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Abstract—In this paper, we introduce the notion of deriva-
tions of state residuated lattices (L, τ) and discuss some
properties of them. We study the related properties of strong
derivations and regular derivations of state residuated lattices
(L, τ). Moreover, we propose the notion of (strong) state-
morphism residuated lattices and discuss some properties of
them. Also, the principal ideal derivation is given and the
adjoint of principal ideal derivation is obtained by a Galois
connection, and we prove that the set of all principal ideal
derivations on state-morphism residuated lattice (L, τ) can
form a bounded distributive lattice. Further, a special kind of set
Ima(d,τ)(L) of a derivation on state residuated lattices (L, τ) is
introduced and we get that Ima(d,τ)(L) is a lattice ideal of L,
when derivation d is a regular ideal derivation. In particular, if
L is a linearly ordered residuated lattice, then Ima(d,τ)(L) is
a prime lattice ideal of L. Finally, by using the set Ima(d,τ)(L)
of principal ideal derivations, we give a characterization of a
Heyting algebra.

Index Terms—State residuated lattice; Derivation state resid-
uated lattice; Principal ideal derivation; Heyting algebra

I. INTRODUCTION

W ITH the intent of measuring the average truth-value
of propositions in Łukasiewicz logic, the notion of

states on MV -algebras were introduced by Mundici [28],
which is a generalization of probability measures on Boolean
algebras. From then on, states on MV -algebras have been
deeply investigated. In 2001, Dvurečenskij [8] investigated
states on pseudo MV -algebras. In 2006, Kroupa [21] inves-
tigated states on semisimple MV -algebras and the author
obtained that every state on semisimple MV -algebra is
integral. As a result, the notion of states has been extended
to other logical algebras, such as BL-algebras [35], MTL-
algebras [23], [24], R0-algebras [25], residuated lattices [6],
[37] and their non-commutative cases and so on. Different
approaches to the generalization of states mainly gave two
different concepts, namely, Riečan states [35] and Bosbach
states [11]. In 2008, Ciungu [6] proved that in any non-
commutative residuated lattice, Bosbach states coincide with
Riečan states, while the converse is not true. Therefore, the
notion of Riečan states is the generalization of Bosbach
states.

However, logical algebras with state operators are not
universal algebras. To treat state operators in the universal
algebraic framework, a new approach to state operators on
MV -algebras was introduced by Flaminio and Montagna [9],
[10], where they added a unary operation τ (called as an
inner state operator) to the language of MV -algebras, which
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preserves the usual properties of state operators. The result-
ing algebraic structures were so-called state MV -algebras.
Moreover, Flaminio and Montagna [9], [10] presented an
algebraizable logic by using a probabilistic approach, and
its equivalent algebraic semantics is precisely the variety of
state MV -algebras. In [29], [30], states MV -algebras have
been deeply investigated. Subsequently, the notion of internal
states has also been extended to other algebraic structures.
For example, the notion of a state BL-algebra was introduced
by Ciungu [4] as an extension of a state MV -algebra. Also,
the notion of internal states was extended by Dvurečenskij
et al. [7] to Rl-monoids. It is well known that the class
of MV -algebras, BL-algebras and Rl-monoids are proper
subclass of the class of residuated lattices. As a application
of state theories to residuated lattices, in 2015, He et al. [15]
introduced the notion of state operators on residuated lattices
and investigated some related properties of state operators.
Moreover, in 2017, He et al. [14] investigated states and
internal states on bounded semihoops.

The notion of derivations, introduced from analytic the-
ory, is helpful to the research of structure and property
in algebraic systems. In 1957, Posner [33] proposed the
notion of derivations in a prime ring (R,+,−), which is
a mapping d : R −→ R satisfying the two conditions: (i)
d(x+ y) = d(x) +d(y); (ii) d(x · y) = d(x) · y+x · d(y) for
all x, y ∈ R. Based on this, some authors further investigated
several properties about derivations in other algebras. For
example, in 2004, Jun and Xin [17] applied the notion of
derivations to BCI-algebras. Based on [17], and as a gener-
alization of the notion of derivations of BCI-algebras, Zhan
and Liu [43] introduced the notion of f -derivations of BCI-
algebras and some related properties were investigated. Using
the idea of regular f -derivations, the authors gave character-
izations of a p-semisimple BCI-algebra. Some researchers
investigated the properties of derivations of lattices in [42].
In 2010, Alshehri [1] introduced the notion of derivations of
MV -algebras, and some related properties are investigated.
Using the notion of an isotone derivation, the author gave
some characterizations of a derivation of an MV -algebra.
In 2013, Torkzadeh and Abbasian [36] defined the notion
of derivations of BL-algebras and discussed some related
results. In particular, based on the notion of derivations of
MV -algebras and BL-algebras [1], [36], in 2016, He et
al. [16] introduced the notion of derivations in a residuated
lattice (L,∧,∨,⊗,→, 0, 1), which is a mapping: d : L −→ L
satisfying the condition: d(x⊗y) = (d(x)⊗y)∨(x⊗d(y)) for
all x, y ∈ L, and then the authors investigated the properties
of derivations in residuated lattices and characterized some
special types of residuated lattices in terms of derivations.
Wang et al. [39] proposed derivations in hyperlatices and
derived some basic properties of them. Also, some properties
of differential hyperideals and differential hypercongruences
are studied. Further, Xiao and Liu [41] introduced the notion
of derivations for a quantale. In particular, Rachůnek and

IAENG International Journal of Applied Mathematics, 50:4, IJAM_50_4_05

Volume 50, Issue 4: December 2020

 
______________________________________________________________________________________ 



Šalounová [34] introduced the notion of derivations on non-
commutative generalization of MV -algebras, and a complete
description of all derivations on any non-commutative gen-
eralization of MV -algebras was given. In 2018, Liang et al.
[22] introduced the notion of derivations on EQ-algebras
and obtained several special types of them. Further, Wang
et al. [38] introduced the notion of derivations of commu-
tative multiplicative semilattices, they investigated related
properties of some particular derivations and gave some
characterizations of regular derivations in commutative mul-
tiplicative semilattices. In 2019, Maffeu et al. [26] extended
the study of derivations on residuated lattices to residuated
multilattices. Special types of derivations (implicative and
multiplicative) and their connections with the complemented
elements were investigated. In particular, one obtains that the
good ideal derivations of a bounded residuated multilattice
were completely determined by its complemented elements.
Supporting examples of all the notions treated were also in-
cluded. In 2020, Ciungu [5] defined two types of implicative
derivations on pseudo-BCK algebras, he investigated their
properties and gave a characterization of isotone implicative
derivations. He also introduced and investigated the mul-
tiplicative derivations on BCK-algebras with product. At
the same time, particular cases of multiplicative derivations
were defined and their properties were investigated. Finally,
he proved that there exists an order preserving bijection
between the fixed points sets of the two operators. Kondo
[20] considered some properties of multiplicative derivations
and d-filters of commutative residuated lattices.

