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Abstract—The problem of fixed-time stabilizing control for
wheeled mobile robot subject to spatial constraint is studied
in this paper. A nonlinear mapping is first introduced to
transform the constrained system into a new unconstrained one.
Then, by employing the adding a power integrator technique
and switching control strategy, a state feedback controller is
successfully constructed to guarantee that the states of closed-
loop system are regulated to zero in a given fixed time without
violation of the constraint. Finally, simulation results are given
to confirm the efficacy of the presented control scheme.

Index Terms—wheeled mobile robot, spatial constraint,
adding a power integrator, fixed-time stabilization.

I. I NTRODUCTION

T HE Wheeled mobile robot (WMR) has attracted a
great deal of attention during the past decades because

it wide applications in entertainment, security, war, rescue
missions, spacial missions, assistant health-care, etc [1-3].
An important feature of WMR is that the number of control
inputs is less than the number of degree of freedom, which
leads to the control of WMR challenging. As pointed out by
Brockett in [4], there is not any smooth (or even continuous)
time-invariant state feedback to stabilize such category of
nonlinear systems. To give this difficulty a solution, a number
of control approaches have been proposed, which mainly are
time-varying feedback [5-7] and discontinuous time-invariant
feedback [8,9] Mainly thanks to these valid approaches, a
number of interesting results on asymptotic stabilization have
been established over the last years, see, e.g., [10-16] and the
references therein.

In practical applications, the closed-loop system is desired
to possess the property that trajectories converge to the
equilibrium in finite time rather than merely asymptotically
since system with finite-time convergence may retain not
only faster convergence, but also better robustness and distur-
bance rejection properties [17]. Motivated by this, the finite-
time control of nonlinear systems has attained significant
amount of interests and efforts over the last years [18-20].
Particularly, by using state feedback, the authors in [21]
first addressed the finite-time stabilization of nonholonomic
systems with weak drifts, and then the adaptive finite-time
stabilization problems were considered for nonholonomic
systems with linear parameterization in [22] and nonlinear
parameterization [23], respectively. By relaxed the restriction
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on system growth, [24] and [25] respectively studied the
finite-time control for a class of nonholonomic systems by
state feedback and output feedback. An output feedback
controller was developed in [26] to finite-time stabilize a
class of nonholonomic systems in feedforward-like form.
Later, this result is further extended to the high order case in
[27]. However, a common drawback of the above-mentioned
studies is that the convergence time seriously relies on the
initial condition of the considered systems, which renders
that they cannot achieve the desired performance in an exact
preset time. Recently, to remove the limitation of finite-
time algorithm, a novel finite-time stability concept that
requires the convergence time of a global finite-time stable
system being bounded independent of initial conditions, was
introduced in [28]. Such stability, usually called fixed-time
stability, offers a new perspective to study the finite-time
control problems and has stimulated some interesting results
[29-31]. However, the effect of the constraints is omitted in
the above-mentioned results.

As a matter that the constraints which can represent not
only physical limitations but also performance requirements
are common in practical systems. Violation of the constraints
may cause performance degradation or system damage. In
recent years, driven by practical needs and theoretical chal-
lenges, the control design for constrained nonlinear systems
has become an important research topic [32-35]. However,
less attention has been paid to the space-constrained non-
holonomic mobile robots.

Motivated by the above observations, this paper focuses on
solving the fixed-time stabilization problem of nonholonomic
WMR subject to spatial constraint. The contributions are
highlighted as follows. (i) The fixed-time stabilization prob-
lem of nonholonomic WMR subject to spatial constraint is
studied. (ii) A nonlinear mapping is introduced, under which
the constrained interval is mapped to the whole Euclidean
space, and then the constrained control problem is trans-
formed into an unconstrained one. (iii) Based on a switching
strategy to eliminate the phenomenon of uncontrollability of
u0 = 0, and by using backstepping technique, a systematic
state feedback control design procedure is proposed to force
the states of the closed-loop system to zero for any given
fixed time while the state constraints are not violated.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a tricycle-type WMR shown in Fig.1. The kine-
matic equations of this robot are represented by

