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is a solution of the fractional equation

Dα
0+u(t) = 0.

Lemma 2.2 [33] If α > 0, there are

Iα
0+Dα

0+u(t) = u(t) + c1 + c2t + c3t
2 + · · ·+ cntn−1,

for someci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.
Definition 2.3 We have a real Banach spaceE. P ⊂ E is

a nonempty convex closed set. We calledP is a cone if
(1) αu ∈ P, for all u ∈ P, α ≥ 0,
(2) u,−u ∈ P implies u = 0.

Definition 2.4 If α : K → [0,∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y),

for all x, y ∈ K and0 ≤ t ≤ 1. We calledα a nonnegative
continuous concave functional. Ifγ : K → [0,∞) is
continuous and

γ(tx + (1− t)y) ≤ tγ(x) + (1− t)γ(y),

for all x, y ∈ K and0 ≤ t ≤ 1. We calledγ a nonnegative
continuous convex functional.

Let γ and θ are two convex functionals onK, and these
two functions are nonnegative continuous. Letα is a concave
functional onK, and this function is nonnegative continuous.
Let ψ is a functional onK, and this function is nonnegative
continuous. We give the convex sets as follows, basing on
the following positive real numbersa, b, c, andd,

K(γ, d) = {x ∈ K | γ(x) < d},
K(γ, α, b, d) = {x ∈ K | b ≤ α(x), γ(x) ≤ d},
K(γ, θ, α, b, c, d)
= {x ∈ K | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},
R(γ, ψ, a, d) = {x ∈ K | a ≤ ψ(x), γ(x) ≤ d}.

Theorem 2.3 ([32]) We define a Banach spaceE. K is
a cone ofE.Let γ and θ are two convex functionals onK,
and these two functions are nonnegative continuous. Letα is
a concave functional onK, and this function is nonnegative
continuous. Letψ is a functional onK, and this function is
nonnegative continuous. The formula holdsψ(λx) ≤ λψ(x)
for 0 ≤ λ ≤ 1, and forM andd,

α(x) ≤ ψ(x) and ‖x‖ ≤ Mγ(x) (3)

for all x ∈ K(γ, d). Suppose

T : K(γ, d) → K(γ, d)
is completely continuous and there exist positive numbers
a, b, andc with a < b such that

(S1) {x ∈ K(γ, θ, α, b, c, d) |α(x) > b} 6= ∅
and α(Tx) > b for x ∈ K(γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ K(γ, α, b, d)
with θ(Tx) > c;

(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a
for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed pointsx1, x2, x3 ∈
K(γ, d), such that

γ(xi) ≤ d for i = 1, 2, 3,

b < α(x1),

a < ψ(x2), with α(x2) < b,
and

ψ(x3) < a.
Lemma 2.4 If y ∈ C[0, 1], 1 < α ≤ 2, then

u(t) =
∫ 1

0

G(t, s)y(s)ds,

is a unique solution of
{

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0)− βu′(ξ) = 0, u(1)− γu′(η) = 0,

here

G(t, s) =





− (t− s)α−1

Γ(α)
+

(β + t)(1− s)α−1

∆Γ(α)

+
(β2 −∆β + βt)(ξ − s)α−2

∆Γ(α− 1)

− (βγ + γt)(η − s)α−2

∆Γ(α− 1)
,

s ≤ ξ, s ≤ t,
(β + t)(1− s)α−1

∆Γ(α)

+
(β2 −∆β + βt)(ξ − s)α−2

∆Γ(α− 1)

− (βγ + γt)(η − s)α−2

∆Γ(α− 1)
, s ≤ ξ, t ≤ s,

− (t− s)α−1

Γ(α)
+

(β + t)(1− s)α−1

∆Γ(α)

− (βγ + γt)(η − s)α−2

∆Γ(α− 1)
, ξ ≤ s ≤ η, s ≤ t,

(β + t)(1− s)α−1

∆Γ(α)
− (βγ + γt)(η − s)α−2

∆Γ(α− 1)
,

ξ ≤ s ≤ η, t ≤ s,

− (t− s)α−1

Γ(α)
+

(β + t)(1− s)α−1

∆Γ(α)
,

η ≤ s, s ≤ t,
(β + t)(1− s)α−1

∆Γ(α)
, η ≤ s, t ≤ s.

