Domination and Independence Parameters in the Total Graph of Zn with respect to Nil Ideal

Arijit Mishra, Kuntala Patra

Abstract—For any non-reduced ring \mathbb{Z}_n , the total graph of \mathbb{Z}_n with respect to nil ideal, denoted by $T(\Gamma_N(\mathbb{Z}_n))$, is a simple, undirected graph having vertex set \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$, where $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 = 0\}$ denotes the nil ideal of \mathbb{Z}_n . In this paper, we attempt to find the domination and independence numbers, domatic number and independence domination numbers of $T(\Gamma_N(\mathbb{Z}_n))$ and $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, the complement of the total graph of \mathbb{Z}_n . We also obtain the number of γ -sets and independent sets of these graphs.

Index Terms—Total Graph, Nil Ideal, Domination Number, Independence Number.

I. INTRODUCTION

I N the year 2008, the total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was first introduced by Anderson and Badawi [4] as a simple undirected graph with vertex set R and two distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$, where Z(R) denotes the set of all the zero-divisors of R. One can find extensive literature on total graphs and its variants in [2, 4, 5, 6, 8, 10, 11, 12].

Back in the year 2003, P. W. Chen [9] introduced a kind of graph structure of a commutative ring R having vertex set R and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where N(R) denotes the set of all the nil elements of the ring R. This concept was later modified by Ai-Hua Li and Qi-Sheng Li [3] who defined it as an undirected simple graph $\Gamma_N(R)$ with vertex set $Z_N(R)^* =$ $\{x \in R^* \mid xy \in N(R) \text{ for some } y \in R^* = R - \{0\}\}$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$ or $yx \in N(R)$.

The total graph of the non-reduced commutative ring \mathbb{Z}_n , denoted by $T(\Gamma_N(\mathbb{Z}_n))$, is a simple undirected graph with all the elements of \mathbb{Z}_n as vertices and two distinct vertices x and y are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$, where $N(\mathbb{Z}_n)$ denotes the set of all the nil elements of \mathbb{Z}_n , i.e. $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 = 0\}.$

II. PRELIMINARIES

Let G = (V, E) be any graph having vertex set V and edge set E. For any vertex v, the open neighbourhood of v is $N(v) = \{u \in V : uv \in E\}$, while the closed neighbourhood of v is $N[v] = \{v\} \cup N(v)$. A non-empty subset S of the vertex set V of a graph is called a dominating set if every vertex in V - S is adjacent to at least one vertex in S. The domination number γ of a graph G is defined to be the minimum cardinality of a dominating set in G and the corresponding dominating set is called a γ -set of G. The partition of the vertex set V(G) of a graph G into dominating sets is called a *domatic partition* of G. The maximum number of such partitions is called the *domatic number* of G and is denoted by d(G). A graph G is said to be *domatically full* if $d(G) = \delta(G) + 1$. A graph G is called *excellent* if for every vertex v of G, there exist a γ -set containing v. A dominating set S of the vertex set V of a graph G is said to be a *perfect dominating set* if every vertex in V - S is adjacent to exactly one vertex in S. The minimum cardinality of a perfect dominating set is called the *perfect domination number* of the graph and is denoted by $\gamma_n(G)$. The maximum number of sets into which the vertex set of a graph G can be partitioned in such a way that each partition is a perfect dominating set is called the *perfect domatic number* of the graph and is denoted by $d_p(G)$. A set of vertices in a graph is said to be *independent* if no two vertices in that set are adjacent. The maximum cardinality of an independent set of a graph G is called the *independence number* of the graph G and is denoted by $\beta_0(G)$. A dominating set S of a graph G is said to be an independent dominating set if no two vertices of S are adjacent. The *independence domination number*, denoted by i(G), is the minimum cardinality of an independent dominating set. The maximum number of partitions of the vertex set of a graph G into minimum dominating sets is called the independent domatic number of G and is denoted by $d_{ind}(G)$ A non-empty subset S of the vertex set V(G) of a graph G is said to be a *clique* dominating set of G if S is a dominating set and the induced subgraph $\langle S \rangle$ of S is complete. The minimum cardinality among all the clique dominating sets of G, denoted by $\gamma_{cl}(G)$, is called the *clique domination number* of G. A graph is said to be well-covered if every maximal independent set has the same size. Alternatively, a graph G is said to be wellcovered if $i(G) = \beta_0(G)$.

A ring is said to be *non-reduced* if it contains at least one non-zero nil element, otherwise it is said to be *reduced*.

III. GRAPHICAL STRUCTURE OF $T(\Gamma_N(\mathbb{Z}_n))$

In this section, we obtain the basic graphical structure of the total graph $T(\Gamma_N(\mathbb{Z}_n))$ of \mathbb{Z}_n with respect to its nil ideal $N(\mathbb{Z}_n)$. This new graph structure is a part of one of our previous papers (not yet communicated) where we have defined $T(\Gamma_N(\mathbb{Z}_n))$ as an undirected simple graph of the non-reduced ring \mathbb{Z}_n having vertex set \mathbb{Z}_n and any two distinct vertices x and y are adjacent if and only if $x+y \in N(\mathbb{Z}_n)$, where $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 = 0(modn)\}$. Here $T_{N(\mathbb{Z}_n)}$ and $T_{\overline{N(\mathbb{Z}_n)}}$ denote the induced subgraphs of $T(\Gamma_N(\mathbb{Z}_n))$ whose vertex sets are $N(\mathbb{Z}_n)$ and $\overline{N(\mathbb{Z}_n)}$ respectively, where $\overline{N(\mathbb{Z}_n)} = \mathbb{Z}_n - N(\mathbb{Z}_n)$. Also, throughout this section, we use the following notations: $\alpha = |N(\mathbb{Z}_n)|$ and $\beta = |\mathbb{Z}_n - N(\mathbb{Z}_n)|$.

Manuscript received: November 8, 2019; Revised: July 27, 2020, Arijit Mishra, Department of Mathematics, Gauhati University, Guwahati, Assam, India, Tel: +91-75779-34803, Email: mishraarijit1012@gmail.com, Kuntala Patra, Department of Mathematics, Gauhati University, Guwahati, Assam, India, Tel: +91-94351-13745, Email: kuntalapatra@gmail.com

Theorem 3.1 :

(i) Let $R = \mathbb{Z}_n$ be non-reduced and $N(\mathbb{Z}_n)$ be the set of all the nil elements of \mathbb{Z}_n . Then $T_{N(\mathbb{Z}_n)}$ is a complete subgraph of $T(\Gamma_N(\mathbb{Z}_n))$ and $T_{N(\mathbb{Z}_n)}$ is disjoint from $T_{\overline{N(\mathbb{Z}_n)}}$.

