
 

 

Abstract—In this paper, some fast algorithms using elliptical 

arc artificial boundary is designed to solve exterior anisotropic 

problems in concave angle domains. Some exact nonlocal 

boundary conditions are derived on the elliptical arc artificial 

boundary. Based on the above artificial boundary conditions, 

the Dirichlet-Neumann alternating method is presented. The 

convergence of this algorithm is examined. Finally, some 

numerical examples are given to show the effectiveness of our 

methods. 

 
Index Terms—elliptical arc artificial boundary, Dirichlet 

-Neumann alternating method, anisotropic problems, concave 
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I. INTRODUCTION 

HE problems in unbounded domains are 

encountered in many fields of scientific and engineering 

computing. There is a variety of numerical methods to solve 

such problems. One of the commonly used techniques is the 

method of artificial boundary conditions [1]-[9]. Based on 

artificial boundary conditions, the overlapping and 

non-overlapping domain decomposition methods can be 

viewed as effective ways to solve problems in unbounded 

domains. These techniques have been used to solve many 

linear or nonlinear problems [10]-[21]. Recently, the authors 

used an overlapping domain decomposition method to solve 

anisotropic problems in concave angle domains [22]. In this 

paper, we design a non-overlapping domain decomposition 

method to solve the above problems. 

Let   be an exterior concave angle domain with angle  , 

and       . The boundary of domain   is decomposed 

into three disjoint parts:      and    (see Fig. 1), i.e. 

          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,        ,       ,       . 

The boundary   is a simple smooth curve part,    and    are 

two half lines. We consider the following anisotropic 

problem: 

       {

   (   )              

                 
                 

                        

     (1) 
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Fig. 1: The illustration of domain   

and 

{

   (   )              
                     

             
                         

     (2) 

where   ( 
  
  

),   is a constant and      ,   is 

the unknown function,     ( )  and       ( )  are 

given functions,     ( ) is compact. 

The outline of the paper is as follows. In Section 2, we 

derive an exact elliptical arc artificial boundary condition 

for the above anisotropic problem. In Section 3, we 

construct a Dirichlet-Neumann alternating, and give the 

convergence of the method. Finally, in Section 4 we present 

some numerical results to show its accuracy and the 

effectiveness of our methods. 

 

II. THE EXACT ARTIFICIAL BOUNDARY CONDITION 

Let    denote the half distance between the two foci of 

an ellipse, we introduce an elliptic system of co-ordinates 

(   ) such that the artificial boundary   coincides with the 

elliptical arc *(   )           +, where    
√    

 
 ,       

   

√    
. Thus, the Cartesian co-ordinates 

(   ) are related to the elliptic co-ordinates (   ), that is 

             ,              . The domain exterior 

to  , namely the *(   )           + is denoted by 

 , . Let   be a circle arc with radius   at the origin, 

enclosing   and     ( ). We first introduce the following 
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transformation     ,    ,  then the anisotropic problem 

(1) become the following Poisson problem: 

{

               ̃ 

            ̃   ̃  
  

  
  ̃         ̃ 

                        (3) 

where  ̃  
 

 √ 
 ,   

  

  
(             ). The artificial 

boundary is an elliptical arc 

 ̃  {(   )|           (   )   ̃}, and the exterior 

domain to  ̃ is  ̃  *(   )            (   )   ̃+. 

Assume that     in the domain  ̃, then problem (3) 

confines in  ̃ is 

{
               ̃ 

            ̃   ̃  
                        

                       (4) 

By separation of variables, we know that the solution of 

problem (4) has the form 

 (   )  ∑    
(    )

  

   
      

   

 
,      (5) 

where 

   
 

 
∫  (    )    

   

 
  

 

 
         .         (6) 

Thus (5) can be written as 

 (   )  
 

 
∑  (    )

  

   
   ∫  (    )    

   

 
   

   

 
   

 

 

 (      ).                                                                          (7) 

We differentiate (7) with respect to   and set      to 

obtain 

  

  
  ̃   

  

  
∑  ∫  (    )    

   

 
   

   

 
  

 

 
  
   .         ( 8 ) 

Since 
  

  
  ̃   

 

√ 

  

  
  ̃, we obtain the exact artificial 

boundary condition on  ̃: 

  

  
  ̃  

  

  √ 
∑  ∫  (    )    

   

 
   

   

 
   

 

 
  
   

  (    ).                                                                         (9) 

 

III. DIRICHLET-NEUMANN ALTERNATING METHOD 

Draw a circular arc    *(   )           +, 
which enclose   such that     (    )   . Then   is divided 

into two non-overlapping subdomains    and    (see Fig. 2). 