ẋc = v cos θ,
ẏc = v sin θ,

θ̇ = ω,
(1)

where(xc, yc) denotes the position of the center of mass of
the robot,θ is the heading angle of the robot,v is the forward
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Fig. 1. The planar graph of a mobile robot.

velocity while ω is the angular velocity of the robot.
Introducing the following change of coordinates

x0 = xc, x1 = yc, x2 = tan θ,
u0 = v cos θ, u1 = w sec2 θ,

(2)

system (1) is transformed into the chained form as

ẋ0 = u0,
ẋ1 = u0x2,
ẋ2 = u1.

(3)

Note that the state(x0, x1) can be see as the displacement
from the parking position. As we all know, when the robots
initial position is far away from the parking position, it
usually can move directly to the parking position. The robots
body angle can be aligned without difficulties and no more
maneuvers are needed. However, when the robots initial po-
sition is close to the parking position, it might not be feasible
to get to the parking position while aligning the robots body
angle at the same time. Therefore it is very necessary to
develop control techniques for spatial constrained WMR for
giving this difficulty a straightforward solution.

Due to physical limitations, in this paper we assume that
the statesx0 andx1 are constrained in the compact sets

Ωxi
= {−ki < xi < ki}, i = 0, 1, (4)

whereki’s are positive constants.
The objective of this paper is to present a state feedback

control design strategy which stabilizes the system (3) for
any given fixed time with the constraint being not violated.

Remark 1. Although great progress on constrained control
design has been made, for the constrained nonholonomic
system (3), how to construct a fixed-time stabilizer is still
very difficult problem. The crucial obstacle is that the time-
varying coefficientu0 makes thex-subsystem uncontrollable
in the case ofu0 = 0, and thus the existing constrained
control methods mainly based on barrier Lyapunov function
are highly difficult to the control problem of the system (3)
or even inapplicable. Thereby, how to overcome this obstacle
and design a fixed-time stabilizer for the constrained system
(3) is main work of this paper.

The following definitions and lemmas will serve as the
basis of the coming control design and performance analysis.

Definition 1[17]. Consider the nonlinear system

ẋ = f(t, x) with f(t, 0) = 0, x ∈ Rn, (5)

where f : R+ × U0 → Rn is continuous with respect to
x on an open neighborhoodU0 of the origin x = 0. The
equilibriumx = 0 of the system is (locally) uniformly finite-
time stable if it is uniformly Lyapunov stable and finite-
time convergent in a neighborhoodU ⊆ U0 of the origin.
By “finite-time convergence,” we mean: If, for any initial
conditionx(t0) ∈ U at any given initial timet0 ≥ 0, there
is a settling timeT > 0 , such that everyx(t, t0, x(t0))
of system (5) is defined withx(t, t0, x(t0)) ∈ U/{0} for
t ∈ [t0, T ) and satisfieslimt→T x(t, t0, x(t0)) = 0 and
x(t, t0, x(t0)) = 0 for any t ≥ T . If U = U0 = Rn, the
origin is a globally uniformly finite-time stable equilibrium.

Lemma 1[17]. Consider the nonlinear system described in
(5). Suppose there is aC1 functionV (t, x) defined onÛ ⊆
U0 × R, whereÛ is a neighborhood of the origin, classK
functionsπ1 andπ2, real numbersc > 0 and0 < α < 1, for
t ∈ [t0, T ) andx ∈ Û such that

π1(|x|) ≤ V (t, x) ≤ π2(|x|), ∀t ≥ t0, ∀x ∈ Û ,

and
V̇ (t, x) + cV α(t, x) ≤ 0, ∀t ≥ t0 , ∀x ∈ Û .

Then, the origin of (5) is uniformly finite-time stable with
T ≤ V 1−α(t0,x(t0))

c(1−α) for initial conditionx(t0) in some open

neighborhood̂U of the origin at initial timet0. If Û = U0 =
Rn and π1 and π2 are classK∞ functions, the origin of
system (5) is globally uniformly finite-time stable.