(4)
Proof:

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds + c1 + c2t,

for somec1, c2 ∈ R can be got fromDα
0+u(t) + y(t) = 0

by using Lemma 2.2 and Definition 2.1.

c1 = − β

Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds + c2β,

− 1
Γ(α)

∫ 1

0

(1− s)α−1y(s)ds + c1 + c2

= − γ

Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds + c2γ,

canbe got from condition (2).
Here it is

c1 =
β

∆Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

+
β2

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds

− βγ

∆Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds

− β

Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds.
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c2 =
1

∆Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

+
β

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds

− γ

∆Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds.

Therefore,

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds

+
β + t

∆Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

+
β2 −∆β + βt

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds

− βγ + γt

∆Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds

=
∫ 1

0

G(t, s)y(s)ds.

is the unique solution of this problem. The proof is complete.

Let

M =
(β + 1) + (α− 1)(β2 −∆β + β)

∆Γ(α)
. (5)

Lemma 2.5 Assumethat (H1), (H2) hold. In addition,
the functionG(t, s) described by (4) matches the following
relationship

(1) G ∈ C([0, 1]×[0, 1)) and0 ≤ G(t, s) ≤ M(1−s)α−2,
for t, s ∈ (0, 1);

(2) There have positiveΥ satisfying

min
1
4≤t≤ 3

4

G(t, s) ≥ ΥM(1− s)α−2,
1
4
≤ s ≤ 3

4
. (6)

Proof: The definition ofG(t, s) impliesG ∈ C([0, 1]×
[0, 1)).

G(t, s) ≥ 0

can be got by(H1).

min
1
4≤t≤ 3

4

G(t, s) ≥





[(1− η)− (α− 1)γ]t
∆Γ(α)

(1− s)α−2

+
(γ − 1)(1− η)− (α− 1)βγ

∆Γ(α)
(1− s)α−2,

1
4
≤ s ≤ t ≤ 3

4
,

1
4 (β + t)
∆Γ(α)

(1− s)α−2,
1
4
≤ t ≤ s ≤ 3

4
,

≥





[(1− η)− (α− 1)γ] 14
∆Γ(α)

(1− s)α−2,

+
(γ − 1)(1− η)− (α− 1)βγ

∆Γ(α)
(1− s)α−2,

1
4
≤ s ≤ t ≤ 3

4
,

1
4 (β + 1

4 )
∆Γ(α)

(1− s)α−2,
1
4
≤ t ≤ s ≤ 3

4
,

≥ min
{{

[(1− η)− (α− 1)γ] 14
∆Γ(α)

+
(γ − 1)(1− η)− (α− 1)βγ

∆Γ(α)

}
,

{ 1
4 (β + 1

4 )
∆Γ(α)

}}
(1− s)α−2.

.

max
0≤t≤1

G(t, s) ≤ (β + 1) + (α− 1)(β2 −∆β + β)
∆Γ(α)

(1− s)α−2

= M(1− s)α−2, 0 ≤ s ≤ 1.

.

Therefore,

Υ = min
{{

[(1− η)− (α− 1)γ] 14
(β + 1) + (α− 1)(β2 −∆β + β)

+
(γ − 1)(1− η)− (α− 1)βγ

(β + 1) + (α− 1)(β2 −∆β + β)

}
,

{ 1
4 (β + 1

4 )
(β + 1) + (α− 1)(β2 −∆β + β)

}}
.

and

min
1
4≤t≤ 3

4

G(t, s) ≥ ΥM(1− s)α−2, 0 < s < 1.

II I. M AIN RESULT

We define the norm

‖u‖ = max
{

max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}

.

Thus we haveX = C1[0, 1] is a Banach space in the above
norm case.

K ⊂ X is a cone defined by

K = {u ∈ X| u(t) ≥ 0, u(0)− βu′(ξ) = 0,

min
1
4≤t≤ 3

4

u(t) ≥ Υ max
0≤t≤1

u(t)}.

