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Abstract—Quasi-Newton method is one of the most effective
methods for solving nonlinear equations. In this paper, we
improve convergence results of a BFGS trust region quasi-
Newton method for nonlinear equations. The global and su-
perlinear convergence are proved under the local error bound
and the Hölderian continuity conditions, which are weaker than
the nonsingularity and the Lipschitz continuity, respectively.
Numerical results show that the algorithm is efficient and
promising.

Index Terms—nonlinear equations, BFGS, quasi-Newton
method, local error bound, Hölderian continuity

I. INTRODUCTION

CONSIDER the numerical solution of systems of non-
linear equations

F (x) = 0, (1)

where F : Rn → Rn is continuously differentiable, F (x) =
(f1(x), · · · , fn(x))T . Let J(x) denote the Jacobian matrix of
F at x, and J(x) = (∇f1(x), · · · ,∇fn(x))T . Throughout
the paper, we assume that the solution set of (1), denoted
by X∗, is nonempty. In all cases, ‖ · ‖ denotes 2-norm. Let
f(x) = 1

2‖F (x)‖2. The nonlinear equation problem (1) is
equivalent to the global optimization problem

min f(x), x ∈ Rn. (2)

Many algorithms have been presented for solving the
problem (1), for examples, Newton method [4], [22], quasi-
Newton method [3], [9], [10], [13], [14], [23], Gauss-Newton
method [12], [16], Levenberg-Marquardt method [5], [6],
[20], tensor method [1], [8], [17], etc. Quasi-Newton method
is one of the most effective methods among them. An attrac-
tive feature of quasi-Newton method is its local superlinear
convergence property without computing the Jacobians.

Conventional quasi-Newton methods [2], [3] for solving
(1) generate a sequence of iterates {xk} by letting xk+1 =
xk + dk, where dk is a solution of the following system of
linear equations:

Fk +Bkd = 0, (3)

where Fk = F (xk), Bk is an approximation of Jk = J(xk).
Since

∇f(xk)T dk = −FTk JkB−1k Fk, (4)
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then dk is not necessarily a descent direction of f at xk. One
way to globalize such quasi-Newton methods is to exploit the
line search rule given by Griewank [9] and Li [11]. In [11],
λk satisfies the line search condition

‖F (xk + λkdk)‖ ≤ (1 + ηk)‖F (xk)‖ − σ1‖λkdk‖2, (5)

where σ1 > 0, η > 0,Σkηk ≤ η < ∞. The global and
superlinear convergence are obtained under the condition that
J(x∗) (x∗ is the solution of (1)) is nonsingular. Another way
is to employ the trust region strategy [13], [18].

Yuan et al. [21] proposed a BFGS trust region method for
solving nonlinear equations:

min qk(d) such that ‖d‖ ≤ ∆k, (6)

where qk(d) = 1
2‖Fk + Bkd‖2,∆k = cp‖Fk‖, 0 < c < 1,

and p is a nonnegative integer, Bk+1 is generated by the
BFGS formula

Bk+1 = Bk −
Bkdkd

T
kBk

dTkBkdk
+
yky

T
k

yTk dk
, (7)

where dk = xk+1− xk, yk = Fk+1−Fk, Bk is nonsingular.
Bk+1 satisfies the quasi-Newton equation Bk+1dk = yk. The
global and superlinear convergence are obtained without the
nonsingularity assumption.

In real applications, some nonlinear equations may not
satisfy the nonsingularity condition, but they satisfy the local
error bound condition defined as follows.

Definition 1.1: We say ‖F (x)‖ provides a local error
bound in some neighbourhood of x∗ ∈ X∗, if there exists a
constant c0 > 0 such that

c0 · dist(x,X∗) ≤ ‖F (x)‖,∀x ∈ N(x∗), (8)

where dist(x,X∗) is the distance from x to X∗ and N(x∗)
is some neighbourhood of x∗ ∈ X∗ (cf. [7], [22]).