Definition 2[31]. The origin of system (5) is said to be
globally fixed-time stable if it is globally finite-time stable
and the settling time functionT (x0) is bounded, that is, there
exists a positive constantTmax such thatT (x0) ≤ Tmax,
∀x0 ∈ R

n.
Lemma 2[31]. Consider the nonlinear system (5). Suppose

there exist aC1, positive definite and radially unbounded
function V (x) : Rn → R and real numbersc > 0, d > 0,
0 < α < 1, γ > 1, such that

V̇ (x) ≤ −cV α(x) − dV γ(x), ∀x ∈ R
n.

Then, the origin of system (5) is globally fixed-time stable
and the settling timeT (x0) satisfies

T (x0) ≤ Tmax :=
1

c(1− α)
+

1

d(γ − 1)
, ∀x0 ∈ R

n.

Lemma 3[36]. For x ∈ R, y ∈ R, p ≥ 1 and c > 0
are constants, the following inequalities hold: (i)|x+ y|p ≤
2p−1|xp + yp|, (ii) (|x| + |y|)1/p ≤ |x|1/p + |y|1/p ≤
2(p−1)/p(|x| + |y|)1/p, (iii) ||x| − |y||p ≤ ||x|p − |y|p|, (iv)
|x|p + |y|p ≤ (|x|+ |y|)p, (v) |[x]1/p − [y]1/p| ≤ 21−1/p|x−
y|1/p, (vi) |[x]p − [y]p| ≤ c|x− y|||x− y|p−1 + |y|p−1|.

Lemma 4[36]. For any positive real numbersc, d
and any real-valued functionπ(x, y) > 0, |x|c|y|d ≤
c

c+dπ(x, y)|x|
c+d + d

c+dπ
−c/d(x, y)|y|c+d.

III. F IXED-TIME CONTROL DESIGN

In this section, we give a constructive procedure for the
finite-time stabilizer design of system (3) for any given
settling timeT > 0. The overall controller design consists of
two steps: (i) Choose an appropriate nonzero constant input
u∗

0 for u0. In this way, thex-subsystem can be interpreted
as a linear-like system, for which the fixed-time stabilization
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Fig. 2. Schematic illustration of the nonlinear mappingH1.

controller can be proposed; (ii) Afterx arrives at zero before
a fixed time and remains zero afterwards, we design a new
fixed-time stabilization controlleru0 to stabilize thex0-
subsystem.

A. Fixed-time stabilization of the x-subsystem

For thex0-subsystem, we take the following control law

u0 =

{

u∗

0, x0(0) < 0,
−u∗

0, x0(0) ≥ 0,
:= (| sign(x0(0))| − sign(x0(0))− 1)u∗

0,
(6)

where u∗

0 is a positive constant satisfyingu∗

0 < k0/(θT )
with θ ∈ (0, 1)∩R. As a result, the following lemma can be
established by some simple derivations.

Lemma 5. For any initial conditionx0(0) ∈ Ωx0
, the

corresponding solutionx0(t) is well defined on[0, θT ) and
satisfiesx0(t) ∈ Ωx0

.
Under the control law (6), thex-subsystem can be rewrit-

ten as
ẋ1 = d1x2,
ẋ2 = d2u1,

(7)

whered1 = (| sign(x0(0))|−sign(x0(0))−1)u∗

0 andd2 = 1.
Next, we will stabilize the system (7) within the settling

timeθT . To prevent the statex1 from violating the constraint,
we introduce a one-to-one nonlinear mappingM1 : Ωx1

→
R as follows:

z1 = M1(x1) = ln
(k1 + x1

k1 − x1

)

, (8)

whereM1 is shown in Fig. 2, from which, it is clear that the
functionM1 has a continuous inverse, see Remark 1. Based
on (8), we can obtain

ż1 =
1

2k1
(ez1 + e−z1 + 2)d1x2. (9)

Furthermore, by denoting

z2 = x2, (10)

we can rewrite the system (7) as

ż1 = d̃1z2,

ż2 = d̃2u1,
(11)

whered̃1 = d1(e
z1 + e−z1 + 2)/2k1 and d̃2 = d2.