Lemma 3.1 Just foru ∈ K,

max
0≤t≤1

|u(t)| ≤ (1 + β) max
0≤t≤1

|u′(t)|. (7)

Proof:

u(t)− u(0) =
∫ t

0

u′(s)ds ≤ max
0≤t≤1

|u′(t)|, t ∈ [0, 1] (8)

can be got by the definition of first order derivative. More-
over, taking into account thatu is nonnegative, just

u(0) = βu′(ξ) ≤ β max
0≤t≤1

|u′(t)|.

Thus,
max
0≤t≤1

|u(t)| ≤ (1 + β) max
0≤t≤1

|u′(t)|.

Let the nonnegative continuous concave functionalα,
the nonnegative continuous convex functionalθ, γ and the
nonnegative continuous functionalψ be defined on the cone
K by

γ(u) = max
0≤t≤1

|u′(t)|, ψ(u) = θ(u) = max
0≤t≤1

|u(t)|,
α(u) = min

1
4≤t≤ 3

4

|u(t)|.
(9)

the relations

Υθ(u) ≤ α(u) ≤ θ(u) = ψ(u),
‖u‖ = max{θ(u), γ(u)} ≤ (1 + β)γ(u). (10)

hold by lemma 2.5 and Lemma 3.1, for allu ∈ K.
So the condition (3) of Theorem 2.3 is met.
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Lemma 3.2 OperatorrelationT : K → X described by

(Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds. (11)

is a completely continuous operator.
Proof:

(Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds ≥ 0.

(Tu)(0)−β(Tu)′(ξ) = 0, min
1
4≤t≤ 3

4

(Tu)(t) ≥ Υ max
0≤t≤1

(Tu)(t)

can be got by (4) and (11). Just we haveT : K → K. The
operatorT : K → K is continuous in view of the continuity
of functionG(t, s) andf(t, u(t), u′(t)). If we assumedΩ ⊂
K is a bounded set. Then we can find a positive constant
R1 > 0 satisfies‖u‖ ≤ R1, u ∈ Ω. Write

R = max
0≤t≤1, u∈Ω

|f(t, u(t), u′(t))|+ 1. (12)

Then foru ∈ Ω, we have

|Tu| ≤ ∫ 1

0
G(t, s)|f(s, u(s), u′(s))|ds

≤ R
∫ 1

0
M(1− s)α−2ds = MR

α−1 .
(13)

|(Tu)′(t)| =
∣∣∣∣−

1
Γ(α− 1)

∫ t

0

(t− s)α−2f(s, u(s), u′(s))ds

+
1

∆Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s), u′(s))ds

+
β

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2f(s, u(s), u′(s))ds

− γ

∆Γ(α− 1)

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds

∣∣∣∣
≤ R

Γ(α)
+

R

∆Γ(α + 1)
+

βRξα−1

∆Γ(α)
+

γRηα−1

∆Γ(α)
.

(14)
Hence,T (Ω) is a bounded set. Foru ∈ Ω, t1, t2 ∈ [0, 1],

|Tu(t2)− Tu(t1)|
≤

∣∣∣∣
1

Γ(α)

(∫ t2

0

(t2 − s)α−1f(s, u(s), u′(s))ds

− ∫ t1
0

(t1 − s)α−1f(s, u(s), u′(s))ds

)∣∣∣∣

+
1

∆Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s), u′(s))ds× |t2 − t1|

+
β

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2f(s, u(s), u′(s))ds× |t2 − t1|

+
γ

∆Γ(α− 1)

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds× |t2 − t1|

≤ R|tα2 − tα1 |
Γ(α + 1)

+
[

R

∆Γ(α + 1)

+
βRξα−1 + γRηα−1

∆Γ(α)

]
× |t2 − t1|.

(15)
|(Tu)′(t2)− (Tu)′(t1)|
≤

∣∣∣∣
1

Γ(α− 1)

(∫ t1

0

(t1 − s)α−2f(s, u(s), u′(s))ds

− ∫ t2
0

(t2 − s)α−2f(s, u(s), u′(s))ds

)∣∣∣∣
≤ R

Γ(α)
× ∣∣tα−1

2 − tα−1
1

∣∣ .