For example, the nonlinear function given by F (x1, x2) =
(ex1 − 1, 0)T , the solution set of F (x1, x2) = 0 is X∗ =
{x ∈ R2|x1 = 0}, dist(x,X∗) = |x1|. F (x1, x2) has the
local error bound in the I = {x ∈ R2|− ε < x1 < ε}, where
ε > 0 is small enough. However, J(x∗) is singulary for all
x∗ ∈ X∗.

Convergence results of the BFGS quasi-Newton method
are improved in this paper. Global and superlinear conver-
gence are proved under the conditions of local error bound
and Hölderian continuity. The local error bound is weaker
than the nonsingularity, and the Hölderian continuity is more
general than the Lipschitz continuity.

The paper is organized as follows. Section 2 gives the
BFGS trust region quasi-Newton method and proves its
global convergence. Local convergence rate is presented in
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Section 3. Section 4 demonstrates the numerical results of
test problems. Conclusions are drawn in Section 5.

II. BFGS TRUST REGION QUASI-NEWTON METHOD AND
ITS GLOBAL CONVERGENCE

In this section, we give the BFGS trust region quasi-
Newton method for solving nonlinear equations, and prove
its global convergence.

Let dpk be the solution of the trust region subproblem (6)
corresponding to p. We define the actual reduction as

Aredk(dpk) = f(xk)− f(xk + dpk), (9)

the predict reduction as

Predk(dpk) = qk(0)− qk(dpk). (10)

and the radio of actual reduction over predict reduction as

rpk =
Aredk(dpk)

Predk(dpk)
. (11)

The algorithm is given as follows.
Algorithm 2.1.
Step 0. Choose ρ, c ∈ (0, 1), p = 0, ε > 0. Initialize

x0, B0. Set k := 0.
Step 1. Evaluate Fk, if ‖Fk‖ ≤ ε, terminate.
Step 2. Solve the subproblem (6) to obtain dpk.
Step 3. Compute

rpk =
Aredk(dpk)

Predk(dpk)
. (12)

If rpk ≥ ρ, then xk+1 = xk +dpk, go to step 4. Otherwise, set
p := p+ 1 go to step 2.

Step 4. If yTk d
p
k > 0, update Bk+1 by (7). Otherwise, let

Bk+1 = Bk.
Step 5. Set k := k + 1 and p = 0. Go to Step 1.
In order to prove the global convergence of Algorithm 2.1,

we make the following assumptions.
Assumption 2.1 (1) The level set Ω = {x ∈ Rn|f(x) ≤

f(x0)} is bounded.
(2) J(x) is bounded, i.e., there exists a positive constant

L such that
‖J(x)‖ ≤ L,∀x ∈ Rn. (13)

(3) The following relation

‖[Jk −Bk]TFk‖ = O(‖dpk‖)

holds.
(4) The matrices {Bk} are uniformly bounded in Ω1,

which means there exist positive constants 0 < M0 ≤ M
such that

M0 ≤ ‖Bk‖ ≤M, ∀k. (14)

By (13), we have

‖F (y)− F (x)‖ ≤ L‖y − x‖,∀x, y ∈ Rn. (15)

Lemma 2.1: |Aredk(dpk) − Predk(dpk)| = O(‖dpk‖2) =
O(∆2

k).

Proof: By (9) and (10), we have

|Aredk(dpk)− Predk(dpk)|
= |qk(dpk)− f(xk + dpk)|

=
1

2
|‖Fk +Bkd

p
k‖

2 − ‖Fk + Jkd
p
k +O(‖dpk‖

2)‖2|

= |FTk (Bk − Jk)dpk +O(‖dpk‖
2)|

≤ ‖[Bk − Jk]TFk‖‖dpk‖+O(‖dpk‖
2)

= O(‖dpk‖
2) = O(∆2

k).