Remark 2. From the nonlinear mappingM1, the statez1
is defined in the whole real number fieldR and thus it is

an unconstrained variable. Moreover, based on the inverse
mapping

x1 = M
−1
1 = k1

(

1−
2

ez1 + 1

)

, (12)

and (10), we know thatx → 0 if and only if z → 0 and that
x1 will stay in the constraint interval|x1| < k1 regardless
of the value ofz1. Therefore, the control design for the
constrained system (7) is equivalent to the control design
for the unconstrained system (11).

With the aid of (11), a fixed-time stabilization controller
will be designed foru1 by employing recursive technique.
Our design procedure consists ofn steps. Before proceeding,
we taker1 = 1 and ri+1 = ri + τ > 0, i = 1, 2, 3 with
τ ∈ (− 1

n , 0) being a negative number, and introduce the
following coordinate transformation:

ξi = [zi]
1
ri − [αi−1]

1
ri ,

αi = −g
ri+1

i (z̄i)[ξi]
ri+1 , i = 1, 2,

(13)

whereα0 = 0, α2 = u1 andgi(z̄i) > 0 is a C1 function to
be specified later.

We further defineWi : R
i → R as follows:

Wi(z̄i) =

∫ zi

αi−1

[

[s]
1
ri − [αi−1]

1
ri

]2−ri+1

ds. (14)

In the following, the detailed design procedure is elabo-
rated.

Step 1. For the z1-subsystem of (11), take the state
variablez2 as a virtual control input. ChooseV1 = W1 and
g1 = ((1+l1+l2|ξ1|

p)/d̃1)
1
r2 with design parametersl1 > 0,

l2 > 0 andp > −τ to be determined later, we have

V̇1 ≤ −(1 + l1)|ξ1|
2 − l2|ξ1|

2+p + d̃1[ξ1]
2−r2(z2 − α1).

(15)
Step 2 . Consider the2 ed Lyapunov functionV2 = V1 +

W2. It can be deduced from (15) that

V̇2 ≤ −(1 + l1)|ξ1|
2 − l2|ξ1|

2+p

+d̃1[ξ1]
2−r2(z2 − α1) + d̃2[ξ2]

2−r3u1 +
∂W2

∂z1
d̃1z2.

(16)
First, we observe from Lemmas 3 and 4 that

d̃1[ξ1]
2−r2(z2 − α1) ≤ 2d̃1|ξ1|

2−r2 |ξ2|
r2

≤
1

2
|ξ1|

2 + ϕ21|ξ2|
2,

(17)

whereϕ21 ≥ 0 is aC1 function.
Then, by using Lemmas 3 and 4, we have

∂W2

∂z1
d̃1z2 ≤

1

2
|ξ1|

2 + ϕ22|ξ2|
2, (18)

whereϕ22 ≥ 0 is aC1 function.
Choosing

g2 =
( l1 + ϕ21 + ϕ22 + l2|ξ2|

p

d̃2

)
1
r3
, (19)

and substituting (17), (18 and (19) into (16), we have

V̇2 ≤ −l1

2
∑

j=1

|ξj |
2 − l2

2
∑

j=1

|ξj |
2+p. (20)

So far, the inductive design steps are completed. Therefore,
there exists a continuous state feedback controller of the form

u1 = α2 = −gr32 [ξ2]
r3 , (21)
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such that

V̇2 ≤ −l1

2
∑

j=1

|ξj |
2 − l2

2
∑

j=1

|ξj |
2+p, (22)

whereV2 =
∑2

j=1 Wj .
Consequently, the following result is obtained.
Lemma 6. If the controlleru1 of system (11) is specified

by (21) with design parametersl1 > 0, l2 > 0 andp > −τ
satisfying

2(τ − 2)

θl1τ
+

(2− τ)2
2+p

2−τ n
p+τ

2−τ

θl2(p+ τ)
< T, (23)

then the equilibriumz = 0 of closed-loop system is globally
fixed-time stable and all the trajectories converge to zero
before a fixed timeθT .