(ii) Let $R = \mathbb{Z}_n$ and let n_1 be the smallest non-zero nil element of \mathbb{Z}_n . Then

(1) If |R| is odd, then $T_{\overline{N(R)}} = (\frac{n_1-1}{2})K_{\frac{n}{n_1},\frac{n}{n_1}}$. (2) If |R| is even, then $T_{\overline{N(R)}} = K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} - 1)K_{\frac{n}{n_1},\frac{n}{n_1}}$. (iii) Let $R = \mathbb{Z}_n$ and n_1 be the smallest non-zero nil element of \mathbb{Z}_n . Then

(1) If |R| is odd, then $T(\Gamma_N(R)) = K_{\frac{n}{n_1}} \cup (\frac{n_1-1}{2}) K_{\frac{n}{n_1},\frac{n}{n_1}}$. (2) If |R| is even, then $T(\Gamma_N(R)) = 2K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} -$ $1)K_{\frac{n}{n_1},\frac{n}{n_1}}$

Proof:

(i) Since the ring $R = \mathbb{Z}_n$ is commutative, so $N(\mathbb{Z}_n)$ is an ideal of \mathbb{Z}_n . Thus $\forall x, y \in N(\mathbb{Z}_n), x + y \in N(\mathbb{Z}_n)$. Consequently all the vertices of $T_{N(\mathbb{Z}_n)}$ are adjacent to each other and therefore $T_{N(\mathbb{Z}_n)}$ is a complete subgraph of $T(\Gamma_N(\mathbb{Z}_n))$). The second part of the result is clear from the definition.

(ii) (1) Let |R| be odd. Then each $x_i \in N(\mathbb{Z}_n), \forall i =$ $1, 2, ..., \frac{n}{n_1}$ is adjacent to each other since N(R) is an ideal of R. Thus the set of vertices N(R) forms the clique $K_{\frac{n}{n_1}}$. Again, for $u_i \in R \ \forall \ u_i = 1, 2, ..., \frac{n_1 - 1}{2}$ such that $2u_i \notin$ N(R), the elements of the cosets $u_i + \overline{N}(R)$ are adjacent to the elements of the cosets $(ln_1 - u_i) + N(R)$, for $l \in \mathbb{Z}^+$ since $(u_i + r_1) + (ln_1 - u_i + r_2)$, for some $r_1, r_2 \in N(R)$, gives $(u_i + ln_1 - u_i) + (r_1 + r_2) = ln_1 + (r_1 + r_2) \in N(R).$ However for each *i*, the elements of the cosets $u_i + N(R)$ are not adjacent to each other since $(u_i + r_1) + (u_i + r_2) =$ $(u_i + u_i) + (r_1 + r_2) \notin N(R)$, since $u_i + u_i = 2u_i \notin$ N(R). Thus, $(u_i + N(R)) \cup ((ln_1 - u_i) + N(R))$ is the complete bipartite graph $K_{\frac{n}{n_1},\frac{n}{n_1}}$. Also, for some $y_i \in R$ such that $y_i \neq u_i$, if the elements of the cosets $y_i + N(R)$ are adjacent to the elements of the cosets $u_i + N(R)$, then $u_i + y_i \in N(R)$ and thus, $y_i + N(R) = (ln_1 - u_i) + N(R)$. Hence, $(u_i + N(R)) \cup ((ln_1 - u_i) + N(R))$ forms $\frac{n_1 - 1}{2}$ disjoint complete bipartite graphs $K_{\frac{n}{n_1},\frac{n}{n_1}}$.

(2) Let |R| be even. Here again, the vertices of the set N(R) form the clique $K_{\frac{n}{n_1}}$, since N(R) is an ideal of R. Also, for the smallest non-zero nil element n_1 of R, the vertices of the coset $\frac{n_1}{2} + N(R)$ having cardinality $\frac{n}{n_1}$ are adjacent to each other since for some $r_1, r_2 \in N(R), (\frac{n_1}{2} +$ $r_1) + \left(\frac{n_1}{2} + r_2\right) = \left(\frac{n_1}{2} + \frac{n_1}{2}\right) + \left(r_1 + r_2\right) = n_1 + \left(r_1 + r_2\right) \in$ N(R) since N(R) is an ideal of R. Thus the vertices of the coset $\frac{n_1}{2} + N(R)$ form the clique $K_{\frac{n}{n_1}}$.

Again, for $u_i \in R \ \forall \ u_i = 1, 2, ..., \frac{n_1}{2} - 1$, such that $u_i + u_i = 1, 2, ..., \frac{n_1}{2} - 1$ $u_i = 2u_i \notin N(R)$, the elements of the cosets $u_i + N(R)$ having cardinality $\frac{n}{n_1}$ are not adjacent to each other, but are adjacent to the elements of the cosets $(ln_1 - u_i) + N(R)$. Thus, $(u_i + N(R)) \cup ((ln_1 - u_i) + N(R))$ forms the complete bipartite graph $K_{\frac{n}{n_1},\frac{n}{n_1}}$. For any $y_i \in R$ such that $y_i \neq u_i$, if the elements of the cosets $y_i + N(R)$ are adjacent to the elements of the cosets $u_i + N(R)$, then $u_i + y_i \in N(R)$ and thus, $y_i + N(R) = (ln_1 - u_i) + N(R)$. Consequently, for each $i = 1, 2, \dots, \frac{n_1}{2} - 1, (u_i + N(R)) \cup ((ln_1 - u_i) + N(R))$ forms disjoint complete bipartite graphs $K_{\frac{n}{n_1},\frac{n}{n_1}}$. Thus, we can write, $T_{\overline{N(R)}} = K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} - 1) K_{\frac{n}{n_1}, \frac{n}{n_1}}$

(iii) Since $T_{N(R)}$ is the complete graph $K_{\frac{n}{n_1}}$, the result easily follows by (ii). \square

Example 3.2: Let us consider the non-reduced ring \mathbb{Z}_{16} . The nil elements of \mathbb{Z}_{16} are $\{0, 4, 8, 12\}$. Fig 1 shows that the total graph of \mathbb{Z}_{16} with respect to its nil ideal is a disjoint union of two K_4 's and $\left(\frac{4}{2}-1\right) K_{4,4}$.

Similarly, the nil elements of the non-reduced ring \mathbb{Z}_9 are $N(\mathbb{Z}_9) = \{0, 3, 6\}$. The total graph of \mathbb{Z}_9 with respect to $N(\mathbb{Z}_9)$, as shown in Fig 2, is a disjoint union of a K_3 and $\left(\frac{3-1}{2}\right) K_{3,3}.$

Corollary 3.3: From theorem 3.1 (iii), it is obvious that for any $x \in V(T(\Gamma_N(\mathbb{Z}_n)))$,

$$deg(x) = \begin{cases} \frac{n}{n_1}, \text{ if } x \in K_{\frac{n}{n_1}, \frac{n}{n_1}}, \\ \frac{n}{n_1} - 1, \text{ if } x \in K_{\frac{n}{n_1}}. \end{cases} \square$$

Having obtained the structure of $T(\Gamma_N(\mathbb{Z}_n))$, we now characterize the domination parameters of $T(\Gamma_N(\mathbb{Z}_n))$ in the following section.