Based on the above reasons, it is meaningful to give a
further discussion on this topic. The present paper aims at
providing a framework to combine derivations, state opera-
tors and residuated lattices all together, which proposes the
concept of derivations on state residuated lattices. In addition,
we study some properties of them. It is worth noting that
when we apply the derivation theory to state residuated lat-
tices, on the one hand, we can find the impacts of derivations
on state residuated lattices, on the other hand, it also reflects
the characterizations and properties of derivations in state
residuated lattices.

This paper is organized as follows. In Section II, we
present some preliminary concepts and results related to
residuated lattices, state operators and derivations, which will
be used throughout this paper. In Section III, we introduce
the notion of derivations on state residuated lattices and
discuss some properties of them. In Section IV, we study
principal ideal derivations and their adjoint derivations. Also,
we discuss the algebraic structure of the set of all principal
ideal derivations on a state-morphism residuated lattice. In
particular, as an application of principal ideal derivations, we
give a characterization of a Heyting algebra.

II. PRELIMINARIES

In this section, we recall some fundamental concepts and
definitions which shall be needed in the sequel. At first, we
give a brief reminder of the definitions of residuated lattices.

Definition 2.1: [40] A residuated lattice is an algebraic
structure L = (L,∨,∧,⊗,→, 0, 1) of type (2,2,2,2,0,0)
satisfying the following conditions:

(1) (L,∨,∧, 0, 1) is a bounded lattice,
(2) (L,⊗, 1) is a commutative monoid,

(3) (⊗,→) forms an adjoint pair, i.e., x ⊗ y ≤ z if and
only if x ≤ y → z for all x, y, z ∈ L.

In what follows, we denote by L a residuated lattice
(L,∨,∧,⊗,→, 0, 1), unless otherwise specified.

For any x ∈ L and a natural number n, we define x′ =
x → 0, x′′ = (x′)′ = (x → 0) → 0, x0 = 1 and xn =
xn−1 ⊗ x for all n ≥ 1.

In the following, we list some basic properties of residu-
ated lattices.

Proposition 2.2: [40] For all x, y, z, w ∈ L, the following
properties hold.

(1) 1→ x = x, x→ 1 = 1.
(2) x ≤ y if and only if x→ y = 1.
(3) If x ≤ y, then z → x ≤ z → y and y → z ≤ x→ z.
(4) If x ≤ z and y ≤ w then x⊗ y ≤ z ⊗ w.
(5) x⊗ y ≤ x ∧ y, x⊗ x′ = 0.
(6) x→ (y → z) = x⊗ y → z = y → (x→ z).
(7) 0′ = 1, 1′ = 0, x ≤ x′′, x′′′ = x′.
(8) x⊗ y = 0 if and only if x ≤ y′.
(9) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z).
(10) (x ∨ y)′ = x′ ∧ y′.
(11) x ∨ (y ⊗ z) ≥ (x ∨ y)⊗ (x ∨ z).
Definition 2.3: [13] L is called to be
(1) divisible if x ∧ y = x⊗ (x→ y) for all x, y ∈ L;
(2) idempotent if x⊗ x = x for all x ∈ L.
The notion of a state BL-algebra was introduced by

Ciungu [4]. In 2015, as a generalization of the notion of
a state BL-algebra, He et al. [15] introduced the notion of
a state residuated lattice as follows.

Definition 2.4: [15] A mapping: τ : L −→ L is called a
state operator on L if it satisfies the following conditions:
for all x, y ∈ L,

(SO1) τ(0) = 0,
(SO2) x→ y = 1 implies τ(x)→ τ(y) = 1,
(SO3) τ(x→ y) = τ(x)→ τ(x ∧ y),
(SO4) τ(x⊗ y) = τ(x)⊗ τ(x→ (x⊗ y)),
(SO5) τ(τ(x)⊗ τ(y)) = τ(x)⊗ τ(y),
(SO6) τ(τ(x)→ τ(y)) = τ(x)→ τ(y),
(SO7) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y),
(SO8) τ(τ(x) ∧ τ(y)) = τ(x) ∧ τ(y).
The pair (L, τ) is said to be a state residuated lattice, or

more precisely, a residuated lattice with internal state.
Example 2.5: [15] Let L = {0, a, b, c, 1} be a chain,

where 0 < a < b < c < 1. Define operations ⊗ and →
as follows:
⊗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then it is easy to verify that L = {0, a, b, c, 1} is a residuated
lattice. Now, we define a mapping τ : L −→ L as follows:

τ(x) =


0, x = 0,
a, x = a, b,

1, x = c, 1.

One can easily check that τ is a state operator on L.
Therefore, (L, τ) is a state residuated lattice.

Next, we recall some properties of state operators on L.
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Proposition 2.6: [15] Let (L, τ) be a state residuated
lattice. Then, for all x, y ∈ L, the following properties hold.

(1) τ(1) = 1, τ(x′) = τ(x)′, τ(τ(x)) = τ(x).
(2) If x ≤ y, then τ(x) ≤ τ(y).
(3) τ(x⊗ y) ≥ τ(x)⊗ τ(y) and if x⊗ y = 0, then τ(x⊗

y) = τ(x)⊗ τ(y).
(4) τ(x → y) ≤ τ(x) → τ(y). In particular, if x, y are

comparable, then τ(x→ y) = τ(x)→ τ(y).
(5) τ(x⊗y′) ≥ τ(x)⊗τ(y)′ and if x ≤ y, then τ(x⊗y′) =

τ(x)⊗ τ(y)′.
(6) τ(L) = {x ∈ L|τ(x) = x} and τ(L) is a subalgebra

of L.
In what follows, we recall the concept of Heyting algebras.
Theorem 2.7: [32] Let (L,∨,∧,⊗,→, 0, 1) be a residu-

ated lattice. Then the following statements are equivalent:
(1) L is a Heyting algebra;
(2) x⊗ y = x ∧ y = x⊗ (x→ y) for all x, y ∈ L.
In what follows, we denote by B(L) the set of all

complement elements of the lattice (L,∧,∨, 0, 1), see [2].
The set B(L) is called the Boolean center of L. For any
t ∈ L, t ∈ B(L) if and only if t ∨ t′ = 1 if and only if
t⊗ t = t and t′′ = t.

Proposition 2.8: [20] For any t ∈ B(L) and x ∈ L, t ⊗
x = t ∧ x.