Let    be the bounded domain among         and   , and 

   be the unbounded domain outside       and   . Then the 

problem (1) is decomposed into two subproblems in domains 

   and   , we proposed the Dirichlet-Neumann alternating 

method as follows. 

 

 

Fig.2: The illustration of domain     and    

Step 1. Pick an initial value  ( )   
 

 (   ), and put 

   . 

Step 2. Solve a Dirichlet problem in   : 

{
 
 

 
    (   

( )
)               

  
( )
                

  
( )
  ( )           

  
( )
                       

                        (10) 

Step 3. Solve a mixed problem in   : 

{
 
 

 
    (    

( )
)               

  
( )
                

    
( )
              

    
( )
        

( )              

                  (11) 

Step 4. Update the boundary value on    by 

 (   )      
( )
 (    ) 

( ),             (12) 

Step 5. Set      , then goto Step 2. 

where   
( )

 and   
( )

 are the  th approximate solutions in    

and   , respectively.    denotes the  th relaxation factor and 

 ( ) is an arbitrary function in  
 

 (  ).  

In the following, we just consider the convergence and 

convergence rate of problem (1), we can obtain 

corresponding result of problem (2) in the same way. 

It is difficult to analyze the convergence of the above 

alternating method in the general domain. However, the 

analysis is possible for some special curve  . Therefore, we 

only consider the case where the boundaries   and    both 

are elliptical arcs, i.e.,    *(   ) 
  

  
      

  (   )  

 +,    *(   ) 
  

  
      

  (   )   +, and      . 

Let     ,    ,  then the mixed problem: 

Γ𝜔 
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       {

   (   )               

                 
                 
                   

                         (13) 

become the following problem: 

  

{
 
 

 
 
               ̃  

            ̃   ̃  
  

  
  ̃         ̃ 

  

  
  ̃          ̃  

                               (14) 

where  ̃  
√             

 
 ,  ̃  

√             

 
  , 

 ̃  *(   )         
  (   )   ̃+,  ̃  *(   )  

  
     

  (   )   ̃+. And on    we have 

  (    )  
 

√             

  

    
∑  ∫  (    )    

   

 
   

   

 
  

 

 
  
   , 

where    √ 
     ,       

   

√    
.  

Let 

  
( )
    ( )  ∑   

  
      

   

 
      , 

we have 

    
( )
       

( )                                      

  
 

√             

 

   
∑    
  
      

   

 
 
          (15) 

By the separation of variables, we have 

  
( )
  ∑   

  
     ( )   

   

 
, 

where 

  ( )  
  

  
 ( 

  
    

   
  

 
  
 )

  

   
    

   
 

. 

Hence 

   
( )   

 

√             

 

   
∑    
  
     (  )   

   

 
. 

Then, we have 

    
(   )      (   (   ))             

  (    
( )  (    ) 

( )   )            

  
 

√             

 

   
                             

 ∑    (  
  
     (  )      )   

   

 
 

  

If we let 

 ( )  ‖    
( )
  ‖

 
 

 
   

 
, 

then 

 ( )  
  

             

  

    
 ∑ (    ) 

 

   
       

 , 

and 

 (   )  
  

             

  

    
                                                   

 ∑ (    ) 
 

   
       

 (    (  )      )
                    

 (    )
  ( )  

  

             

  

    
                                  

 ∑ (    ) 
 

   
       

     (  )(    (  )        )

  

Let 

         
 

    (  )
. 

A computation shows that   
 

 
. 

If we let           , satisfy       , then 

 (   )  (    )
  ( ). 

By the trace theorem, we have 

‖  
( )
‖
    

   ( )            . 

This means that the Dirichlet-Neumann alternating 

method is convergent if       . 

We also have 

 (   )  
  

             

  

    
                                          

 ∑ (    ) 
 

   
       

 (    (  )      )
                

 
  

             

  

    
                                                    

 ∑ (    ) 
 

   
       

 (           (  ))
 
           

 (     )
  ( )  

  

             

  

    
                        

 ∑ (    ) 
 

   
       

     (  )(    (  )       ) 

  

where 

  (  )  
    (  )

 
. 