IV. DOMINATION PROPERTIES OF $T(\Gamma_N(\mathbb{Z}_n))$

Theorem 4.1: For any non-reduced \mathbb{Z}_n , if $|N(\mathbb{Z}_n)| = \alpha =$ $\frac{n}{n_1}$, where n_1 is the smallest non-zero nil element of \mathbb{Z}_n , then $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = n_1.$

Proof : Let us consider two cases here:

Case 1: Let n be even. Then $T(\Gamma_N(\mathbb{Z}_n)) = 2K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} - K_{\frac{n}{n_1}})$ $1)K_{\frac{n}{n_1},\frac{n}{n_1}}$.

Clearly, the γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality contains $1 + 1 + (\frac{n_1}{2} - 1).2$, i.e. n_1 vertices.

Case 2: Let n be odd. Then $T(\Gamma_N(\mathbb{Z}_n)) = K_{\frac{n}{n!}} \cup$ $\left(\frac{n_1-1}{2}\right)K_{\frac{n}{n_1},\frac{n}{n_1}}$

The γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality contains $1 + (\frac{n_1-1}{2}) \cdot 2$, i.e. n_1 vertices. Therefore, in both the cases, $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = n_1$.

Having obtained the number of vertices in a minimum dominating set of $T(\Gamma_N(\mathbb{Z}_n))$, we now proceed to find out the number of such minimum dominating sets.

Theorem 4.2: For any non-reduced \mathbb{Z}_n , the total number of γ -sets of $T(\Gamma_N(\mathbb{Z}_n)) = (\alpha)^{\frac{n}{\alpha}}$, where $\alpha = |N(\mathbb{Z}_n)|$.

Proof : For any value of n such that n is not squarefree, any γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ contains $(\frac{n}{\alpha})$ vertices. Also, each vertex x_i in any γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ has α choices. So the total number of γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ is $\underbrace{^{\alpha}C_{1} \times^{\alpha}C_{1}}_{i} \times \ldots \times^{\alpha}C_{1}_{i}, i.e. \ (\alpha)^{\frac{n}{\alpha}}.$ \square

 $\left(\frac{n}{\alpha}\right)$ Alternatively, the total number of γ -sets of $T(\Gamma_N(\mathbb{Z}_n)) =$ $\left(\frac{n}{n_1}\right)^{n_1}$ since $\alpha = \frac{n}{n_1}$.

Example 4.2.1: In Fig.2, we have n = 9. Here $n_1 = 3$ which is the smallest non-zero nil element of \mathbb{Z}_9 . The different γ -sets of this graph are $\{0, 1, 2\}$, $\{0, 1, 5\}$, $\{0, 1, 8\}$, $\{0, 4, 2\}$, $\{0, 4, 5\}$, $\{0, 4, 8\}$, $\{0, 7, 2\}$, $\{0, 7, 5\}$, $\{0, 7, 8\}$, $\{3, 1, 2\}$, $\{3, 1, 5\}$, $\{3, 1, 8\}$, $\{3, 4, 2\}$, $\{3, 4, 5\}$, $\{3, 4, 8\}$, $\{3, 7, 2\}$, $\{3, 7, 5\}$, $\{3, 7, 8\}$, $\{6, 1, 2\}$, $\{6, 1, 5\}$, $\{6, 1, 8\}$, $\{6, 4, 2\}$, $\{6, 4, 5\}$, $\{6, 4, 8\}$, $\{6, 7, 2\}$, $\{6, 7, 5\}$ and $\{6, 7, 8\}$.

Clearly each of these γ -sets contains $3(=n_1)$ vertices and there are $27(=(\frac{n}{n_1})^{n_1}) \gamma$ -sets in all.

The following theorem characterizes all the γ -sets of $T(\Gamma_N(\mathbb{Z}_n))$ for any non-reduced \mathbb{Z}_n .

Theorem 4.3: Let $S = \{x_1, x_2, x_3, ..., x_{n_1}\} \subset V(T(\Gamma_N(\mathbb{Z}_n)))$, where n_1 is the smallest non-zero nil element of \mathbb{Z}_n . Then S is a γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ if and only if $x_i + N(\mathbb{Z}_n)$ form distinct cosets of $\frac{\mathbb{Z}_n}{\mathbb{Z}_n \times \mathbb{Z}_n}$ for each $x_i \in S$.

if $x_i + N(\mathbb{Z}_n)$ form distinct cosets of $\frac{\mathbb{Z}_n}{N(\mathbb{Z}_n)}$ for each $x_i \in S$. **Proof:** Let $S = \{x_1, x_2, x_3, ..., x_{n_1}\}$ be a γ -set of $T(\Gamma_N(\mathbb{Z}_n))$. If possible, suppose that there exist distinct $x_i, x_j \in S$, such that $x_i + N(\mathbb{Z}_n) = x_j + N(\mathbb{Z}_n)$. Then $x_i \equiv x_j (modn_1)$. Thus each vertex adjacent to x_i is also adjacent to x_j and so S is not a γ -set of $T(\Gamma_N(\mathbb{Z}_n))$, a contradiction. Therefore each $x_i + N(\mathbb{Z}_n)$ forms distinct cosets of $\frac{\mathbb{Z}_n}{N(\mathbb{Z}_n)}$, for each $x_i \in S$.

Conversely, let $x_i + N(\mathbb{Z}_n)$ form distinct cosets for each $x_i \in S$. Each $x_i \in S$ is adjacent to each element of the coset $(ln_1-x_i)+N(\mathbb{Z}_n)$, where $l = 1, 2, ..., \frac{n}{n_1}$. Also, $|(ln_1-x_i)+N(\mathbb{Z}_n)| = n_1$ and |N[S]| = n. Clearly, S is a dominating set, where $|S| = n_1$. By theorem 4.1, S is a γ -set. \Box

Corollary 4.4: For any non-reduced \mathbb{Z}_n , if $|\frac{\mathbb{Z}_n}{N(\mathbb{Z}_n)}| = \mu$, then $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = \mu$.

Corollary 4.5: From theorem 4.1, since $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = n_1$, where n_1 is the smallest non-zero nil element of \mathbb{Z}_n , so $|\frac{\mathbb{Z}_n}{N(\mathbb{Z}_n)}| = n_1$.

