocity, secondary velocity, fluid temperature and entropy generation increase with an enhancement in Grashof number as depicted in Figures 32-35, while in Figure 36 Bejan number registers a decrease as Grashof number increases, which indicates that fluid friction irreversibility dominates entropy generation. However a slight rise in Bejan number is noticed at the upper wall of the channel.
m = 0.5, βkn = 0.05, Br = 0.5, ξ = 0.5, K = 2, H = 2.5, Ω = 1

Table 3: Skin Friction for different values of Pr and m where c = 0.25 , K = 1, Gr = 5, βkn = 0.05

<table>
<thead>
<tr>
<th>Pr</th>
<th>m</th>
<th>f'(0)</th>
<th>f'(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.044</td>
<td>0.1</td>
<td>-0.149124</td>
<td>-0.452826</td>
</tr>
<tr>
<td>0.71</td>
<td>0.1</td>
<td>-0.170389</td>
<td>-0.425957</td>
</tr>
<tr>
<td>0.71</td>
<td>0.4</td>
<td>-0.167496</td>
<td>-0.225808</td>
</tr>
</tbody>
</table>

Table 4: Nusselt Number for different values of Pr and m where c = 0.25 , Br = 1, H = 5, ξ = 0.5 , ln = 0.1 βkn = 0.05

<table>
<thead>
<tr>
<th>Pr</th>
<th>m</th>
<th>θ'(0)</th>
<th>θ'(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.044</td>
<td>0.1</td>
<td>0.549974</td>
<td>0.425245</td>
</tr>
<tr>
<td>0.71</td>
<td>0.1</td>
<td>1.309208</td>
<td>-0.292143</td>
</tr>
<tr>
<td>0.71</td>
<td>0.4</td>
<td>1.305925</td>
<td>-0.284209</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This research work has addressed the entropy generation analysis of unsteady hydromagnetic Couette flow through vertical microchannel with the influence of Hall current and Ion-slip. The resulting non-linear differential equations from the model are solved analytically using differential transform technique. The main summary of this work are outlined below:

- Fluid primary velocity decreases with increase in Hall Current, ion-slip and magnetic field parameters and increases with rarefaction parameter, wall-ambient temperature difference ratio parameter, Brinkman and Grashof numbers,
- Secondary velocity increases with increase in Hall current, ion-slip and rarefaction parameters, wall-ambient temperature difference ratio parameter, Brinkman and Grashof numbers, but is retarded with increase in magnetic field parameter,
- Temperature profile is unaffected by Hall current, however it increases as wall-ambient temperature difference ratio parameter, Brinkman number, magnetic field parameter and Grashof number take higher values. The reverse phenomenon is observed as rarefaction parameter increases,
- Entropy generation is minimised as Hall current, ion-slip, rarefaction and wall-ambient temperature difference ratio parameters increase but increases with a rise in Brinkman number, magnetic field parameter and Grashof number,
- Entropy generation is contributed by both fluid friction and heat transfer irreversibilities.

ACKNOWLEDGMENT

Authors appreciate anonymous reviewers for their invaluable comments.

REFERENCES