(16)
Thus

‖(Tu)(t2)− (Tu)(t1)‖ → 0 for t1 → t2, u ∈ Ω. (17)

So T : K → K is completely continuous in view of the
Arzela-Ascoli theorem.

Theorem 3.3 Assume that(H1), (H2) hold. In addition,
there exist0 < a, b, d satisfy a < b < d, c = b

γ , and if we
can findf satisfies:

(A1) f(t, h, k) ≤ ∆αΓ(α)
∆α + 1 + α(βξα−1 + γηα−1)

d,

for (t, h, k) ∈ [0, 1]× [0, (1 + β)d]× [−d, d];

(A2) f(t, h, k) >
α− 1
ΥM

b,

for (t, h, k) ∈ [ 14 , 3
4 ]× [b, b

Υ ]× [−d, d];

(A3) f(t, h, k) <
α− 1
M

a,

for (t, h, k) ∈ [0, 1]× [0, a]× [−d, d].

Then at least three positive solutionsu1, u2 andu3 can be
got. In addition, the solutions satisfy

max
0≤t≤1

|u′i(t)| ≤ d for i = 1, 2, 3,

b < min
1
4≤t≤ 3

4

|u1(t)|, max
0≤t≤1

|u1(t)| ≤ (1 + β)d,

a < max
0≤t≤1

|u2(t)| < b
Υ ,

with min
1
4≤t≤ 3

4

|u2(t)| < b,

and max
0≤t≤1

|u3(t)| < a.

Proof: Obviously, if u(t) satisfies the relation

u(t) =
∫ 1

0

G(t, s)f(s, u(s), u′(s))ds = (Tu)(t). (18)

then we can say the fractional problem (1)(2) has a solution
u(t). Thus we set out to prove thatT satisfies the Avery-
Peterson fixed point theorem.

For u ∈ K(γ, d), there haveγ(u) = max
0≤t≤1

|u′(t)| ≤ d.

Then max
0≤t≤1

|u(t)| ≤ (1 + β)d can be got by lemma 3.1.

f(t, u(t), u′(t)) ≤ ∆αΓ(α)
∆α + 1 + α(βξα−1 + γηα−1)

d. can be

got by condition(A1). Conversely, foru ∈ K, there have
Tu ∈ K,

γ(Tu)

= max
0≤t≤1

∣∣∣∣−
1

Γ(α− 1)

∫ t

0

(t− s)α−2f(s, u(s), u′(s))ds

+
1

∆Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s), u′(s))ds

+
β

∆Γ(α− 1)

∫ ξ

0

(ξ − s)α−2f(s, u(s), u′(s))ds

− γ

∆Γ(α− 1)

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds

∣∣∣∣
≤

(
1

Γ(α)
+

1
∆Γ(α + 1)

+
βξα−1

∆Γ(α)
+

γηα−1

∆Γ(α)

)

∆αΓ(α)
∆α + 1 + α(βξα−1 + γηα−1)

d = d.

Just,T : K(γ, d) → K(γ, d).
In order to check condition(S1) of Theorem 2.3, we

chooseu(t) = b
Υ ∈ K(γ, θ, α, b, c, d) and α(u) > b,

implies that{u ∈ K(γ, θ, α, b, c, d)|α(u) > b} 6= ∅.
Hence, foru ∈ K(γ, θ, α, b, c, d), there isb ≤ u(t) ≤
b
Υ , |u′(t)| ≤ d for 1

4 ≤ t ≤ 3
4 .
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Thus, by condition (A2) of this theorem, we have

f(t, u(t), u′(t)) >
α− 1
ΥM

b for 1
4 ≤ t ≤ 3

4 , and combining
the conditions ofα andK,
we have

α(Tu) = min
1
4≤t≤ 3

4

∣∣∣
∫ 1

0
G(t, s)f(s, u(s), u′(s))ds

∣∣∣

≥ α− 1
ΥM

b

∫ 1

0

ΥM(1− s)α−2ds = b.

i.e., α(Tu) > b for all u ∈ K(γ, θ, α, b, b
Υ , d}. This

shows that condition(S1) of Theorem 2.3 is satisfied.
Secondly,

α(Tu) ≥ Υθ(Tu) > Υ b
Υ = b, for all u ∈

K(γ, α, b, d) with θ(Tu) > c. can be got by Lemma 3.2.