Theorem 4.6: For any non-reduced \mathbb{Z}_n , $\gamma_p(T(\Gamma_N(\mathbb{Z}_n))) = n_1$.

Proof: Since the γ -set $S = \{0, 1, ..., n_1 - 1\}$ contains vertices such that each vertex in $\mathbb{Z}_n \setminus S$ is adjacent to exactly one vertex in S, so the set S is a perfect dominating set. Also S, being a γ -set, has minimum cardinality. Thus, $\gamma_p(T(\Gamma_N(\mathbb{Z}_n))) = n_1$.

Theorem 4.7: For any non-reduced \mathbb{Z}_n ,

(i) $T(\Gamma_N(\mathbb{Z}_n))$ is an excellent graph.

(ii) $d(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1}$.

(iii) $T(\Gamma_N(\mathbb{Z}_n))$ is domatically full $\forall n \in \mathbb{N}$.

(iv) For any non-reduced \mathbb{Z}_n , $d_p(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1}$.

Proof: (i) Since each vertex of \mathbb{Z}_n is a part of a γ -set of $T(\Gamma_N(\mathbb{Z}_n))$, so the result follows immediately.

(ii) Since each γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ contains n_1 vertices, therefore $d(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1}$.

(iii) From (ii) and Corollary 3.3, since $d(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1}$ and $\delta(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1} - 1$, so $d(T(\Gamma_N(\mathbb{Z}_n))) = \delta(T(\Gamma_N(\mathbb{Z}_n))) + 1$. Hence the result follows.

(iv) The result is obvious since $d_p(T(\Gamma_N(\mathbb{Z}_n))) = \frac{|V(T(\Gamma_N(\mathbb{Z}_n)))|}{\gamma_p(T(\Gamma_N(\mathbb{Z}_n)))} = \frac{n}{n_1}$.

^{$\gamma_p(T(\Gamma_N(\mathbb{Z}_n)))$} r_1 From Example 4.2.1, the three γ -sets $\{0, 1, 2\}$, $\{3, 4, 5\}$ and $\{6, 7, 8\}$ form disjoint partitions the vertex set of the ring \mathbb{Z}_9 . So $d(T(\Gamma_N(\mathbb{Z}_9))) = 3 = \frac{9}{3} = \frac{n}{n_1}$. Also, since each vertex of \mathbb{Z}_9 is a part of a γ -set, so $T(\Gamma_N(\mathbb{Z}_9))$ is an excellent graph.

Theorem 4.8:

(i) For each $x_i \in \gamma$ -set of $T(\Gamma_N(\mathbb{Z}_n))$ such that $x_i \notin N(\mathbb{Z}_n)$, but $2x_i \in N(\mathbb{Z}_n)$, the vertices of the coset $x_i + N(\mathbb{Z}_n)$

 $N(\mathbb{Z}_n)$ form disjoint complete graphs.

(ii) For some γ -set $S = \{x_1, x_2, ..., x_{n_1}\}$ of $T(\Gamma_N(\mathbb{Z}_n))$ and $r \in N(\mathbb{Z}_n)$, the vertices in the coset r + S are adjacent if and only if the vertices in S are adjacent.

(iii) For each $x_i \in \gamma$ -set of $T(\Gamma_N(\mathbb{Z}_n))$ such that neither x_i nor $2x_i \in N(\mathbb{Z}_n)$, the vertices of the cosets $x_i + N(\mathbb{Z}_n)$ and $(ln_1 - x_i) + N(\mathbb{Z}_n)$ form disjoint complete bipartite graphs, for $l \in \mathbb{Z}^+$, where n_1 is the smallest non-zero nil element.

Proof : (i) For $x_i \notin N(\mathbb{Z}_n)$ such that $2x_i \in N(\mathbb{Z}_n)$ and for some $r_1, r_2 \in N(\mathbb{Z}_n)$, $(x_i+r_1)+(x_i+r_2) = 2x_i+(r_1+r_2) \in$ $N(\mathbb{Z}_n)$. Thus the vertices of the cosets $x_i + N(\mathbb{Z}_n)$ form a complete graph. Also, for some $y_i \notin x_i \notin N(\mathbb{Z}_n)$ such that $2y_i \in N(\mathbb{Z}_n)$, $(x_i + r_1) + (y_i + r_2) = (x_i + y_i) + (r_1 +$ $r_2) \notin N(\mathbb{Z}_n)$. So the vertices of the cosets $x_i + N(\mathbb{Z}_n)$ and $y_i + N(\mathbb{Z}_n)$ are disjoint. Consequently for each *i*, the cosets $x_i + N(\mathbb{Z}_n)$ form disjoint complete graphs.

(ii) For some $x_i, x_j \in S$, let the vertices $r+x_i$ and $r+x_j$ in the coset r+S be adjacent. Then $(x_i+r)+(x_j+r) \in N(\mathbb{Z}_n)$ $\Rightarrow (x_i+x_j)+(r+r) \in N(\mathbb{Z}_n) \Rightarrow x_i+x_j \in N(\mathbb{Z}_n)$. Thus x_i is adjacent to x_2 in S. Conversely, let x_i be adjacent to x_j in S. Then $x_i+x_j \in N(\mathbb{Z}_n) \Rightarrow (x_i+r)+(x_j+r) \in N(\mathbb{Z}_n)$. Thus the result follows.

(iii) For each ¢ $N(\mathbb{Z}_n)$ such x_i that $2x_i \notin N(\mathbb{Z}_n)$, the vertices of the cosets $x_i + N(\mathbb{Z}_n)$ adjacent to every vertex of the are cosets $(ln_1 - x_i) + N(\mathbb{Z}_n)$, since $(x_i + r_1) + (ln_1 - x_i) + r_2 =$ $(x_i + ln_1 - x_i) + (r_1 + r_2) = ln_1 + (r_1 + r_2) \in N(\mathbb{Z}_n),$ for some $r_1, r_2 \in N(\mathbb{Z}_n)$. Also, since $(x_i + r_1) + (x_i + r_2) =$ $2x_i + (r_1 + r_2) \notin N(\mathbb{Z}_n)$, so the vertices of the coset $x_i + N(\mathbb{Z}_n)$ are not adjacent to each other. Consequently, $\{x_i + N(\mathbb{Z}_n)\} \cup \{(ln_1 - x_i) + N(\mathbb{Z}_n)\}$ form disjoint complete bipartite graphs.

Theorem 4.9: For any non-reduced \mathbb{Z}_n , let S be any γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ and let x_1 and x_2 be any two distinct vertices of $T(\Gamma_N(\mathbb{Z}_n))$ such that $x_2 \in x_1 + N(\mathbb{Z}_n)$. If a vertex $u \in$ x_1+S is adjacent to a vertex $v \in x_2+S$, then each vertex of the coset $x_1 + S$ is adjacent to a vertex in the coset $x_2 + S$.