A mapping f : L −→ L is called a homomorphism if it
satisfies the following conditions:

(1) f(0) = 0, f(1) = 1,
(2) f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ L and ∗ ∈

{∨,∧,⊗,→}.
A nonempty subset I of L is called a lattice ideal of L if

it satisfies: (1) for all x, y ∈ I, x∨y ∈ I; (2) for all x, y ∈ L,
if x ∈ I and y ≤ x, then y ∈ I , i.e., a lattice ideal of L is
the notion of ideal in the underlying lattice (L,∨,∧).

A lattice ideal I is called prime if it satisfies for all x, y ∈
L, x ∧ y ∈ I implies x ∈ I or y ∈ I .

For a nonempty subset A of L, the smallest lattice ideal
containing A is called the lattice ideal generated by A. The
lattice ideal generated by A is denoted by (A]. In particular,
if A = {a}, we write (a] for {(a]}, (a] is called a principal
lattice ideal of L. It is easy to check that (a] =↓ a = {x ∈
L|x ≤ a}, see [12].

In 2008, Xin et al. [42] introduced the notion of a
derivation on a lattice (L,∧,∨) as follows:

Definition 2.9: [42] Let L be a lattice. A mapping d :
L −→ L is called a derivation on L if it satisfies the
following conditions: for any x, y ∈ L,

d(x⊗ y) = (d(x) ∧ y) ∨ (x ∧ d(y)).

Based on [42], and as a generalization of derivation on a
lattice, Çeven and Özturk [3] introduced the notion of an
f -derivation on a lattice as follows:

Definition 2.10: [3] Let L be a lattice. A mapping d :
L −→ L is called an f -derivation on L if there exists a
mapping f : L −→ L such that

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y))

for all x, y ∈ L.
In 2016, He et al. [16] introduced the notion of derivations

in a residuated lattice as follow:

Definition 2.11: [16] A mapping d : L −→ L is called
a derivation on L if it satisfies the following conditions: for
any x, y ∈ L,

d(x⊗ y) = (d(x)⊗ y) ∨ (x⊗ d(y)).

III. SOME DERIVATIONS BASED ON STATE RESIDUATED
LATTICES

In this section, first, we propose the concept of derivations
in a state residuated lattice. And then, we discuss some
properties of derivation state residuated lattices, and we also
give some equivalent characterizations related to the isotone
derivations in state residuated lattices (L, τ). Moreover, we
introduce the notion of (weak) state-morphism residuated
lattices and study some properties of them.

Definition 3.1: Let (L, τ) be a state residuated lattice and
d : L −→ L be a mapping. Then d is called a multiplicative
derivation on (L, τ) if it satisfies the following conditions:
for any x, y ∈ L,

d(x⊗ y) = (d(x)⊗ τ(y)) ∨ (τ(x)⊗ d(y)).

In what follows, unless otherwise stated, a multiplicative
derivation on (L, τ) is called a derivation on (L, τ). The pair
(L, τ, d) is said to be a derivation state residuated lattice.

Remark 3.2: It is obvious in Definition 3.1 that if d is a
derivation on L, see Definition 2.11, then (L, idL, d) is a
derivation state residuated lattice.

Now, we show some examples for derivation state residu-
ated lattice.

Example 3.3: Let (L, τ) be a state residuated lattice and
define a mapping d : L −→ L by d(x) = 0 for all x ∈ L.
One can check that d is a derivation on (L, τ), i.e., (L, τ, d)
is a derivation state residuated lattice. Moreover, it is easy
to see that (L, idL, idL) is also a derivation state residuated
lattice.

Example 3.4: Let L = {0, a, b, 1} be a chain and opera-
tions ⊗ and → be defined as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then it is easy to verify that L = {0, a, b, 1} is a residuated
lattice. Now, we define a mapping τ : L −→ L as follows:
for all x ∈ L,

τ(x) =


0, x = 0,
a, x = a,

1, x = b, 1.

It is easy to see that τ is a state operator on L. Moreover,
we define a mapping d : L −→ L as follows: for all x ∈ L,

d(x) =

{
0, x = 0, a,
a, x = b, 1 .

One can check that d is a derivation on (L, τ). Therefore,
(L, τ, d) is a derivation state residuated lattice.

Now, we show some properties of derivation state residu-
ated lattices.

Proposition 3.5: Let (L, τ, d) be a derivation state resid-
uated lattice. Then the following statements hold.

(1) d(0) = 0.
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(2) d(x) ≤ τ(x)′′ and d(x′) ≤ τ(x′) ≤ (d(x))′ for all
x ∈ L.

(3) τ(x) ⊗ d(1) ≤ d(x) ≤ (τ(x))′′ and τ(x) ⊗ d(1) ⊗
(d(x)′) = 0 for all x ∈ L.

(4) d(x′)⊗d(y′) ≤ d(x′⊗y′) ≤ d(x′)∨d(y′) ≤ (τ(x))′∨
(τ(y))′ for all x, y ∈ L.

(5) (d(x′))n ≤ d((x′)n) for all x ∈ L, n ≥ 1.
(6) d(xn) = d(x)⊗ τ(xn−1) for all x ∈ L, n ≥ 1.
(7) d(1) = 1 if and only if τ(x) ≤ d(x) if and only if

d(x′) = τ(x′) if and only if d(x′) = (d(x))′.
(8) If τ(x) = τ(x′′), then d(x) ≤ τ(x).
(9) Let A = {x|x ∈ L, τ(x) ∈ B(L)}. If d(1) = 1, then

for all x ∈ A, d(x) = τ(x).
Proof. (1) It follows from Definition 3.1 that

d(0) = d(0⊗ 0)
= (d(0)⊗ τ(0)) ∨ (τ(0)⊗ d(0))
= d(0)⊗ τ(0)
= d(0)⊗ 0
= 0.

(2) Let x ∈ L. Then it follows from Proposition 2.6 (5)
that x⊗ x′ = 0. Hence,

d(0) = d(x⊗ x′)
= (d(x)⊗ τ(x′)) ∨ (τ(x)⊗ d(x′))
= 0,

which implies d(x) ⊗ τ(x′) = 0 and τ(x) ⊗ d(x′) = 0. It
follows from Proposition 2.6 (1) and (8) that d(x) ≤ (τ(x))′′

and d(x′) ≤ τ(x′) ≤ (d(x))′.
(3) Let x ∈ L. Then it follows from Proposition 2.6 (1)

that
d(x) = d(x⊗ 1)

= (d(x)⊗ τ(1)) ∨ (τ(x)⊗ d(1))
= d(x) ∨ (τ(x)⊗ d(1)).

