
Abstract—The aim of this paper is to study the dynamical
behavior of solutions for a class of 3-species ratio-dependent
predator-prey model with feedback controls and delays. Firstly,
the attractivity of positive solutions for the system is discussed
by using the Lyapunov stability theory. Secondly, some
conditions are established to guarantee the globally asymptotic
stability of the unique positive periodic solution for the
corresponding periodic system by constructing a suitable
Poincare mapping and using the fixed point theory. Finally,
some numerical simulations are provided to verify the results
obtained in this paper.

Index Terms—Ratio-dependent, Feedback control, Time
delays, Global attractive, Periodic solution

1. INTRODUCTION

he attractiveness and periodicity of biological systems
are very important in the study of population dynamics.

The traditional Lotka-Volterra predator-prey model has been
studied by many scholars and has been achieved a lot of
research results [1-4], but it is assumed that the average
growth rate of predators depends only on the population
density of the prey population. In recent years, with the
deepening on research for ecological population models,
especially considering predators which share or compete for
food, scholars have found a more realistic and universal
predator-prey model, that is, a "rate-dependent" predator-
prey model [5-10]. This means that the average rate of
predator growth should be a function of the ratio of predator
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population density to the predator population density. This
theory has been proved by some scholars, but relatively few
achievements have been made. Arditi and Ginzburg [5]

firstly proposed the following ratio-based predator-prey
model

[ ] ,

,

cxyx x a bx
my x
fxy y d

my x

     


        

(1)

which incorporates mutual interference by predators, where

( ) ( )g x cx my x  is a Michaelis-Menten type functional

response function. System (1) has been studied by many
scholars, for detailed introduction and justifications of
system (1), we refer the reader to (e.g., see [5, 6, 9, 10]). In
2004, Wang et al. [7] studied the following nonautonomous
ratio-based predator-prey system with two competing prey
predated by one predator
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and showed that system (2) is permanent and globally
asymptotically stable under some appropriate conditions. For
the periodic and almost periodic case, they obtained some
conditions for the existence, uniqueness and stability of a
positive periodic and almost periodic solution respectively.
In the real world, any biological or environmental parameter
is naturally affected by temporal fluctuations. Consequently,
more realistic models of population interactions should be
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taken into account the effect of time delays. See for example
[11-14] and the references cited therein. In 2001, Xu and
Chen [11] studied the following delayed nonautonomous
three-species predator-prey Lotka-Volterra system
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and proved that the system (3) is uniformly persistent under
appropriate conditions. Moreover, by constructing a suitable
Lyapunov functional, sufficient conditions are derived for the
global stability of the system (3). In 2005, Muhammadhaji et
al. in [14] discussed the following nonautonomous three-
species Lotka-Volterra competitive-mutualism systems with
time delays
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and obtained some sufficient conditions on the boundedness,
permanence and global attractivity for the system (4).
Moreover, Xu et al. in [15] studied the following three-
species predator-prey food-chain model both with time
delays and ratio-dependent functions
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and proved that the system (5) is uniformly persistent under
some appropriate conditions. In addition, some sufficient
conditions are derived for the global asymptotic stability of

the positive equilibrium of the system (5) by means of
constructing suitable Lyapunov functional.

On the other hand, in the real ecosystem, the biological
population is often affected by some unpredictable factors
that affect the biological parameters of the population, such
as birth rate, mortality and other factors. Therefore, it is
necessary to add feedback control to the model to study the
influence of feedback control on the persistence and global
stability of the system, and provide theoretical support for the
protection of ecological population. More results see for
example [16-20] and references cited therein. In 2003, K.
Gopalsamy et al. in [16] studied the following two species
competition system with feedback controls
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and obtained some conditions for the existence of a global
attracting positive equilibrium point of the system. In [18],
Nie et al. consider the following non-autonomous predator-
prey Lotka-Volterra system with feedback controls
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and studied whether the feedback controls have an influence
on the permanence of a positive solution of the general
non-autonomous predator-prey Lotka-Volterra type systems,
at the same time established the general criteria on the
permanence of system (7), which is independent of some
feedback controls. In addition, by constructing a suitable
Lyapunov function, some sufficient conditions are obtained
for the global stability of any positive solution to system (7).
In 2015, Xu and Chen [19] investigated the following
Lotka-Volterra cooperative system with time delays and
feedback controls
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and obtained some new sufficient conditions for the
permanence of system (8) by applying new inequalities.
Their results showed that the feedback control variables had
no influence on the permanence of the system (8). In 2016,
Wang et al. [20] studied a ratio-dependent Lotka-Volterra
predator-prey model with feedback control
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where ( ) ( 1, 2,3)ix t i  denote the density of the i-th