Proof: Let $u \in x_1 + S$ be adjacent to $v \in x_2 + S$. Then $u + v \in N(\mathbb{Z}_n)$. Let u + v = r, for some $r \in N(\mathbb{Z}_n)$. Then $r = u + v \in x_1 + x_2 + S$. Now let $u' \in x_1 + S$ and $v' \in V(T(\Gamma_N(\mathbb{Z}_n)))$ such that $u' + v' \in N(\mathbb{Z}_n)$.

 $\Rightarrow u' + v' = ln_1$, for some $l \in \mathbb{Z}^+$ and n_1 is the smallest non-zero nil element of \mathbb{Z}_n .

 $\Rightarrow x_1 + s' + v' = ln_1$, for some $s' \in S$

$$\Rightarrow v' = ln_1 - x_1 - s'$$

 $\Rightarrow v'=l_1n_1+l_2n_1-x_1-s',$ for some $l_1,l_2\in\mathbb{Z}^+$ such that $l=l_1+l_2$

 $\Rightarrow v' = (x_1 + l_1 n_1) + (l_2 n_1 - 2x_1 - s') \in x_2 + S.$

Thus each vertex of the coset $x_1 + S$ is adjacent to a vertex of the coset $x_2 + S$.

We now find out the independence number and its variants associated to the graph $T(\Gamma_N(\mathbb{Z}_n))$ in the following section.

V. INDEPENDENCE PARAMETERS OF $T(\Gamma_N(\mathbb{Z}_n))$

Theorem 5.1: Let \mathbb{Z}_n be non-reduced and let n_1 be the smallest non-zero nil element of \mathbb{Z}_n . Then $\beta_0(T(\Gamma_N(\mathbb{Z}_n))) = \begin{cases} 2 + \frac{n}{2} - \frac{n}{n_1}, \text{ if } n \text{ is even} \\ 1 + \frac{n}{2} - \frac{n}{2n_1}, \text{ if } n \text{ is odd} \end{cases}$ **Proof :** As in theorem 3.1 (iii) ,when n is even, since

 $T(\Gamma_N(\mathbb{Z}_n)) = 2K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} - 1)K_{\frac{n}{n_1},\frac{n}{n_1}}$, so the independent set of $T(\Gamma_N(\mathbb{Z}_n^n))$ of maximum cardinality contains $1 + 1 + (\frac{n_1}{2} - 1) \cdot \frac{n_1}{n_1}$, i.e. $2 + \frac{n_2}{2} - \frac{n_1}{n_1}$ vertices.

Therefore
$$\beta_0(T(\Gamma_N(\mathbb{Z}_n))) = 2 + \frac{n}{2} - \frac{n}{2}$$
.

Similarly, when n be odd, the independent set of $T(\Gamma_N(\mathbb{Z}_n))$ of maximum cardinality contains $1 + (\frac{n_1-1}{2}) \cdot \frac{n}{n_1}$, i.e. $1 + \frac{n}{2} - \frac{n}{2n_1}$ vertices. Therefore, $\beta_0(T(\Gamma_N(\mathbb{Z}_n))) = 1 + \frac{n}{2} - \frac{n}{2n_1}$.

Unlike the number of γ -sets of $T(\Gamma_N(\mathbb{Z}_n))$, the number of maximum independent sets of $T(\Gamma_N(\mathbb{Z}_n))$ differs in accordance with the parity of n, as evident from the following theorem.

Theorem 5.2: Let \mathbb{Z}_n be non-reduced and n_1 be the smallest non-zero nil element of \mathbb{Z}_n . Then the total number of maximum independent sets of $T(\Gamma_N(\mathbb{Z}_n))$ is given by

- $\begin{cases} (\frac{n}{n_1})^2 . (\sqrt{2})^{n_1 2}, \text{ if } n \text{ is even} \\ \frac{n}{n_1} . (\sqrt{2})^{n_1 1}, \text{ if } n \text{ is odd} \end{cases}$

Proof: Let n be even. Since $T(\Gamma_N(\mathbb{Z}_n)) = 2K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} 1)K_{\frac{n}{n_1},\frac{n}{n_1}}$, so each vertex x_i in the maximum independent set of $T(\Gamma_N(\mathbb{Z}_n))$ has $\frac{n}{n_1}$ choices if $x_i \in K_{\frac{n}{n_1}}$, and 2 choices if $x_i \in K_{\frac{n}{n_1},\frac{n}{n_1}}$. So the total number of maximum independent sets = $\frac{n_1, n_1}{n_1}C_1 \times \frac{n}{n_1}C_1 \times \underbrace{{}^2C_1 \times {}^2C_1 \times \dots \times {}^2C_1}_{\frac{n_1}{2}-1}$

$$= (\frac{n}{n_1})^2 . (\sqrt{2})^{n_1 - 2}$$

Again, let *n* be odd. Then $T(\Gamma_N(\mathbb{Z}_n)) = K_{\frac{n}{n_1}} \cup$ $(\frac{n_1-1}{2})K_{\frac{n}{n_1},\frac{n}{n_1}}$, so each vertex x_i in the maximum independent set of $T(\Gamma_N(\mathbb{Z}_n))$ has $\frac{n}{n_1}$ choices, if $x_i \in K_{\frac{n}{n_1}}$, and 2 choices, if $x_i \in K_{\frac{n}{n_1},\frac{n}{n_1}}$. So the total number of maximum independent sets = $\frac{\sum_{n=1}^{n} C_1}{n_1} \times \underbrace{\frac{2C_1 \times 2C_1 \times ... \times 2C_1}{\sum_{n=1}^{n}}}_{n_1-1}$ =

$$\frac{n}{n_1} \cdot (\sqrt{2})^{n_1 - 1}$$
.

 \square

The following theorem characterizes all the maximum independent sets of $T(\Gamma_N(\mathbb{Z}_n))$ for any non-reduced \mathbb{Z}_n .

Theorem 5.3: Let $S \subset V(T(\Gamma_N(\mathbb{Z}_n))))$. Then S is a β_0 -set of $T(\Gamma_N(\mathbb{Z}_n))$ if and only if for each $x_i \in S$ such that $x_i \notin N(\mathbb{Z}_n), \frac{n_1}{2} + N(\mathbb{Z}_n)$, the coset $x_i + N(\mathbb{Z}_n) \in S$.

Proof: Let n be even.