Thus, τ(x)⊗ d(1) ≤ d(x). Moreover, it follows from (2)
and Proposition 2.6 (1) that τ(x) ⊗ d(1) ≤ d(x) ≤ (τ(x))′′

and τ(x)⊗ d(1)⊗ (d(x))′ = 0.
(4) Let x, y ∈ L. Then it follows from (2) that d(x′) ≤

τ(x′), d(y′) ≤ τ(y′). Then d(x′) ⊗ d(y′) ≤ d(x′) ⊗ τ(y′),
d(x′)⊗d(y′) ≤ τ(x′)⊗d(y′). It follows from Definition 3.1
that

d(x′)⊗ d(y′) ≤ (d(x′)⊗ τ(y′)) ∨ (d(x′)⊗ d(y′))
= d(x′ ⊗ y′)
≤ d(x′) ∨ d(y′)
≤ (τ(x))′ ∨ (τ(y))′.

(5) Let x ∈ L. Then it follows from (2) that d(x′) ⊗
d(x′) ≤ d(x′) ⊗ τ(x′) = d(x′ ⊗ x′) for all x ∈ L. By
induction, we can obtain (d(x′))n ≤ d((x′)n) for all n ≥ 1.

(6) It follows from Definition 3.1 that d(x⊗x) = (d(x)⊗
τ(x))∨ (τ(x)⊗d(x)) = d(x)⊗τ(x) for all x ∈ L. If n = 3,
then

d(x3) = (d(x)⊗ τ(x2) ∨ (d(x2)⊗ τ(x)))
= (d(x)⊗ τ(x2) ∨ (d(x)⊗ τ(x)⊗ τ(x))).

It follows from Proposition 2.6 (3) that τ(x2) ≥ (τ(x))2,
which implies d(x3) = d(x)⊗ τ(x2). By induction, we can
obtain d(xn) = d(x)⊗ τ(xn−1) for all n ≥ 1.

(7) On the one hand, if d(1) = 1, then it follows from
(3) that d(x) = d(x) ∨ τ(x), which implies τ(x) ≤ d(x).
If τ(x) ≤ d(x), then τ(x′) ≤ d(x′). It follows from (2)
that d(x′) ≤ τ(x′), which implies that d(x′) = τ(x′). If

d(x′) = τ(x′), then it is easy to know that d(1) = 1. On
the other hand, if τ(x) ≤ d(x), we have d(x′) = τ(x′). It
follows from (2) that τ(x′) ≤ (d(x))′ ≤ (τ(x))′ = τ(x′),
which implies d(x′) = (d(x))′. If d(x′) = (d(x))′, then it is
easy to know that d(1) = 1.

(8) If τ(x) = τ(x′′), then it follows from Definition 3.1
that d(x) ⊗ τ(x′) ≤ d(x ⊗ x′) = 0, which implies d(x) ≤
(τ(x′))′ = τ(x′′) = τ(x).

(9) On the one hand, if d(1) = 1, then it follows from
(7) that τ(x) ≤ d(x). On the other hand, if x ∈ A, then
τ(x) ∈ B(L). It follows from (2) that d(x) ≤ (τ(x))′′ =
τ(x). Therefore, for all x ∈ A, d(x) = τ(x). 2

Lemma 3.6: Let (L, τ) be a state residuated lattice. For
all x, y ∈ L, if τ(x→ y) = τ(x)→ τ(y), then τ(x⊗ y) =
τ(x)⊗ τ(y).
Proof.

τ(x⊗ y)→ τ(z) = τ(x⊗ y → z)
= τ(x→ (y → z))
= τ(x)→ (τ(y)→ (τ(z)))
= (τ(x)⊗ τ(y))→ τ(z).

Hence, if z = τ(x)⊗ τ(y), we have

τ(x⊗ y)→ τ(τ(x)⊗ τ(y))
= (τ(x)⊗ τ(y))→ τ(τ(x)⊗ τ(y))
= τ(x)⊗ τ(y)→ τ(x)⊗ τ(y)
= 1,

which implies τ(x ⊗ y) → τ(τ(x) ⊗ τ(y)) = 1. It follows
from Proposition 2.2 (2) that τ(x ⊗ y) ≤ τ(x) ⊗ τ(y). The
converse inequality can be followed from Proposition 2.6 (3).
Therefore, τ(x⊗ y) = τ(x)⊗ τ(y). 2

In order to give better characterizations of derivations on
state residuated lattices. Inspired by the notion of a homo-
morphism on a residuated lattice, firstly, we give the notion
of a (weak) state-morphism residuated lattice as follows.

Definition 3.7: Let τ : L −→ L be a mapping.
(1) If it satisfies (SO1), (SO2), (SO3), (SO5), (SO6),

(SO7), (SO8) and (SO9) τ(x ⊗ y) = τ(x) ⊗ τ(y), then
(L, τ) is called a strong state-morphism residuated lattice.

(2) If it satisfies (SO1), (SO2), (SO3), (SO5), (SO6),
(SO7), (SO8) and (SO10) τ(x ∗ y) = τ(x) ∗ τ(y), ∗ ∈
{∨,∧,→}, then (L, τ) is called a state-morphism residuated
lattice.

Example 3.8: Consider the state operator τ on L in Ex-
ample 3.4. It is easy to verify that (L, τ) is a state-morphism
residuated lattice.

Theorem 3.9: Let (L, τ) be a strong state-morphism resid-
uated lattice, d : L −→ L be a mapping, d(0) = 0 and
d(x) = t, x ∈ L− {0}, t ∈ L.

(1) If L is non-trivial and t ∈ B(L)−{0, 1}, then d is not
a derivation on (L, τ).

(2) If t /∈ B(L) and (L, τ, d) is a derivation state
residuated lattice, then for any x ∈ L − {0}, t ≤ τ(x) or
t ≤ τ(x)′.
Proof. (1) Assume that d is a derivation on (L, τ). Since
t⊗ t′ = 0, we have

0 = d(t⊗ t′)
= (d(t)⊗ τ(t′)) ∨ (τ(t)⊗ d(t′))
= (t⊗ τ(t′)) ∨ (τ(t)⊗ t)
= (t⊗ τ(t)′) ∨ (τ(t)⊗ t)
= t⊗ (τ(t)′ ∨ τ(t)).
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Since t ∈ B(L) and (L, τ) is a weak state-morphism
residuated lattice, we have τ(t)′′ = τ(t′′) = τ(t) and
τ(t) = τ(t ⊗ t) = τ(t) ⊗ τ(t). Thus τ(t) ∈ B(L). Hence,
τ(t)′ ∨ τ(t) = 1, which implies t = 0, contradiction.
Therefore, d is not a derivation on (L, τ).