species, ( ) ( 1, 2)ir t i  denote the intrinsic growth rate of

the prey species, 3( )r t are the death rate of the predators,

11 21( ), ( )a t a t denote the internal competitive coefficient of

the first and second species respectively. Authors obtained
some sufficient conditions which guaranteed the global
attractive of positive solution for the predator-prey model by
constructing suitable Lyapunov function and developing
some new analysis techniques. For more recent related work,
please also refer to the references [21-24].

However, to the best of the authors knowledge, until today,
there are no scholars still consider the general non-
autonomous Lotka-Volterra system with time delays,
ratio-dependent and feedback controls. Therefore, based on
system (5) and motivated by the above works, in this paper,
we propose and investigate the following 3-species
multi-delay ratio-dependent biological chain predator-prey
model with feedback controls
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where ( ) ( 1, 2,3)ix t i  denote the density of the i-th

species, 1( )r t denote the intrinsic growth rate of the prey

species, ( ) ( 2,3)ir t i  are the death rate of the predators,

11( )a t denote the internal competitive coefficient of the first

species, 1
12 13 23( ), ( ), ( )a t a t a t shows the ratio of prey by

predator, 1
21 31 32( ), ( ), ( )a t a t a t represents the nutrient

absorption ratio of predator after predation, 2 2
23 32( ), ( )a t a t

are the competitive coefficient of species 2 ( )x t and 3( )x t ,

( ) ( 1, 2,3)iu t i  are the feedback control terms, and

1 2 3 4, , , 0     are constant delays. All of the coefficients

in the model are continuous and positive bounded functions
defined on [0, ) . This system describes the predator-

prey relationships among three species in which the second
species prey on the first species, the third species prey on the
second and the first species.

Due to the biological interpretation of the system (10), it is
reasonable to consider only positive solution of (10), in other
words, to take admissible initial conditions
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where  1 2 3 4max , , , }.     Obviously, the solutions

of system (10) with the initial values (11) are positive for all
0t  .

The structure of this paper is as follows: In Section 2, the
conditions ensuring the permanence of the system (10) are
provided. In Section 3, some sufficient conditions are derived
to guarantee the globally attractive of positive solution for the
system (10) relying on a non-negative Lyapunov function . In
Section 4, the global asymptotic stability of the unique
positive periodic solution for the corresponding periodic
system are discussed by constructing a suitable Poincare
mapping and using the fixed point theory. Last but not least,
some numerical simulations are provided to verify the results
obtained in this paper.

2. PRELIMINARIES AND NOTATIONS

To discuss the global attractivity of positive solution of the
system (10), some definitions and lemmas are firstly
introduced. For a continuous bounded function ( )g t defined
on [0, ) , we let
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Lemma 3 [26]. Assume that the system (10) satisfies the
initial conditions (11) and following conditions
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then the system (10) is permanent.

3. GLOBAL ATTRACTIVITY

In this section, we shall prove that the system (10) is global
attractivity. To get the sufficient conditions for global
attractivity of system (10), we give firstly the following
definition and Lemma.
Definition 2. System (10) is said to be globally attractive, if

there exists a positive solution 1 2 3( ) ( ( ), ( ), ( ),X t x t x t x t

1 2 3( ), ( ), ( ))u t u t u t of the system (10) such that

lim ( ) ( ) 0,  

lim ( ) ( ) 0,  ( 1, 2,3),

i it

i it

x t y t

u t v t i




 

  

for any other positive solution 1 2 3( ) ( ( ), ( ), ( ),Y t y t y t y t

1 2 3( ), ( ), ( ))v t v t v t of the system (10).