This completes the proof.
Lemma 2.2: If dpk is a solution of (6), then

Predk(dpk) ≥ 1

2
‖BkFk‖min

{
∆k,
‖BkFk‖
‖Bk‖2

}
. (16)

Proof: Since dpk is a solution of (6), for any t ∈ [0, 1],
it follows

Predk(dpk) =
1

2

(
‖Fk‖2 − ‖Fk + Bkd

p
k‖

2)
≥ 1

2

(
‖Fk‖2 − ‖Fk −Bk

t∆k

‖BkFk‖
BkFk‖2

)
≥ t∆k‖BkFk‖ −

1

2
t2∆2

k‖Bk‖2. (17)

Therefore,

Predk(dpk) ≥ max
0≤t≤1

[
t∆k‖BkFk‖ −

1

2
t2∆2

k‖Bk‖2
]

≥ 1

2
‖BkFk‖min

{
∆k,
‖BkFk‖
‖Bk‖2

}
. (18)

This completes the proof.
Lemma 2.3: Algorithm 2.1 does not circle between Steps

2 and 3 infinitely.
Proof: If Algorithm 2.1 circles between Steps 2 and

3 infinitely, i.e., p → ∞, rpk < ρ and cp → 0. Obviously,
‖Fk‖ > ε, otherwise the algorithm stops. Thus, ‖dpk‖ ≤
∆k = cp‖Fk‖ → 0.

From Lemmas 2.1 and 2.2, it follows

|rpk − 1| =
|Aredk(dpk)− Predk(dpk)|

|Predk(dpk)|
≤ 2O(∆2

k)

∆k‖BkFk‖
→ 0.

(19)
Therefore, for all k big enough,

rpk ≥ ρ, (20)

this contradicts the fact that rpk < ρ.
Theorem 2.1: Let Assumption 3.1 hold and {xk} be gen-

erated by Algorithm 2.1. Then the algorithm either stops
finitely or

lim
k→∞

inf ‖Fk‖ = 0. (21)

Proof: Assume that Algorithm 2.1 does not stop after
finite steps, we prove that the following relation

lim
k→∞

inf ‖BkFk‖ = 0 (22)

is true. By (14), we can obtain (21). Therefore, in order to
get this theorem, we must show (22).

Assume that (22) is not true, i.e., there exists a positive
constant ε and an infinite subsequence {kj} such that

‖BkjFkj‖ ≥ ε.

Let K = {k|‖BkFk‖ ≥ ε}. By (14), we can assume ‖Fk‖ ≥
ε,∀k ∈ K.
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Using Algorithm 2.1 and Lemma 2.2, we have∑
k∈K

[f(xk)− f(xk+1)] ≥
∑
k∈K

ρ · Predk(dpk)

≥
∑
k∈K

ρ · ε
2

min
{

∆k,
ε

M2

}
,

Because {f(xk)} is convergent, then∑
k∈K

ρ · ε
2

min
{

∆k,
ε

M2

}
<∞.

Thus ∆k → 0, k → +∞, k ∈ K, which implies that pk →
+∞ as k → +∞ and k ∈ K. Therefore, we can assume
pk ≥ 1 for all k ∈ K.

Based on the determination of pk(k ∈ K) in the inner
circle, the solution d̃k corresponding to the following sub-
problem

min qk(d) =
1

2
‖Fk +Bkd‖2 (23)

s.t. ‖d‖ ≤ cpk−1‖Fk‖

is unacceptable. Let x̃k+1 = xk + d̃k, we have

f(xk)− f(x̃k+1)

Predk(d̃k)
< ρ. (24)

From Lemma 2.2, it follows

Predk(d̃k) ≥ ε

2
min

{
cpk−1ε,

ε

M2

}
.

By Lemma 2.1, we get

|f(xk)−f(x̃k+1)−Predk(d̃k)| = O(‖d̃k‖2) = O(c2(pk−1)).

Therefore,∣∣∣∣f(xk)− f(x̃k+1)

Predk(d̃k)
− 1

∣∣∣∣ ≤ O(c2(pk−1))
ε
2 min

{
cpk−1ε, ε

M2

} .
Since pk → +∞ as k → +∞, we obtain

f(xk)− f(x̃k+1)

Predk(d̃k)
→ 1, k ∈ K.

This contradicts (24). This completes the proof.
Remark Theorem 2.1 shows that the iterative sequence
{xk} generated by Algorithm 2.1 satisfies ‖Fk‖ → 0 without
the assumption that J(x∗) is nonsingular, where x∗ is a
cluster point of {xk}.