(2) For any x ∈ L − {0}, it follows from Definition 3.1
that d(x⊗ x) = d(x)⊗ τ(x) = t⊗ τ(x). Now we have two
cases:

(i) If x⊗ x 6= 0, then t = t⊗ τ(x) ≤ τ(x).
(ii) If x⊗x = 0, then t = t⊗τ(x) = 0 and thus t ≤ τ(x)′.
Therefore, t ≤ τ(x) or t ≤ τ(x)′ for all x ∈ L−{0}. 2

In what follows, we introduce ideal derivations in a state
residuated lattice and investigate some related properties of
them.

Definition 3.10: Let (L, τ) be a state residuated lattice and
d be a derivation on (L, τ). Then for all x, y ∈ L,

(1) if x ≤ y implies d(x) ≤ d(y), we call d an isotone
derivation on (L, τ),

(2) if d(x) ≤ τ(x), we call d a strong derivation on (L, τ).
In particular, if d is both isotone and strong, we call d an

ideal derivation on (L, τ).
Example 3.11: Consider the Example 3.4. One can check

that d is an ideal derivation on (L, τ).
Now, some properties of isotone derivations and strong

derivations on (L, τ) are investigated, respectively.
Proposition 3.12: Let (L, τ) be a state residuated lattice

and d be an isotone derivation on (L, τ). Then the following
statements hold.

(1) If z ≤ x → y, then τ(z) ≤ d(x) → d(y) and τ(x) ≤
d(z)→ d(y) for all x, y, z ∈ L.

(2) τ(x → y) ≤ d(x) → d(y) and d(x → y) ≤ τ(x) →
d(y) for all x, y ∈ L.

(3) τ(x) ≤ d(y)→ d(x) and τ(y) ≤ d(x)→ d(y) for all
x, y ∈ L.
Proof. (1) Let x, y, z ∈ L and z ≤ x → y. Then x ⊗
z ≤ y. Since d is an isotone derivation on (L, τ), we have
d(x ⊗ z) ≤ d(y). It follows from Definition 3.1 that d(x ⊗
z) = (d(x)⊗ τ(z)) ∨ (τ(x)⊗ d(z)). Thus, (d(x)⊗ τ(z)) ∨
(τ(x) ⊗ d(z)) ≤ d(y), which implies d(x) ⊗ τ(z) ≤ d(y)
and τ(x) ⊗ d(z) ≤ d(y). Therefore, τ(z) ≤ d(x) → d(y)
and τ(x) ≤ d(z)→ d(y).

(2) Since x ⊗ (x → y) ≤ y for all x, y ∈ L, we have
d(x ⊗ (x → y)) ≤ d(y). It follows from Definition 3.1 that
d(x⊗ (x→ y)) = (d(x)⊗ τ(x→ y))∨ (τ(x)⊗ d(x→ y)),
which implies d(x) ⊗ τ(x → y) ≤ d(y) and τ(x) ⊗ d(x →
y) ≤ d(y). Therefore, τ(x→ y) ≤ d(x)→ d(y) and d(x→
y) ≤ τ(x)→ d(y) for all x, y ∈ L.

(3) Since x ⊗ y ≤ x for all x, y ∈ L, we have d(x ⊗
y) ≤ d(x). It follows from Definition 3.1 that d(x ⊗ y) =
(d(x)⊗ τ(y)) ∨ (τ(x)⊗ d(y)). Thus, τ(x) ≤ d(y)→ d(x).
In a similar way, we have τ(y) ≤ d(x)→ d(y). 2

Proposition 3.13: Let (L, τ) be a state residuated lattice
and d be a strong derivation on (L, τ). Then the following
statements hold.

(1) d(x)⊗ d(y) ≤ d(x⊗ y) ≤ d(x) ∨ d(y) ≤ τ(x) ∨ τ(y)
for all x, y ∈ L.

(2) (d(x))n ≤ d(xn) for all n ≥ 1.
(3) If d is isotone, then d(x → y) ≤ d(x) → d(y) ≤

d(x)→ τ(y) for all x, y ∈ L.
(4) d(1) = 1 if and only if d(x) = τ(x) for all x ∈ L.

Proof. (1) On the one hand, since d is a strong derivation on
(L, τ), we have d(x)⊗d(y) ≤ τ(x)⊗d(y) and d(x)⊗d(y) ≤
d(x)⊗ τ(y) for all x, y ∈ L. Then

d(x)⊗ d(y) ≤ (d(x)⊗ τ(y)) ∨ (τ(x)⊗ d(y))
= d(x⊗ y).

On the other hand, since d(x)⊗ τ(y) ≤ d(x) and τ(x)⊗
d(y) ≤ d(y), we have

d(x⊗ y) = (d(x)⊗ τ(y)) ∨ (τ(x)⊗ d(y))
≤ d(x) ∨ d(y).

Therefore, d(x) ⊗ d(y) ≤ d(x ⊗ y) ≤ d(x) ∨ d(y) ≤
τ(x) ∨ τ(y).

(2) It follows from (1) that d(x) ⊗ d(x) ≤ d(x ⊗ x). By
induction, we can obtain (d(x))n ≤ d(xn) for all n ≥ 1.

(3) On the one hand, for all x, y ∈ L, since x ⊗ (x →
y) ≤ y and d is isotone, we have d(x ⊗ (x → y)) ≤ d(y).
It follows from the statement (1) that d(x → y) ⊗ d(x) ≤
d(x⊗(x→ y)), which implies d(x→ y)⊗d(x) ≤ d(y), i.e.,
d(x→ y) ≤ d(x)→ d(y). On the other hand, since d(y) ≤
τ(y), we have d(x) → d(y) ≤ d(x) → τ(y). Therefore,
d(x→ y) ≤ d(x)→ d(y) ≤ d(x)→ τ(y).

(4) On the one hand, it follows from Proposition 3.5 (3)
that τ(x)⊗ d(1) ≤ d(x) for all x ∈ L. If d(1) = 1, then we
have

τ(x) = τ(x)⊗ d(1)
≤ d(x)
≤ τ(x),

which implies d(x) = τ(x) for all x ∈ L. On the other
hand, if d(x) = τ(x), then d(1) = τ(1) = 1. 2

Remark 3.14: It follows from Proposition 3.13 (4) that
for any strong derivations on (L, τ), if d(1) = 1 = τ(1),
then d is a state operator on L. In fact, in Example 3.4,
let d = τ . Then we obtain (L, τ, τ) is a derivation state
residuated lattice.