Let $S \subset V(T(\Gamma_N(\mathbb{Z}_n)))$ be a β_0 -set of $T(\Gamma_N(\mathbb{Z}_n))$. For any $x_i \in N(\mathbb{Z}_n)$ such that $x_i \in S$, the vertex x_i is adjacent to the vertices of the cos t $x_i + N(\mathbb{Z}_n)$ since $x_i + (x_i + x_i)$ r_1 = $2x_i + r_1 \in N(\mathbb{Z}_n)$, for some $r_1 \in N(\mathbb{Z}_n)$. So for $x_i \in S$, the coset $x_i + N(\mathbb{Z}_n) \notin S$. Again, for $x_i = \frac{n_1}{2} \in S$, where n_1 is the smallest non-zero nil element, the vertex $\frac{n_1}{2}$ is adjacent to the vertices of the coset $\frac{n_1}{2} + N(\mathbb{Z}_n)$, since $\frac{n_1}{2} + (\frac{n_1}{2} + r_1) = n_1 + r_1 \in N(\mathbb{Z}_n)$, for some $r_1 \in N(\mathbb{Z}_n)$. So for $\frac{n_1}{2} \in S$, the coset $\frac{n_1}{2} + N(\mathbb{Z}_n) \notin S$. Again, for any $x_i \in S$ such that $1 \le x_i \le (\frac{n_1}{2} - 1)$, the elements of the coset $x_i + N(\mathbb{Z}_n) \in S$, since $x_i + (x_i + r_1) = 2x_i + r_1 \notin N(\mathbb{Z}_n)$. Similarly, for any $(ln_1 - x_i) \in S$, $l \in \mathbb{Z}^+$, the elements of the coset $(ln_1 - x_i) + N(\mathbb{Z}_n) \in S$. Conversely, since $x_i + N(\mathbb{Z}_n) \in S$, so $|S| = (\frac{n_1}{2} - 1) \cdot \frac{n}{n_1} + 1 + 1 = \frac{n}{2} - \frac{n}{n_1} + 2$ and from theorem 5.1, S is a β_0 -set.

The case for odd values of n can be proven similarly. \Box

Having obtained the domination and independence properties associated to $T(\Gamma_N(\mathbb{Z}_n))$, the following set of results are immediate.

Theorem 5.4: If n_1 denotes the smallest nonzero nil element of \mathbb{Z}_n , then $i(T(\Gamma_N(\mathbb{Z}_n)))$

$$2 + \frac{n}{2} - \frac{n}{n_1}$$
, if *n* is even
 $1 + \frac{n}{2} - \frac{n}{n_1}$ if *n* is odd

 $1 + \frac{n}{2} - \frac{n}{2n_1}$, if *n* is odd **Proof**: Let *n* be even. Then the independent set *S* of $T(\Gamma_N(\mathbb{Z}_n))$ with $|S| = 2 + \frac{n}{2} - \frac{n}{n_1}$, obtained by choosing one vertex from each $K_{\frac{n}{n_1}, \frac{n}{n_1}}$ and $\frac{n}{n_1}$ vertices from each $K_{\frac{n}{n_1}, \frac{n}{n_1}}$ is also a dominating set. Hence S is an independent dominating set. Also, for any $x \in S$, the set $S - \{x\}$ is not dominating. Thus, S is a minimal independent dominating set. Therefore, for any even n, $i(T(\Gamma_N(\mathbb{Z}_n))) = 2 + \frac{n}{2} - \frac{n}{n_1}$. Similarly, when *n* is odd, $i(T(\Gamma_N(\mathbb{Z}_n))) = 1 + \frac{n}{2} - \frac{2n}{2n_1}$. **Theorem 5.5:** For any non-reduced \mathbb{Z}_n , $T(\Gamma_N(\mathbb{Z}_n))$ is a

well-covered graph.

Proof : From theorem 5.1 and theorem 5.4, since $i(T(\Gamma_N(\mathbb{Z}_n))) = \beta_0(T(\Gamma_N(\mathbb{Z}_n)))$, the result follows. \square Next, we discuss a couple of results for the case when \mathbb{Z}_n is reduced.

Theorem 5.6: Let \mathbb{Z}_n be reduced and let n be even. Then the following results hold:

(i) $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = \frac{1}{2}(n+2).$

- (ii) Total number of γ -sets of $T(\Gamma_N(\mathbb{Z}_n)) = (\sqrt{2})^{n-2}$.
- (iii) $\beta_0(T(\Gamma_N(\mathbb{Z}_n))) = \frac{1}{2}(n+2).$

(iv) Total number of β_0 -sets of $T(\Gamma_N(\mathbb{Z}_n)) = (\sqrt{2})^{n-2}$. (v) $T(\Gamma_N(\mathbb{Z}_n))$ is an excellent graph.

Proof: Since the ring \mathbb{Z}_n is reduced, thus $N(\mathbb{Z}_n) = \{0\}$. So each $x_i \in T(\Gamma_N(\mathbb{Z}_n))$ is adjacent to a unique $-x_i$. Also, the vertices 0 and $\frac{n}{2}$, being their own inverses, are isolated. Consequently $T(\Gamma_N(\mathbb{Z}_n)) = 2K_1 \cup (\frac{n-2}{2})K_2$.

(i) It follows clearly that the γ -set of $T(\Gamma_N(\mathbb{Z}_n))$ contains $1 + 1 + (\frac{n-2}{2}) \cdot 1$, *i.e.* $\frac{1}{2}(n+2)$ vertices. Therefore $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = \frac{1}{2}(n+2).$

(ii) The total number of
$$\gamma$$
-sets of $T(\Gamma_N(\mathbb{Z}_n))$ are ${}^1C_1 \times {}^1C_1 \times {}^2C_1 \times {}^2C_1 \times {}^2C_1 \times ... \times {}^2C_1$

$$= (2)^{\frac{n-2}{2}} = (\sqrt{2})^{n-2}.$$

The results (iii) and (iv) are obvious since for disjoint complete graphs, γ -sets and maximum independent sets are identical.

The result (v) is trivial.

In a similar manner, one can also prove the following result.

Theorem 5.7: Let \mathbb{Z}_n be reduced and let *n* be odd. Then the following results hold:

- (i) $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = \frac{1}{2}(n+1).$
- (ii) Total number of γ -sets of $T(\Gamma_N(\mathbb{Z}_n)) = (\sqrt{2})^{n-1}$.
- (iii) $\beta_0(T(\Gamma_N(\mathbb{Z}_n))) = \frac{1}{2}(n+1).$
- (iv) Total number of β_0 -sets of $T(\Gamma_N(\mathbb{Z}_n)) = (\sqrt{2})^{n-1}$. (v) $T(\Gamma_N(\mathbb{Z}_n))$ is an excellent graph.