Thus, condition(S2) of Theorem 2.3 is satisfied.
Finally, we declare that condition(S3) of Theorem 2.3

also holds. Clearly, asψ(0) = 0 < a, there holds0 /∈
R(γ, ψ, a, d). Suppose thatu ∈ R(γ, ψ, a, d) with
ψ(u) = a.
Then,

ψ(Tu) = max
0≤t≤1

|(Tu)(t)|
= max

0≤t≤1

∣∣∣
∫ 1

0
G(t, s)f(s, u(s), u′(s))ds

∣∣∣

≤ α− 1
M

a

∫ 1

0

M(1− s)α−2ds = a.

can begot by the condition(A3). So, the condition(S3)
of Theorem 2.3 is satisfied. Therefore, an application of
Theorem 2.3, we can say the FBVP(1), (2) has at least three
positive solutionsu1, u2 andu3 satisfy

max
0≤t≤1

|u′i(t)| ≤ d for i = 1, 2, 3,

b < min
1
4≤t≤ 3

4

|u1(t)|, max
0≤t≤1

|u1(t)| ≤ (1 + β)d,

a < max
0≤t≤1

|u2(t)| < b
Υ ,

with min
1
4≤t≤ 3

4

|u2(t)| < b,

and max
0≤t≤1

|u3(t)| < a.

The proof is complete.

IV. EXAMPLES

Example 4.1Consider the following FBVP

D
3
2
0+u(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1, (19)

u(0)− 13
20

u′(
1
20

) = 0, u(1)− 8
5
u′(

1
10

) = 0, (20)

where

f(t, h, k) =





t
1000 + 1

800h4 + 1
1000

(
k

10000

)2
,

for 0 ≤ h ≤ 10,
t

1000 + 25
2 + 1

1000

(
k

10000

)2
,

for h > 10.

We find α = 3
2 , β = 13

20 , γ = 8
5 , ξ = 1

20 , η = 1
10 ,

∆ = 1
20 , M = 434

5
√

π
, Υ =

9
434 ,

∆αΓ(α)
∆α + 1 + α(βξα−1 + γηα−1)

d ≈ 323.72,
α− 1
ΥM

b ≈

4.916,
α− 1
M

a ≈ 0.010195 can be got by a direct
calculation.

Taking a = 1, b = 10, d = 10000, we get

f(t, h, k) < 13 < 323.72

=
∆αΓ(α)

∆α + 1 + α(βξα−1 + γηα−1)
d,

for 0 ≤ t ≤ 1, 0 ≤ h ≤ 16500, −10000 ≤ k ≤ 10000;

f(t, h, k) > 12.5 > 4.916 =
α− 1
ΥM

b,

for 1
4 ≤ t ≤ 3

4 , 10 ≤ h ≤ 482, −10000 ≤ k ≤ 10000;

f(t, h, k) < 0.00325 < 0.010195 =
α− 1
M

a,

for 0 ≤ t ≤ 1, 0 ≤ h ≤ 1, −10000 ≤ k ≤ 10000.

Then all conditions of Theorem 3.3 hold. Thus, with The-
orem 3.3, problem (19), (20) has at least three positive
solutionsu1, u2 andu3 such that

max
0≤t≤1

|u′i(t)| ≤ 10000 for i = 1, 2, 3,

10 < min
1
4≤t≤ 3

4

|u1(t)|, max
0≤t≤1

|u1(t)| ≤ 165000,

1 < max
0≤t≤1

|u2(t)| < 482,

with min
1
4≤t≤ 3

4

|u2(t)| < 10,

and max
0≤t≤1

|u3(t)| < 1.
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