Theorem 3.15: Let (L, τ, d) be a derivation state residu-
ated lattice. For all x, y ∈ L, if d, τ satisfy d(x)→ d(y) =
d(x)→ τ(y), then d is an ideal derivation on (L, τ).
Proof. Let d(x) → d(y) = d(x) → τ(y) for all x, y ∈ L.
On the one hand, since d(x) ⊗ 1 ≤ d(x), we have 1 ≤
d(x) → d(x) = d(x) → τ(x). Thus d(x) ⊗ 1 ≤ τ(x) for
all x ∈ L, which implies d is strong. On the other hand, let
x ≤ y, x, y ∈ L. Then we have τ(x) ≤ τ(y). Thus d(x)⊗1 ≤
d(x) ≤ τ(x) ≤ τ(y), i.e., d(x) ⊗ 1 ≤ τ(y), which implies
1 ≤ d(x) → τ(y) = d(x) → d(y), i.e., d(x) ⊗ 1 ≤ d(y).
Thus, d(x) ≤ d(y), i.e., d is isotone. Therefore, d is an ideal
derivation on (L, τ). 2

Definition 3.16: Let (L, τ) be a state residuated lattice and
d be a derivation on (L, τ). If d(1) ∈ B(L), then d is called
a regular derivation on (L, τ), (L, τ, d) is said to be a regular
derivation state residuated lattice.

Example 3.17: Consider the Example 3.3. One can check
that (L, τ, d) is a regular derivation state residuated lattice.

Theorem 3.18: Let (L, τ) be a state-morphism residuated
lattice and d be a regular and strong derivation on (L, τ).
Then the following statements are equivalent.

(1) d is an isotone derivation on (L, τ).
(2) d(x) ≤ d(1) for all x ∈ L.
(3) d(x) = d(1)⊗ τ(x) for all x ∈ L.
(4) d(x ∧ y) = d(x) ∧ d(y) for all x, y ∈ L.
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(5) d(x ∨ y) = d(x) ∨ d(y) for all x, y ∈ L.
(6) d(x⊗ y) = d(x)⊗ d(y) for all x, y ∈ L.

Proof. (1)⇒ (2) It is straightforward.
(2) ⇒ (3) Let d(x) ≤ d(1) for all x ∈ L. Since d is a

regular and strong derivation on state-morphism residuated
lattice (L, τ), we have d(1) ∈ B(L), then it follows from
Proposition 2.8 that

d(x) = d(1) ∧ d(x)
= d(1)⊗ d(x)
≤ d(1)⊗ τ(x).

On the other hand, it follows from Proposition 3.5 (3) that
τ(x)⊗ d(1) ≤ d(x). Therefore, d(x) = d(1)⊗ τ(x).

(3) ⇒ (4) Let d(x) = d(1) ⊗ τ(x) for all x ∈ L. Then
for all x, y ∈ L,

d(x ∧ y) = d(1)⊗ τ(x ∧ y)
= d(1)⊗ (τ(x) ∧ τ(y))
= (d(1) ∧ τ(x)) ∧ (d(1) ∧ τ(y))
= (d(1)⊗ τ(x)) ∧ (d(1)⊗ τ(y))
= d(x) ∧ d(y).

(4) ⇒ (1) Let x ≤ y. It follows from (4) that d(x) =
d(x ∧ y) = d(x) ∧ d(y), which implies d(x) ≤ d(y) for all
x, y ∈ L.

(3) ⇒ (5) For all x, y ∈ L, it follows from (3) and
Proposition 2.2 (9) that

d(x ∨ y) = d(1)⊗ τ(x ∨ y)
= d(1)⊗ (τ(x) ∨ τ(x))
= d(1)⊗ (τ(x)) ∨ (d(1)⊗ τ(x))
= d(x) ∨ d(y).

(5) ⇒ (1) Let x ≤ y. It follows from (5) that d(y) =
d(x ∨ y) = d(x) ∨ d(y), which implies d(x) ≤ d(y).

(3) ⇒ (6) For all x, y ∈ L, since (L, τ) is a state-
morphism residuated lattice, it follows from (3) and Lemma
3.6 that

d(x⊗ y) = d(1)⊗ τ(x⊗ y)
= d(1)⊗ (τ(x)⊗ τ(y))
= (d(1)⊗ τ(x))⊗ (d(1)⊗ τ(y))
= d(x)⊗ d(y).

(6)⇒ (2) For all x ∈ L, it follows from (6) that

d(x) = d(x⊗ 1)
= d(x)⊗ d(1)
= d(x) ∧ d(1).

Therefore, d(x) ≤ d(1). 2

IV. PRINCIPAL IDEAL DERIVATIONS BASED ON STATE
RESIDUATED LATTICES

In this section, we investigate principal ideal derivations.
Also, the adjoint of principal ideal derivation is obtained
by a Galois connection. In particular, we discuss the alge-
braic structure of the set of all principal ideal derivations
on state-morphism residuated lattice (L, τ). By using the
set Ima(d,τ)(L) of principal ideal derivation, we give a
characterization of a Heyting algebra.

In what follows, let (L, τ) be a state-morphism residuated
lattice and a ∈ L. We define a mapping da : L −→ L as
follows: da(x) = a⊗ τ(x) for all x ∈ L.

Theorem 4.1: Let (L, τ) be a state-morphism residuated
lattice and a ∈ L. Then the mapping da is an ideal derivation
on (L, τ).
Proof. Let x, y ∈ L. Then

da(x⊗ y) = a⊗ τ(x⊗ y)
= (a⊗ τ(x⊗ y)) ∨ (a⊗ τ(x⊗ y))
= (a⊗ τ(x)⊗ τ(y)) ∨ (a⊗ τ(x)⊗ τ(y))
= ((a⊗ τ(x))⊗ τ(y)) ∨ (τ(x)⊗ (a⊗ τ(y)))
= (da(x)⊗ τ(y)) ∨ (τ(x)⊗ da(y)).

Then da is a derivation on (L, τ).
Now let x ≤ y. Then τ(x) ≤ τ(y). Thus da(x) = a ⊗

τ(x) ≤ a⊗ τ(y) = da(y), which implies da is isotone.
Moreover, it is easy to know that da(x) = a⊗τ(x) ≤ τ(x)

for all x ∈ L, which implies da is strong.
Therefore, da is an ideal derivation on (L, τ). 2

Remark 4.2: In Theorem 4.1, da is called a principal ideal
derivation on (L, τ). We denote by P (L) the set of all princi-
pal ideal derivations on (L, τ) for da, that is P (L) = {da|a ∈
L}. Moreover, we denote by PB(L) = {da|a ∈ B(L)}. For
principal ideal derivation da(x) = a⊗τ(x), if da(x) ≤ τ(y),
then τ(x) ≤ a → τ(y), we denote by ga(y) = a → τ(y),
ga(y) is called the adjoint derivation of da.

Theorem 4.3: Let (L, τ) be a state-morphism residuated
lattice and da be a derivation on (L, τ). Then we have

(1) a ∈ B(L) if and only if da is a regular derivation on
(L, τ).