Lemma 4 (see [27], Lemma 8.2). If the function

( ) :f t R R  is uniformly continuous, and the limit

0
lim ( )

t

t
f s ds

  exists and is finite, then lim ( ) 0
t

f t


 .
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Theorem 1. In addition to 1 7( ) ( )H H , assume further

that system (10) satisfies 8( ) 0,  0,  1, 2,3,i iH A B i  
where
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m m
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
 

   
 

     
Then system (10) is globally attractive.

Proof. Suppose that 1 2 3 1 2( ( ), ( ), ( ), ( ), ( ),x t x t x t u t u t

3( ))u t and 1 2 3 1 2 3( ( ), ( ), ( ), ( ), ( ), ( ))y t y t y t v t v t v t are

any two positive solutions of the system (10). Then from

Lemma 3, there exist positive constants , , ,  i i i iM N m n

( 1, 2,3)i  and T , such that ( ), ( ) ,i i i im x t y t M 

( ), ( ) ,  1, 2,3,i i i in u t v t N i   for all t T .

We define
3

1
1

( ) [ ln ( ) ln ( ) ( ) ( ) ].i i i i
i

V t x t y t u t v t


   
Calculating the upper right derivative of 1( )V t along the
solution of system (10), we get
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Now we define a Lyapunov function as follows

1 2( ) ( ) ( )V t V t V t  ，

where
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Calculating the upper right derivative of 2 ( )V t and from (12),
we have
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Thus, for all t T   , we have
3

1
( ) ( ( ) ( ) ( ) ( ) ).i i i i i i

i
D V t A x t y t B u t v t



    
(14)

In view of the conditions 8( )H of Theorem 1, there exist a

constant 0  and *T T   such that it holds that
0,  0,  ( 1, 2,3),i iA B i      (15)

for all *t T . Integrating from *T to t on both sides of
(14). Then use (15), we have

*

3

1
*

( ) ( [ ( ) ( )

( ) ( ) ]) ( ) .

t

i iT
i

i i

V t x s y s

u s v s ds V T




 

    

 (16)

Therefore, ( )V t bounded on *[ , )T  , and we have

*

3

1

( )( [ ( ) ( ) ( ) ( ) ]) .i i i iT
i

V Tx t y t u t v t ds






     
(17)
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By (17), we have
3

1

1
( ( ) ( ) ( ) ( ) ) ( , ).i i i i

i
x t y t u t v t L T



    
(18)

By Lemma 3, we can obtain that ( ) ( ) , ( ) ( ) ,i i i ix t y t u t v t 

1, 2,3i  and their derivatives remain bounded on *[ , )T  ,

and ( ) ( ) , ( ) ( ) ,i i i ix t y t u t v t  1,2,3i  are uniformly

continuous on *[ , )T  . By Lemma 4 , we can conclude

that

lim ( ) ( ) 0,  lim ( ) ( ) 0,  1, 2,3.i i i it t
x t y t u t v t i

 
    

This completes the proof, and the solutions of system (10) are
globally attractive.

4. PERIODIC SOLUTION

If all coefficients of the system (10) are positive
continuous periodic functions, the system (10) becomes a
periodic system. In this section, we will use the fixed point
theory and some new analytical methods to obtain the
existence, uniqueness and stability conditions of the positive
period solution of the system (10). For the sake of
convenience, a lemma is firstly given.

Lemma 5 (See [28]). Let nS R be convex and compact. If

mapping :T S S is continuous, then there exists a fixed

point. I.e., there exists *x S such that * *( )T x x .

Theorem 2. Assume that the system (10) is a  -periodic

and satisfies conditions 1 8( ) ( )H H , then the system (10)

has a positive unique  -periodic solution, which is globally
asymptotically stable.
Proof. According to the existence and uniqueness theorem of
solutions of functional differential equations, we can define a

Poincare mapping 6 6:T R R  as follow

0 0( ) ( , , )T X X t X
where

0 1 2 3 1 2 3( , , ) ( ( ), ( ), ( ), ( ), ( ), ( ))X t X x t x t x t u t u t u t 
be a positive solution of the system (10) with the initial
conditions (11). And define

6
1 2 3 1 2 3( , , , , , ) , ,

, 1, 2, 3
i i i

i i i

x x x u u u R m x M
S

n u N i
      

    

then it is obvious that 6S R is a convex and compact set.