Proof. According to(zi − αi−1)([zi]
1
ri − [αi−1]

1
ri ) ≥ 0,

we easily verify thatV2 =
∑2

j=1 Wj is positive definite
and radially unbounded. Moreover, we have the following
estimation forV2.

V2 =

2
∑

j=1

Wj ≤ 2

2
∑

j=1

|ξj |
2−τ . (24)

Letting α = 2/(2− τ), it is not difficult to obtain that

−
2

∑

j=1

|ξj |
2 ≤ −

1

2
V α
2 . (25)

On the other hand, taking (24) into account, it can be
deduced that

−

2
∑

j=1

|ξj |
2+p = −

2
∑

j=1

(

|ξj |
2−τ

)

2+p

2−τ

≤ −21−
2+p

2−τ

(

n
∑

j=1

|ξj |
2−τ

)

2+p
2−τ

≤ −2−γ21−γV γ
2 ,

(26)

whereγ = (2 + p)/(2− τ).
Therefore, by considering (22), (25) and (26), it follows

that
V̇2 ≤ −

1

2
l1V

α
2 − l22

−γ21−γV γ
2 . (27)

Sinceα < 1 andγ > 1, from Lemma 2, we conclude that
the equilibriumz = 0 of the closed-loop system is globally
fixed-time stable and the settling time functionT1 satisfies

T1 ≤
2

l1(1− α)
+

2γnγ−1

l2(γ − 1)

=
2(τ − 2)

l1τ
+

(2 − τ)2
2+p

2−τ n
p+τ

2−τ

l2(p+ τ)
< θT.

(28)

With the help of Lemma 6, we are ready to state the main
result of this subsection.

Lemma 7. If the proposed control design procedure with
appropriate design parameters is applied to system (7), then,
for any initial conditionx(0) ∈ Θ1 = {x ∈ R

n| − k1 <
x1(0) < k1}, the following properties hold.

(i) The statex1 remains in the setΩx1
= {−k1 < x1(t) <

k1}, ∀t ≥ 0.
(ii) All the states of closed-loop system are regulated to

zero within a fixed settling timeθT .

Proof. From Lemma 6, we can easily see that the states
zi(t), i = 1, 2 are bounded, and satisfylimt→ T

2
zi(t) = 0.

The bounded statez1(t) together with the nonlinear mapping
(8) leads to

|x1(t)| = k1

∣

∣

∣
1−

2

ez1(t) + 1

∣

∣

∣
< k1, (29)

that is, the statex1 will remains in the setΩx1
and never

violates the constraint. Furthermore,limt→θT z2(t) = 0 and
(10), (12) imply thatlimt→θT x2(t) = 0, and

lim
t→θT

x1(t) = lim
t→θT

k1

(

1−
2

ez1(t) + 1

)

= k1

(

1−
2

elimt→θT z1(t) + 1

)

= 0.

(30)

Thus, the proof is completed.

B. Fixed-time stabilization of the x0-subsystem

From Lemma 7, we know thatx(t) ≡ 0 when t ≥ θT .
Since the time derivative ofx(t) is identically zero,x(t) will
always keep zero fort ≥ θT in spite that a new controller
will be designed foru0 when t ≥ θT . Therefore, we just
need to stabilize thex0-subsystem in a fixed timeθT . In
this case, for thex0-subsystem, we can take the controlu0

as

u0 = −(m0 +m1|x0|
q)[x0]

σ, (31)

where0 < σ < 1, m0 > 0, m1 > 0 and q > 1 − σ are
design parameters to be determined later.

Lemma 8. If design parameters0 < σ < 1, m0 > 0,
m1 > 0 andq > 1− σ in (31) satisfy

2

m0(1− σ)(1 − θ)
+

2

m1(σ + q − 1)(1− θ)
< T, (32)

then, for any initial conditionx0(0) ∈ {−k0 < x0(0) < k0},
the following properties hold.