(2) If a ∈ B(L), then da is a τ -derivation on lattice L.
Proof. (1) If a ∈ B(L), then

da(1)⊗ da(1) = (a⊗ τ(1))⊗ (a⊗ τ(1))
= (a⊗ a)⊗ (τ(1)⊗ τ(1))
= a⊗ τ(1)
= da(1)

and
(da(1))′′ = (a⊗ τ(1))′′

= a′′

= a
= a⊗ τ(1)
= da(1).

Therefore, it follows from Definition 3.16 that da is a regular
derivation on (L, τ).

Conversely, if da is a regular derivation on (L, τ), then it
is easy to check that a ∈ B(L).

(2) Let da(x) = a⊗ τ(x). Then da(x∧y) = a⊗ τ(x∧y).
Since a ∈ B(L), it follows from Proposition 2.8 that

a⊗ τ(x ∧ y) = a ∧ τ(x ∧ y)
= a ∧ τ(x) ∧ τ(y)
= (a ∧ τ(x) ∧ τ(y)) ∨ (a ∧ τ(x) ∧ τ(y))
= (da(x) ∧ τ(y)) ∨ (τ(x) ∧ da(x)).

Therefore, da(x ∧ y) = (da(x) ∧ τ(y)) ∨ (τ(x) ∧ da(x)). It
follows from Definition 2.10 that da is a τ -derivation on a
lattice L. 2

The following definition generalizes the notions of closure
operators and Galois connections on a poset. We introduce
the concept of f -closure operators and f -Galois connections,
respectively.

Definition 4.4: Let (L,≤) be a poset. For an isotone
mapping g : L −→ L and a mapping f : L −→ L satisfy:
for all x ∈ L,
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(1) g(x) ≥ f(x),
(2) g(g(x)) = g(x).
Then g is called an f -closure operators on L.
Moreover, if an isotone mapping h : L −→ L and a

mapping f : L −→ L satisfy: for all x ∈ L,
(1) h(x) ≤ f(x),
(2) h(h(x)) = h(x).
Then h is called an f -dual closure operators on L and the

pair (g, h) is called an f -Galois connection.
Using Definition 4.4, we have the following result.
Theorem 4.5: Let (L, τ) be a state-morphism residuated

lattice and Γ = {x ∈ L|x ⊗ τ(x) = x}. If a ∈ Γ, then
there exists a τ -closure operators g such that (g, da) forms
a τ -Galois connection.
Proof. Define a mapping: g : L −→ L as follows: g(x) =
a→ τ(x) for all x ∈ L.

First, if x ≤ y, then τ(x) ≤ τ(y), which implies a →
τ(x) ≤ a→ τ(y), i.e., g(x) ≤ g(y).

Next, since a ≤ 1, we have g(x) = a → τ(x) ≥ 1 →
τ(x) = τ(x).

Finally,

g(g(x)) = g(a→ τ(x))
= a→ τ(a→ τ(x))
= (a⊗ τ(a))→ τ(x)
= a→ τ(x)
= g(x).

Combining them, we obtain that g is a closure operator
on L. Moreover, it follows from Theorem 4.1 that da(x) =
a⊗τ(x), then da(da(x)) = da(a⊗τ(x)) = a⊗τ(a⊗τ(x)).
Since (L, τ) is a state-morphism residuated lattice, we have

a⊗ τ(a⊗ τ(x)) = a⊗ τ(τ(x))⊗ τ(a)
= a⊗ τ(x)⊗ τ(a)
= a⊗ τ(x)
= da(x).

Thus, da(da(x)) = da(x). Further, it follows from Definition
4.4 that da is a τ -dual closure operators on L. Therefore,
(da, g) forms a τ -Galois connection. 2

Theorem 4.6: Let (L, τ) be a state-morphism residuated
lattice. If L satisfies x ⊗ (y ∧ z) = (x ⊗ y) ∧ (x ⊗ z)
for all x, y, z ∈ L, then (PB(L),∧,∨, d0, d1) is a bounded
distributive lattice, where da, db ∈ PB(L), (da ∨ db)(x) =
da(x) ∨ db(x) and (da ∧ db)(x) = da(x) ∧ db(x).
Proof. Let da, db ∈ PB(L). Then for all x ∈ L, we have

(da ∨ db)(x) = da(x) ∨ db(x)
= (a⊗ τ(x)) ∨ (b⊗ τ(x))
= (a ∨ b)⊗ τ(x).

For any a, b ∈ B(L), we prove that a ∨ b ∈ B(L).
In fact, it follows from Proposition 2.2 (10)

(a ∨ b) ∨ (a ∨ b)′ = (a ∨ b) ∨ (a′ ∧ b′)
≥ (a ∨ b) ∨ (a′ ⊗ b′).

Moreover, it follows from Proposition 2.2 (11) that

(a ∨ b) ∨ (a′ ⊗ b′) ≥ ((a ∨ b) ∨ a′)⊗ ((a ∨ b) ∨ b′)
= (a ∨ b ∨ a′)⊗ (a ∨ b ∨ b′)
= (a ∨ a′ ∨ b)⊗ (a ∨ b ∨ b′)
= ((a ∨ a′) ∨ b)⊗ (a ∨ (b ∨ b′))
= 1,

which implies (a∨b)∨(a′⊗b′) = 1. Thus, (a∨b)∨(a∨b)′ =
1. Since for any t ∈ L, t ∈ B(L) if and only if t ∨ t′ = 1,
we have a ∨ b ∈ B(L). Hence, (da ∨ db)(x) = da∨b(x).

Further, since x ⊗ (y ∧ z) = (x ⊗ y) ∧ (x ⊗ z) for all
x, y, z ∈ L, we have

(da ∧ db)(x) = da(x) ∧ db(x)
= (a⊗ τ(x)) ∧ (b⊗ τ(x))
= (a ∧ b)⊗ τ(x).

For any a, b ∈ B(L), we prove that a ∧ b ∈ B(L).
It is easy to see that a′ ≤ (a ∧ b)′, b′ ≤ (a ∧ b)′, then

(a ∧ b) ∨ (a ∧ b)′ ≥ (a ∧ b) ∨ (a′ ∨ b′)
≥ (a⊗ b) ∨ (a′ ∨ b′)
≥ ((a′ ∨ b′) ∨ a)⊗ ((a′ ∨ b′) ∨ b)
= 1,

which implies (a∧ b)∨ (a∧ b)′ = 1, i.e., a∧ b ∈ B(L). Thus
(da ∧ db)(x) = da∧b(x).

Now, we prove that (PB(L),∧,∨, d0, d1) is a bounded
distributive lattice.

First, it is easy to see that d0, d1 ∈ PB(L). Let da ∈
PB(L), x ∈ L. Then

d0(x) = 0⊗ τ(x)
= 0
≤ da(x)
= a⊗ τ(x)
≤ τ(x)
= 1⊗ τ(x)
= d1(x),

which implies d0(x) ≤ da(x) ≤ d1(x), i.e., d0 is the smallest
element and d1 is the greatest element in PB(L).