By the Lemma 3 and the continuity of solution of system (10)
with respect to the initial conditions (11), the mapping

:T S S is continuous. Furthermore, it is not difficult to
show that the system (10) has a positive unique  -periodic
solution, which is globally asymptotic stability by using the
Lemma 5 and Theorem 1.

5. NUMERICAL SIMULATION

In this section, some numerical simulations are given to
support our theoretical analysis. Due to the periodic growth
of the population and the periodicity of the growth
environment, we select the appropriate periodic function to
verify the results obtained in this paper. As an example, we
consider the following 3-species delayed ratio-dependent
predator-prey system with feedback controls
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(7.6 0.1sin ) ( )

(2 0.5sin
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t x t x t

t x t
t x t x t
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

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

 
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  
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
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 

  

 




&

3 1 3

2 3

3 2 3

2 4

3

1 1

1

2

) ( ) ( )
(3.5 0.5sin ) ( )

(2.6 0.1sin ) ( ) ( )
(0.25 0.05sin ) ( )
(0.45 0.05sin ) ( )],

( ) (1.5 0.2cos ) (0.7 0.2sin ) ( )
(0.15 0.05sin ) ( ),

( ) (4.5 0.5cos

t x t x t
t x t

t x t x t
t x t
t u t

u t t t u t
t x t

u t t


 

 
 


 




 

 


  

  

 

   

 

 

&

& 2

2

3 3

3

) (4.05 0.05sin ) ( )
(1.5 0.5sin ) ( ),

( ) (3 0.5cos ) (5.45 0.05sin ) ( )
(1.5 0.5sin ) ( ).

t u t
t x t

u t t t u t
t x t




 







































  


 
    

 

&

(19)

By calculating, we have
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1 2 3

1 2 3

1.800,  1.354,  1.173,  
4.120,  1.250,  0.648,

M M M
N N N

  

  

1 2 3

1 2 3
1

31 32 3 3 3

21 2 2 2

1 12 12 13 13 1 1

2 2 2

3 3 3 3 3 3

2

1.105,  0.856,  0.525,  
1.5672,  0.315,  0.028,

8.024,  

5.675,

6.231,

 1.292,   

0.154,  0.0112,  

m m m l

m m l

l m l m l m

l m

l m l m

l

m m m
n n n

a a d N r

a d N r

r a b a b d N

e q M

e q M d n r

d

  

  

   

  

   

 

   
1

2 2 23 23 0.158.  m m ln r a b  
It is easy to show that the systems (19) satisfy the conditions
of Theorem 1 and Theorem 2. It follows from Theorem 1
that the system (19) is global attractivity. By Theorem 2, the
system (19) has a positive unique -periodic solution, which
is globally asymptotic stability. By employing the software
package MATLAB 7.1, we can obtain the numerical
solutions of the system (19) which are shown in Fig.1 and
Fig.2. From Fig.1, it is not difficult to find that the system (19)
is globally attractive. Fig.2 shows that the dynamic behavior
of solutions for the systems (19).
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Fig. 1. The numerical solution of systems (19) with the
different initial conditions
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Fig. 2. The dynamic behavior of solutions for systems (19)

6. CONCLUSION

A class of ratio-dependent predator-prey system with
feedback control and delays is proposed and studied. By
using the comparison theorem and some new analytical
methods, appropriate Lyapunov functions are constructed,
and some sufficient conditions are obtained to ensure the
global attractivity of positive solutions for the system.
Furthermore, by defining Poincare mappings and using
Brouwer fixed point theorem, some conditions for the
existence, uniqueness and stability of positive periodic
solutions for the corresponding periodic systems are obtained.
Finally, some numerical solutions of the equations describing
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the system are given to confirm that the obtained criteria are
new, general, and easily verifiable.

Time delay and feedback control are very common
phenomena in ecosystem, but some scholars have not studied
these problems profoundly. The time delay and feedback
control terms added in this paper are relatively simple and
cannot reflect more general ecosystems, but they are the
focus of our future research, including the extension of
multiple time delays to infinite time delays. By analyzing the
delay system with the feedback control, it can be found that
the feedback control item has influence on the stability of the
original system. Consequently, some species in ecosystems
can be controlled to maintain ecosystem balance and
sustainable development, which is also the practical
significance of this paper
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