Example 5.7.1: Figure 3 and Figure 4 represent the total graphs of the reduced rings \mathbb{Z}_6 and \mathbb{Z}_5 respectively. The γ -sets and maximum independent sets of $T(\Gamma_N(\mathbb{Z}_6))$ are $\{0, 1, 2, 3\}, \{0, 1, 4, 3\}, \{0, 5, 2, 3\}$ and $\{0, 5, 4, 3\}$, while the γ -sets and maximum independent sets of $T(\Gamma_N(\mathbb{Z}_5))$ are $\{0, 1, 2\}, \{0, 1, 3\}, \{0, 4, 2\}$ and $\{0, 4, 3\}$.

VI. DOMINATION PARAMETERS OF $\overline{T(\Gamma_N(\mathbb{Z}_n))}$

The graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is the complement of the graph $T(\Gamma_N(\mathbb{Z}_n))$ with vertex set \mathbb{Z}_n and any two distinct vertices x and y are adjacent if and only if $x + y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$.

In this section, we discuss the domination and independence parameters of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$.

We begin this section with the following lemma.

Lemma 6.1: Let $G = \overline{T(\Gamma_N(\mathbb{Z}_n))}$. Then $\Delta(G) = n - \frac{n}{n_1}$ and $\delta = n - \frac{n}{n_1} - 1$, where Δ and δ denote the maximum and minimum degrees of G respectively.

Proof: The graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, being simple and complement of $T(\Gamma_N(\mathbb{Z}_n))$, the result follows immediately from Corollary 3.3.

Theorem 6.2: (i) Let $R = \mathbb{Z}_n$ be non-reduced, then $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 2$ and $\gamma_{cl}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 2$.

(ii) If \mathbb{Z}_n is reduced, then $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 1$ and $\gamma_{cl}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 1$.

(iii) For any non-reduced \mathbb{Z}_n , $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is an excellent graph.

Proof: (i) For $x \in N(\mathbb{Z}_n)$ and $y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$, $\{x, y\}$ is a dominating set of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$. Consequently, $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) \leq 2$. Also, no vertex of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ has degree n-1, for otherwise $T(\Gamma_N(\mathbb{Z}_n))$ would contain an isolated vertex. This is possible only when $\alpha = 1$. But since we consider the ring to be non-reduced, so $\alpha \geq 2$. Consequently, $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) > 1$. Therefore, $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 2$.

Again, since the dominating set $\{x, y\}$, where $x \in N(\mathbb{Z}_n)$ and $y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$, induces the clique K_2 in $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ and since the exclusion of any vertex from this set removes the dominating character of this set, so $\{x, y\}$ is a clique dominating set of minimum cardinality. Therefore, $\gamma_{cl}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 2$.

(ii) If \mathbb{Z}_n is reduced, then $N(\mathbb{Z}_n) = \{0\}$. Clearly, 0 is adjacent to $x, \forall x \in \mathbb{Z}_n \setminus \{0\}$. Thus, deg(0) = n - 1 and hence, $\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 1$.

Again, since the dominating set $\{0\}$ induces the clique K_1 , therefore $\gamma_{cl}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 1$

(iii) For any non-reduced \mathbb{Z}_n , since the set $\{x, y\}$ is a γ -set of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, for each $x \in N(\mathbb{Z}_n)$ and $y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$, it follows that there exists a γ -set for each vertex in the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$. Hence $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is an excellent graph.

Remark 6.2.1: From Theorem 6.2 (i) and (ii), the following boundedness condition follows trivially:

For any
$$\mathbb{Z}_n$$
, $1 \leq \gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) \leq 2$.

Theorem 6.3: The total number of γ -sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))} = \frac{n^2}{n_1}(1 - \frac{1}{n_1})$, where n_1 is the smallest non-zero nil element of \mathbb{Z}_n .

Proof: By theorem 6.2 (i), $\{x, y\}$ is a γ -set of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, where $x \in N(\mathbb{Z}_n)$ and $y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$. Since $|N(\mathbb{Z}_n)| = \frac{n}{n_1}$, so there are $\frac{n}{n_1}C_1 \times {}^{(n-\frac{n}{n_1})}C_1$ choices, *i.e.* $\frac{n^2}{n_1}(1-\frac{1}{n_1})$ choices. Thus the total number of γ -sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))} = \frac{n^2}{n_1}(1-\frac{1}{n_1})$.

As proven in theorem 4.3, one can prove the following result.

Theorem 6.4: For any non-reduced \mathbb{Z}_n , let $G = \overline{T(\Gamma_N(\mathbb{Z}_n))}$. Then $\{x, y\}$ is a γ -set of G if and only if the cosets $x + N(\mathbb{Z}_n)$ and $y + N(\mathbb{Z}_n)$ are distinct. \Box

Fig 8. $\overline{T(\Gamma_N(Z_5))}$

Theorem 6.5: For any non-reduced \mathbb{Z}_n , $\beta_0(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = \frac{n}{n_1}$.

Proof: Let $S \subset V(\overline{T(\Gamma_N(\mathbb{Z}_n))})$ be a β_0 -set of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$. Let $y \in S$. We consider the following two cases:

Case 1: $y \in \mathbb{Z}_n \setminus N(\mathbb{Z}_n)$.

Fig 7. $\overline{T(\Gamma_N(Z_8))}$

Subcase 1(a): Let $y \notin \frac{n_1}{2} + N(\mathbb{Z}_n)$. Then y is not adjacent to z_i for each $z_i = ln_1 - y$, $l = 1, 2, ..., \frac{n}{n_1}$. Also, for any distinct $l_1, l_2 \in [1, \frac{n}{n_1}]$, $(l_1n_1 - y) + (l_2n_1 - y) = n_1(l_1 + l_2) - 2y \notin N(\mathbb{Z}_n)$. So for each $l = 1, 2, ..., \frac{n}{n_1}$, the vertices $(ln_1 - y)$ are adjacent. Thus |S| = 2.

Subcase 1(b): Let $y \in \frac{n_1}{2} + N(\mathbb{Z}_n)$. Since the vertices of the coset $\frac{n_1}{2} + N(\mathbb{Z}_n)$ of cardinality $\frac{n}{n_1}$ are independent, so $|S| = \frac{n}{n_1}$.

 $|S| = \frac{n}{n_1}$. Case 2: $y \in N(\mathbb{Z}_n)$. Since the vertices of $N(\mathbb{Z}_n)$ are independent, so $|S| = \frac{n}{n_1}$.

For any non-reduced \mathbb{Z}_n , since $\frac{n}{n_1} \geq 2$, clearly from the above cases, $\beta_0(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = \frac{n}{n_1}$.

Theorem 6.6: For any non-reduced \mathbb{Z}_n , the total number of maximum independent sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ are given by

 $\begin{bmatrix} 1, \text{ if } n \text{ is odd} \end{bmatrix}$

2, if n is even and $\frac{n}{n_1} > 2$

 $\left(2+(\frac{n}{n_1})^2(\frac{n_1}{2}-1), \text{ if } n \text{ is even and } \frac{n}{n_1}=2\right)$

Proof: Let n be odd. Then $N(\mathbb{Z}_n)$ is the only maximum independent set of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$.