Next, in order to prove that (PB(L),∧,∨, d0, d1) is a
bounded distributive lattice, we shall prove that the following
equation: for all a, b, c ∈ B(L),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (1)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (2)

In fact,

a ∨ (b ∧ c) = a ∨ (b⊗ c)
≥ (a ∨ b)⊗ (a ∨ c)
= (a ∨ b) ∧ (a ∨ c).

The reverse inequality holds in all lattices, then a∨ (b∧c) =
(a ∨ b) ∧ (a ∨ c).

Moreover,

(a ∧ b) ∨ (a ∧ c) = (a⊗ b) ∨ (a⊗ c)
= a⊗ (b ∨ c)
= a ∧ (b ∨ c).

It follows from (1) and (2) that for any da, db, dc ∈
PB(L), x ∈ L, we have

(da ∨ (db ∧ dc))(x) = da(x) ∨ (db ∧ dc)(x)
= da(x) ∨ (db(x) ∧ dc(x))
= da(x) ∨ db∧c(x)
= da∨(b∧c)(x)
= d(a∨b)∧(a∨c)(x)
= d(a∨b)(x) ∧ d(a∨c)(x)
= ((da ∨ db) ∧ (da ∨ dc))(x).
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Thus, da ∨ (db ∧ dc) = (da ∨ db) ∧ (da ∨ dc).
In a similar way, we have (da ∧ (db ∨ dc)) = (da ∧ db) ∨

(da ∧ dc).
Therefore, we obtain that (PB(L),∧,∨, d0, d1) is a

bounded distributive lattice. 2

Remark 4.7: Let (L, τ) be a state-morphism residuated
lattice and d : L −→ L be a derivation on (L, τ). We
denote by a special kind of set Ima(d,τ)(L) as follows:
Ima(d,τ)(L) = {x ∈ L|d(x) = τ(x)}.

Using Remark 4.7, we have the following result.
Theorem 4.8: Let d be a regular ideal derivation on state-

morphism residuated lattice (L, τ). For all x, y ∈ L, if L
satisfies the condition x∧y = x⊗(x→ y), then Ima(d,τ)(L)
is a lattice ideal of L.
Proof. Let x ∈ Ima(d,τ)(L), y ∈ L and y ≤ x. Then τ(y) ≤
τ(x). Thus

d(y) = d(x ∧ y)
= d(x⊗ (x→ y))
= (d(x)⊗ τ(x→ y)) ∨ (d(x→ y)⊗ τ(x))
= (d(x)⊗ τ(x→ y)) ∨ (d(x→ y)⊗ d(x))
= d(x)⊗ τ(x→ y).

Since x, y are comparable, it follows from Proposition 2.6
(4) that τ(x→ y) = τ(x)→ τ(y). Thus

d(x)⊗ τ(x→ y) = d(x)⊗ (τ(x)→ τ(y))
= τ(x)⊗ (τ(x)→ τ(y))
= τ(x) ∧ τ(y)
= τ(y),

which implies d(x) = τ(x), i.e., y ∈ Ima(d,τ)(L).
Next, for any x, y ∈ Ima(d,τ)(L), it follows from Theo-

rem 3.18 that

d(x ∨ y) = d(x) ∨ d(y)
= τ(x) ∨ τ(y)
= τ(x ∨ y),

which implies d(x ∨ y) = τ(x ∨ y), i.e., x ∨ y ∈
Ima(d,τ)(L).

Therefore, Ima(d,τ)(L) is a lattice ideal of L. 2

Since every ideal is prime in a linearly ordered lattice,
combining Theorem 4.8, we can obtain the following result.

Corollary 4.9: Let L be a linearly ordered residuated
lattice and d be a regular ideal derivation on state-morphism
residuated lattice (L, τ). For all x, y ∈ L, if L satisfies the
condition x∧y = x⊗ (x→ y), then Ima(d,τ)(L) is a prime
lattice ideal of L.

Finally, we characterize a Heyting algebra in terms of a
principal ideal derivation.

Theorem 4.10: Let a ∈ B(L) and τ(x) ≤ x. If L is a
Heyting algebra, then (a] ⊆ Ima(d,τ)(L).
Proof. Suppose that L is a Heyting algebra, we have x⊗y =
x ∧ y = x ⊗ (x → y) for all x, y ∈ L. Taking y = τ(x),
we have x ⊗ τ(x) = x ∧ τ(x) = τ(x) for all x ∈ L. Since
da(x) = a⊗ τ(x), we have da(a) = a⊗ τ(a) = τ(a) for all
a ∈ L, which implies a ∈ Ima(d,τ)(L). Since L is a Heyting
algebra, which satisfies x∧y = x⊗(x→ y), it follows from
Theorem 4.8 that Ima(d,τ)(L) is a lattice ideal of L, i.e.,
for all x ∈ L, if x ≤ a, we have x ∈ Ima(d,τ)(L), which
implies (a] ⊆ Ima(d,τ)(L). 2

V. CONCLUSIONS

The notion of derivations is helpful for studying structures
and properties in algebraic systems. In this paper, by com-
bining derivations, state operators and residuated lattices all
together, we introduced the concept of derivations on state
residuated lattices. Some properties of particular derivations
are discussed. The main conclusions in this paper and the
further work to do are listed as follows.

(1) We investigated the properties of isotone, regular and
strong derivations on state residuated lattices (L, τ). Also, we
introduced the notion of (strong) state-morphism residuated
lattices and studied some properties of them.

(2) We obtained that the adjoint of principal ideal deriva-
tion by a Galois connection and we discuss the algebraic
structure of the set of all principal ideal derivations on
state-morphism residuated lattice (L, τ), i.e., we proved that
the set of all principal ideal derivations on state-morphism
residuated lattice (L, τ) can form a bounded distributive
lattice.

(3) We introduced a special kind of set Ima(d,τ)(L) of
derivations on state residuated lattices (L, τ) and we get that
Ima(d,τ)(L) is a lattice ideal of L, when derivation d is
regular ideal derivation. Further, if L is a linearly ordered
residuated lattice, then we obtained that Ima(d,τ)(L) is a
prime lattice ideal of L. In particular, by using the set
Ima(d,τ)(L) of principal ideal derivations, we characterized
a Heyting algebras.

As an extension of this work, the following topics may be
considered:

(1) Constructing derivation theory to other algebras with s-
tate operators, such as state semihoops, state skew residuated
latices, state-R0-algebras and so on.

(2) Studying generalized derivations in state residuated
latices.

(3) Investigating generalized derivations in generalized
state residuated latices.
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