III. LOCAL CONVERGENCE RATE

In this section, we study some convergence properties of
Algorithm 2.1 under the Hölderian continuity and the local
error bound conditions.

In order to establish the local superlinear convergence of
Algorithm 2.1, we assume that the sequence {xk} generated
by Algorithm 2.1 lies in some neighborhood of x∗ ∈ X∗

and converges to the solution set X∗ of (1). The following
assumption is further needed.

Assumption 3.1 (1) There exists a constant c1 ∈ [1,+∞)
and 0 < b < 1 such that

c1 · dist(x,X∗) ≤ ‖F (x)‖,∀x ∈ N(x∗, b), (25)

where N(x∗, b) = {x ∈ Rn|‖x− x∗‖ ≤ b}.

(2) J(x) is the Hölderian continuous of order υ ∈ (0, 1],
i.e., there exists a positive constant c2 such that

‖J(x)− J(y)‖ ≤ c2‖x− y‖υ,∀x, y ∈ N(x∗, b). (26)

(3) Bk is a good approximation to Jk, i.e., ‖Bk − Jk‖ =
O(dist(xk, X

∗)).
When υ = 1 in (26), J(x) is Lipschitz continuous, which

implies that the Hölderian continuity is more general than
the Lipschitz continuity. By (26), for ∀x, y ∈ N(x∗, b), we
have

‖F (y)− F (x)− J(x)(y − x)‖

=

∥∥∥∥∫ 1

0

J(x+ t(y − x))(y − x)dt− J(x)(y − x)

∥∥∥∥
≤ ‖y − x‖

∫ 1

0

‖J(x+ t(y − x))− J(x)‖dt

≤ c2‖y − x‖1+υ
∫ 1

0

tυdt

=
c2

1 + υ
‖y − x‖1+υ.

Theorem 3.1: Let Assumptions 2.1 and 3.1 hold, {xk} be
generated by Algorithm 2.1. Then, for k large enough, the
iteration formula is as follows

xk+1 = xk + d0k,

where d0k is the solution of (6) corresponding to p = 0, and

dist(xk+1, X
∗) = O((dist(xk, X

∗))1+υ), (27)

where υ ∈ (0, 1]. i.e., Algorithm 2.1 is superlinearly conver-
gent.

Proof: In what follows, let x̄k ∈ X∗ such that

dist(xk, X
∗) = ‖xk − x̄k‖. (28)

Without loss of generality, we assume that xk lies in
N(x∗, b2 ),

‖xk − x∗‖ ≤
b

2
.

Then
‖xk − x̄k‖ ≤ ‖xk − x∗‖ ≤

b

2
.

Thus,

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ b.

So x̄k ∈ N(x∗, b) and

‖xk − x̄k‖ ≤ c1‖xk − x̄k‖ ≤ ‖F (xk)‖.
Since p starts from 0 at each iterative point xk, x̄k − xk is
a feasible point of (6) corresponding to p = 0 for k large
enough. Hence it follows from Assumption 3.2 (2) and (3)
that

qk(d0k)

≤ qk(x̄k − xk) =
1

2
‖Fk + Bk(x̄k − xk)‖2

=
1

2
‖Fk − F (x̄k) + Jk(x̄k − xk) + (Bk − Jk)(x̄k − xk)‖2

≤ 1

2
‖F (x̄k)− Fk − Jk(x̄k − xk)‖2

+
1

2
‖Bk − Jk‖2‖x̄k − xk‖2

= O(‖xk − x̄k‖2(1+υ))
= O((dist(xk, X

∗))2(1+υ)).
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Therefore,

qk(d0k) =
1

2
‖Fk +Bkd

0
k‖2 = O((dist(xk, X

∗))2(1+υ)).

(29)
By (6) and (15), we have

‖d0k‖ ≤ ‖Fk‖ = ‖Fk − F (x̄k)‖ = O(‖xk − x̄k‖).

Therefore, for k large enough, we obtain xk+d0k ∈ N(x∗, b)
and

c1 · dist(xk + d0k, X
∗)

≤ ‖F (xk + d0k)‖
≤ ‖Fk + Jkd

0
k‖+O(‖d0k‖2)

= ‖Fk +Bkd
0
k + (Jk −Bk)d0k‖+O(‖d0k‖2)

≤ ‖Fk +Bkd
0
k‖+ ‖Bk − Jk‖‖d0k‖+O(‖d0k‖2)

= O(‖xk − x̄k‖1+υ)

= O((dist(xk, X
∗))1+υ).