Let 

         
 

    (  )
. 
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It is easy to get   
 

 
. 

Similar to the above analysis, if we take            , 

satisfy       , the Dirichlet-Neumann alternating 

method is also convergent. 

Therefore, for       , the Dirichlet-Neumann 

alternating method is convergent. 

 

IV. NUMERICAL EXAMPLES 

In this section, we give a numerical example to show the 

effectiveness of Dirichlet-Neumann alternating method. The 

finite element method with liner elements is used in the 

computation. 

Example 1. We consider problem (1), where   
*(   )           +,   *(   )         
  +,    *(   )        +, and    *(   )     
    +. By using coordinate transformation     ,    , 

we turn the original problem into the problem as the 

following 

{

               ̃ 

            ̃   ̃  
  

  
  ̃         ̃ 

                          (16) 

where   ̃  *(   )            +,  ̃  *(   )   
         +,  ̃  *(   )         +,  ̃  

*(   )          +,    
 √    

 
, and      

   

√    
. 

Let  (   )  
   

       
 be the exact solution of original 

problem and   
  

  
  . 

    is the finite element solution in  ̃ ,   and    denote 

the maximal error of all node functions in  ̃ , respectively, 

i.e., 

 ( )     
    ̃ 

  (  )     
 (  )   

  ( )     
    ̃ 

    
   (  )     

 (  )   

  ( ) is the approximation of the convergence rate, i.e., 

  ( )  
  (   )

  ( )
. 

We consider the Dirichlet-Neumann alternating method. 

Let  ̃  *(   )               + be the artificial 

boundary, and     . Figure 3 shows the mesh   of 

subdomain  ̃ , Table 1 shows the convergence rate for 

different anisotropic coefficient   (Mesh    ,      ). 

Table 2 shows the relation between convergence rate and 

mesh (     ,      ). Table 3 shows the relation between 

convergence rate and relaxation factor (     , Mesh    , 

   ). Figure 4 shows   ( ̃ ) errors for different mesh. 

Figure 5 shows the convergence rate for different relaxation 

factor. 

 

Fig. 3: Mesh   of domain   ̃ . 

TABLE 1: THE CONVERGENCE RATE FOR DIFFERENT ANISOTROPIC 

COEFFICIENT    (MESH    ,      ). 

    0 1 2 3 4 5 

  ( ) 0.213 0.034 0.009 0.013 0.012 0.012 

0.8   ( )  0.247 0.038 0.006 0.001 0.000 

   ( )   6.566 6.487 6.482 6.444 

 
 ( ) 0.164 0.034 0.017 0.022 0.019 0.019 

0.5   ( )  0.189 0.028 0.004 0.001 0.000 

   ( )   6.771 6.516 6.502 6.364 

 
 ( ) 0.085 0.065 0.057 0.058 0.058 0.058 

0.2   ( )  0.097 0.014 0.002 0.000 0.000 

   ( )   7.155 6.577 6.497 6.003 

 
TABLE 2: THE RELATION BETWEEN CONVERGENCE RATE AND MESH  

(     ,      ) 

M   0 1 2 3 4 5 

 
 ( ) 0.155 0.075 0.060 0.062 0.062 0.062 

      ( )  0.180 0.025 0.004 0.001 0.000 

   ( )   7.297 6.667 6.304 5.843 

 
 ( ) 0.164 0.034 0.017 0.022 0.019 0.019 

      ( )  0.189 0.028 0.004 0.001 0.000 

   ( )   6.771 6.516 6.502 6.364 

 
 ( ) 0.166 0.025 0.004 0.001 0.001 0.001 

      ( )  0.191 0.029 0.005 0.001 0.000 

   ( )   6.633 6.426 6.426 6.418 

 
TABLE 3: THE RELATION BETWEEN CONVERGENCE RATE AND RELAXATION 

FACTOR    (     , MESH    ,    ) 

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

   1.298 1.845 3.153 6.128 5.921 2.592 1.628 1.185 

 

 

Fig. 4:   ( ̃ ) errors for different mesh. 
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Fig. 5: The convergence rate for different relaxation factor. 

The numerical results show that the Dirichlet-Neumann 

alternating method is feasible and convergent quickly. Its 

convergence rate is independent of finite element mesh 

parameter  . The method is convergent for all relaxation 

factor   (   ), and the convergence of the method is the 

best when the relaxation factor   (       ). 
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