(i) The statex0 remains in the setΩx0
= {−k0 < x0(t) <

k0}, ∀t ≥ 0 and never violates the constraint.
(ii) The statex0 is regulated to zero within a fixed settling

time (1− θ)T .
Proof. The proof of Lemma 8 follows the same line of

the proofs of Lemmas 6 and 7.
Up to now, we have finished the fixed-time state feedback

stabilizing controller design of the system (??). Consequent-
ly, the following theorem can be obtained to summarize the
main result of the paper.

Theorem 1. If the following switching control strategy
with an appropriate choice of the design parameters is
applied to system (3) subject to constraints (4),

u0 =







u∗

0, t < θT,

−
1

d0
(m0 +m1|z0|

q)[z0]
σ, t ≥ θT,

(33)

u1 = −βrn+1

n [ξn]
rn+1 , (34)

then the states of the closed-loop system are regulated to
zero within any given settling timeT while, at the same
time constraints (4) are met.
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IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the
proposed approach with the boundedness ofki = 1, i.e.,
|x0| < 1 and |x1| < 1. Then, for thex0-subsystem, we can
choose the control law

u0 =

{

u∗

0, x0(0) ≤ 0,
−u∗

0, x0(0) > 0,
:= (| sign(x0(0))| − sign(x0(0))− 1)u∗

0,
(35)

where u∗

0 is a positive constant satisfyingu∗

0 < 2/T .
Choosingτ = −1/3 and following the design procedure
shown in Section III, we can explicitly construct a state
feedback controller

α1 = −
1

d̃1
(1 + l1 + l2|ξ1|

p)[ξ1]
2
3 := −g

2
3

1 [ξ1]
2
3 ,

u1 = −(l1 + ϕ21 + ϕ22 + l2|ξ2|
p)[ξ2]

1
3 ,

(36)

with ξ1 = [z1], ξ2 = [z2]
3
2 − [α1]

3
2 , ϕ21 = 1.1852d̃31,

ϕ22 = 2.0999|∂([α1]
3
2 )

∂z1
|+1.3999|∂([α1]

3
2 )

∂z1
|
3
2 d̃

3
2

1 g1 and appro-
priate positive constantsl1, l2 andp such that the states of
thex-subsystem of (3) are globally regulated to zero within
a fixed settling timeT/2 without violation of the constraints.

Then, whent ≥ T/2, for thex0-subsystem, we switch the
control inputu0 to

u0 = −
1

d0
(m0 +m1|z0|

q)[z0]
σ, (37)

with z0 = ln(1+x0

1−x0
), d0 = (ez0 + e−z0 + 2)/2 and some

suitable positive constantsσ, m0, m1, q, under which, the
statex0 can be regulated to zero within a fixed settling time
T/2 without violation of the constraints.

In the simulation, by choosing the fixed timeT = 10
and the gains for the control laws asu∗

0 = 0.19, l1 = 4,
l2 = 5, p = 2, σ = 0.5 and m0 = m1 = q = 2, Fig.
3 is obtained to exhibit the responses of the closed-loop
system with(xc(0), yc(0), θ(0))= (−0.8, 0.9, π/4). From
the figure, it can be seen that the mobile robot moves to the
desired location in a given fixed time and the state constraints
are never violated, which accords with the main result
established in Theorem 1 and demonstrates the effectiveness
of the control method proposed in this paper.

V. CONCLUSION

This paper has studied the problem of Fixed time stabi-
lization by state feedback for nonholonomic WMR subject
to spatial constraint. Based on the nonlinear mapping, and
by skillfully using recursive technique, a constructive design
procedure for state feedback control is given. Together with
a novel switching control strategy,a constructive design pro-
cedure for state feedback control is given. Together with a
novel switching control strategy, the designed controller can
guarantee that the closed-loop system states are regulated
to zero for any given fixed time while the constraint is not
violated.
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