So we obtain

‖F (xk + d0k)‖ = O((dist(xk, X
∗))1+υ) (30)

and

dist(xk + d0k, X
∗) = O((dist(xk, X

∗))1+υ). (31)

In the following we prove that for k sufficiently large the
iteration formula is as follows

xk+1 = xk + d0k. (32)

For k large enough, (29) and (30) imply

|Aredk(d0k)− Predk(d0k)|

=

∣∣∣∣12‖F (xk + d0k)‖2 − qk(d0k)

∣∣∣∣
≤ 1

2
‖F (xk + d0k)‖2 + qk(d0k)

= O(‖xk − x̄k‖2(1+υ))
= O((dist(xk, X

∗))2(1+υ)). (33)

By Assumption 3.1 (2) and (29), we obtain

|Predk(d0k)| =

∣∣∣∣12‖Fk‖2 − qk(d0k)

∣∣∣∣
≥ 1

2
‖Fk‖2 − qk(d0k)

≥ 1

2
c21‖xk − x̄k‖2 +O(‖xk − x̄k‖2(1+υ))

= O(‖xk − x̄k‖2)

= O((dist(xk, X
∗))2). (34)

Combining (33) and (34), we have

lim
k→∞

|r0k − 1| = lim
k→∞

|Aredk(d0k)− Predk(d0k)|
|Predk(d0k)|

= 0.

Therefore, for sufficiently large k, r0k ≥ ρ, then the itera-
tion formula is (32). By (31) and (32), we get (27). This
completes the proof.

IV. NUMERICAL EXPERIMENTS

In this section, we report some numerical experiments to
show that Algorithm 2.1 is an effective algorithm for solving
nonlinear equations.

All codes are written in MATLAB R2016 programming
environment on a personal PC with 2.5 GHz and 2.7 GHz,
8.0 GB RAM, using Windows 10 operation system. The
algorithms are terminated when the number of iterations
exceeds 3000 or ‖F (xk)‖ ≤ 10−5.

In the experiments, we choose the parameters c = 0.5, ρ =
0.001. The initial quasi-Newton matrix is set to be B0 = I .
For Step 4 of Algorithm 2.1, we update Bk by (7) if yTk sk >
10−5, otherwise, we set Bk+1 = Bk. dk in (6) is determined
by Dogleg method in [19]. The results are summarized in
Table I, where Dim is the dimension of the functions [15],
Iters is the total number of iterations, Time is the average
time of iterations and measured in seconds.

TABLE I
NUMERICAL RESULTS OF ALGORITHM 2.1

Function Dim Iters Time(s) ‖F (xk)‖
convex 50 6 0.0386 5.8511e-07
disbound 50 45 0.0187 9.332e-06
logarithmic 50 5 0.0518 6.5924e-06
exponential 50 349 0.0398 9.9839e-06
singular 50 278 0.0243 2.0516e-06
band 100 19 0.0578 3.0534e-06
logarithmic 100 5 0.0030 1.5081e-06
vardim 100 10 0.0048 1.1206e-07
convex 100 6 0.0027 7.6163e-07
disbound 100 96 0.0463 9.3941e-06
band 1000 20 0.8242 3.3348e-06
logarithmic 1000 34 0.2776 3.8839e-08
vardim 1000 65 1.0216 2.2513e-06
convex 1000 21 0.1524 6.0492e-09
disbound 1000 173 1.2143 9.9815e-06

V. CONCLUSIONS

In this paper, we improve convergence results of the BFGS
quai-Newton method for nonlinear equations in [21]. The
global and superlinear convergence are obtained under the
local error bound and the Hölderian continuity conditions.
The local error bound is weaker than the nonsingularity of
Jacobian, and the Hölderian continuity is more general than
the Lipschitz continuity. Numerical experiments demonstrate
that the algorithm is efficient and promising.
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