Let n be even and $\frac{n}{n_1} > 2$. Then $N(\mathbb{Z}_n)$ and $\frac{n_1}{2} + N(\mathbb{Z}_n)$ are the only two maximum independent sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$.

Let *n* be even and $\frac{n}{n_1} = 2$. Here again, $N(\mathbb{Z}_n)$ and $\frac{n_1}{2} + N(\mathbb{Z}_n)$ are maximum independent sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$. Also, for each $x_i \in V(\overline{T(\Gamma_N(\mathbb{Z}_n))})$ such that $1 \leq x_i \leq \frac{n_1}{2} - 1$, the vertices of the coset $x_i + N(\mathbb{Z}_n)$ are not adjacent to the vertices of the coset $(n_1 - x_i) + N(\mathbb{Z}_n)$. So the total number of maximum independent sets of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ are $1 + 1 + (\frac{n}{n_1})^2(\frac{n_1}{2} - 1)$, *i.e.* $2 + (\frac{n}{n_1})^2(\frac{n_1}{2} - 1)$.

Theorem 6.7: For any non-reduced \mathbb{Z}_n ,

(i) $i(T(\Gamma_N(\mathbb{Z}_n))) = \frac{n}{n_1}$.

(ii)
$$d_{ind}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = n$$

Proof : (i) Since the vertices of the independent set $N(\mathbb{Z}_n)$ are also dominating and since for some $n \in N(\mathbb{Z}_n)$, the set $N(\mathbb{Z}_n) \setminus \{n\}$ is not dominating, so $N(\mathbb{Z}_n)$ is the independent dominating set of minimum cardinality. Therefore, $i(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = \frac{n}{n!}$.

(ii) The proof is obvious since $d_{ind}(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = \frac{|V(\overline{T(\Gamma_N(\mathbb{Z}_n))})|}{i(\overline{T(\Gamma_N(\mathbb{Z}_n))})} = \frac{n}{\frac{n}{n_1}} = n_1.$

 $\frac{V(T(\Gamma_N(\mathbb{Z}_n)))}{\mathbf{Corollary}} \quad \mathbf{6.8:} \text{ For any non-reduced } \mathbb{Z}_n, \text{ the graph} \\ \overline{T(\Gamma_N(\mathbb{Z}_n))} \text{ is well-covered.}$

Proof: From theorem 6.5 and theorem 6.7 (i), since $\beta_0(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = i(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = \frac{n}{n_1}$, the result follows immediately.

VII. CONCLUSION AND FUTURE SCOPE

Our emphasis throughout this paper has been on establishing properties associated to the variants of domination and independence numbers of $T(\Gamma_N(\mathbb{Z}_n))$ and $\overline{T(\Gamma_N(\mathbb{Z}_n))}$. For any non-reduced \mathbb{Z}_n , the following table shows a small comparison between the two types of graphs.

TABLE I A brief comparison between $T(\Gamma_N(\mathbb{Z}_n))$ and $\overline{T(\Gamma_N(\mathbb{Z}_n))}$

	$T(\Gamma_N(\mathbb{Z}_n))$	$\overline{T(\Gamma_N(\mathbb{Z}_n))}$
1	$\gamma(T(\Gamma_N(\mathbb{Z}_n))) = n_1$	$\gamma(\overline{T(\Gamma_N(\mathbb{Z}_n))}) = 2$
2	Number of γ -sets	Number of γ -sets
	$= \left(\frac{n}{n_1}\right)^{n_1}$	$= \frac{n^2}{n_1} (1 - \frac{1}{n_1})$
3	$T(\Gamma_N(\mathbb{Z}_n))$ is excellent	$\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is excellent
4	$T(\Gamma_N(\mathbb{Z}_n))$ is well-covered	$\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is well-covered
5	eta_0 depends on the parity of n	eta_0 is always $rac{n}{n_1}$

Another interesting result that we found out is that for any reduced \mathbb{Z}_n , the domination number of $T(\Gamma_N(\mathbb{Z}_n))$ depends on the parity of n, while that of $\overline{T}(\Gamma_N(\mathbb{Z}_n))$ is always constant (one).

Our future goal is to introduce and study two new graph structures with all these γ -sets and maximum independent sets as vertices respectively (specifically for non-reduced \mathbb{Z}_n), define a new adjacency condition and then compare the structures and properties associated to these two graphs.

REFERENCES

- A. Sharma, D. Basnet (2019), "Nil Clean Divisor Graph" [Online] Available: https://arxiv.org/pdf/1903.02287.pdf.
 A. Abbasi, S. Habibi, "The total graph of a commutative ring with
- [2] A. Abbasi, S. Habibi, "The total graph of a commutative ring with respect to proper ideals", J. Korean Math. Soc 49 (2012), No. 1, pp. 85-98.
- [3] Ai-Hua Li and Qi-Sheng Li, "A kind of Graph Structure on Von-Neumann Regular Rings", International Journal of Algebra, Vol.4, no.6, 291-302.
- [4] D. F. Anderson and A. Badawi, "The total graph of a commutative ring", J. Algebra (2008), no. 7, 2706-2719.
- [5] D. F. Anderson and A. Badawi, "The total graph of a commutative ring without the zero element", J. Algebra Appl. 11 (2012), doi: 10.1142/S0219498812500740.
- [6] D. F. Anderson and A. Badawi, "The generalized total graph of a commutative ring", J. Algebra App. 12 (2013), doi: 10.1142/S02194881250212X.
- [7] I. Beck, "Coloring of commutative rings", J. Algebra, 116(1), (1988), 208-226.
- [8] M. H. Shekarriza, M. H. Shirdareh Haghighi, H. Sharif, "On the total graph of a finite commutative ring", Comm. Algebra 40 (2012), 27982807.
- [9] P. W. Chen, "A kind of graph structure of rings", Algebra Colloq. 10:2 (2003) 229-238.
- [10] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, "The total graph and regular graph of a commutative ring", J. Pure Appl. Algebra 213 (2009) 2224-2228.
- [11] T. Asir, T. T. Chelvam, "On the total graph and its complement of a commutative ring", Comm. Algebra, 41 (2013) 3820-3835, doi: 1080/00927872.678956.
- [12] T. Tamizh Chelvam and T. Asir, "Domination in the total graph on \mathbb{Z}_n ", Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 4 (2011) 413421, DOI: 10.1142/S1793830911001309.
- [13] S. B. Mulay, "Cycles and symmetries of zero-divisors", Comm. Algebra, 30, (2002), 3533-3558.
- [14] S. P. Redmond, "On zero-divisor graphs of small finite commutative rings", Discrete Math. 307 (2007) 11551166.