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Triple Positive Solutions of a Fractional
Differential Equation Model with the Nonlinear
Term Involving the Derivative

Yang Yang, Baiyan Xu

Abstract—Few papers have discussed the solution of frac-
tional equation in which the derivative was involved in the
nonlinear term. Because in this case, there will be a lot of
difficulties, but in this paper, we study the existence of solutions
for such a class of problems. This result will provide a platform
for further study of fractional differential equation.

Index Terms—Four-point nonlocal boundary value problems,
Caputo’s fractional derivative, Fractional integral, Fixed point
theorems.

I. INTRODUCTION

HE definitions of derivatives and integrals of non-
Tinteger order have been proposed since 1965, but it
was not until the late nineteenth century that the definition
of fractional derivative was first introduced by Liouville and
Riemann. Fractional derivatives play a very important role
in describing the memory and genetic properties of various
materials and processes, for more information, please refer to
the literature Diethelm [1], Kilbas et al [2], Miller and Ross
[3], Podlubny [4] and Tarasor [5] and the Refs [6-18]. Just
for this reason, many aspects of fractional problem existence
theory need to be explored.

If you want to see the latest research, check the literature
( [21-31,34]). Zhou and Chu [20] discussed the following
fractional differential equation with multi-point boundary
condition

‘Dg,u(t) + f(t,v(t), (Kv)(t), (Hv)(t)) =0, te(0,1),
a1v(0) — b1v'(0) = div(&r), agu(l) + bav'(1) = dav(&2),

where 1 < ¢ < 2 is a real number.

In [19], using some fixed point theorems, the authors
found the unique solution for the nonlinear fractional integro-
differential equations

“DIa(t) = F(t, 2(0), (62)(1), (B2)(B), 0 <t <1,
1<g<2,
2'(0)+ax(n) =0, bz’ ()+x(n2) =0, 0<n <m < 1.

When the BVPs of nonlinear differential equations which
the first order derivative is involved in the nonlinear term ex-
plicitly, we often use the Avery-Peterson fixed point theorem
to find the existence of positive solution for the problem.
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Bai [32] found triple positive solutions for the boundary
value problem

c1v” (&) — eav”(€) =0, e3v” (1) + g™ (1) = 0.

Inspired by the literature above, we are concerned with the
following fractional model with the nonlinear term involving
the derivative

Dy o(t) + f(t,v(t), o' (t)) = 0, )
v(0) = Bv'(§) =0, (1) = yv'(n) =0, 2

where « is a real number with 1 < <2, 0<{<n< 1.

However, very few papers, as far as we know, which have
combined the fractional differential equation with the non-
linear differential equations which the first order derivative is
involved in the nonlinear term explicitly. The main difficulty
is that we can’t derive the concavity or convexity of function
u(t) by the sign of its fractional order derivative. In this
paper, we overcome the difficulty by obtaining some new
inequalities and defining a special cone.

0<t<l,

A=14+p5—-17.

We give the assumption.

(Hy) (=11 =n)—(a=1)By>0, 1-n—(a—1)y>
0, A>0, v>1.

(H2) f€C(]0,1] x [0,400) X (—00,+0)) — [0, +00).

II. THE PRELIMINARY LEMMAS
We now list some basic theory for the fractional derivative.
Definition 2.1 [33] For function y, a order Riemann-
Liouville integral is
1 t
] / (t —s)* " ty(s)ds, a > 0.
0

I y(t) = (o)

Definition 2.2 [33] For function y, o order Caputo’s
derivative is

1 /t y™(s)ds
T —a) Jo s

here [«] stands the integer part of real number .
Lemma 2.1 If o > 0, then

Dg,y(t) = n=[a]+1,

u(t) =c1 +cot +c3t> + -+ cpt" "l ¢ €R,
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is a solution of the fractional equation
Dg,u(t) = 0.
Lemma 2.2[33] If a > 0, there are

I8, DY u(t) = u(t) + c1 + cot + c3t® + -+ cpt™

Definition 2.3 We have a real Banach spage P C E'is
a nonempty convex closed set. We calléds a cone if
(1) aue P, forallue P, a >0,
(2) u,—u € P impliesu = 0.

Definition 2.4 If o : K — [0,00) is continuous and

for somec, € R, i =1,2,---,n,n=[a]+ 1. {

here

a(te + (1 =t)y) = ta(z) + (1 - t)a(y),

for all z,y € K and0 <t < 1. We calleda a nonnegative
continuous concave functional. § : K — [0,00) is
continuous and

Ytz + (1 —t)y) < ty(z) + (1 —t)v(y),

for all z,y € K and0 <t < 1. We calledy a nonnegative
continuous convex functional.

Let v and @ are two convex functionals o', and these
two functions are nonnegative continuous. et a concave G(t,s) =
functional onK, and this function is nonnegative continuous.
Let ¢ is a functional onK, and this function is nonnegative
continuous. We give the convex sets as follows, basing on
the following positive real numbers, b, ¢, andd,

K(v, d)={z € K | v(z) <d},

K(’% a, b, d) = {I eEK | b< a(x), ’Y(I) < d}7
K(v, 0, a, b, ¢, d)

— (s e K | b<alx), 0(z) < c.1(x) < d),

R(y, ¥, a, d) ={z e K| a<y(x), v(r) <d}.

Theorem 2.3([32]) We define a Banach spade. K is
a cone ofE.Let v and 8 are two convex functionals oA,
and these two functions are nonnegative continuousalist

a concave functional o', and this function is nonnegative Proof:
continuous. Let) is a functional onk, and this function is
nonnegative continuous. The formula holdé\z) < A (x)

for 0 < A <1, and for M andd,
a(z) < ¢(x)

for all z € K(v, d). Suppose

T: K(v, d) — K(v, d)
is completely continuous and there exist positive numbers
a, b, andc with a < b such that

(S1) {z € K(v, 0, o, b, ¢, d) |a(x) > b} #0

and  |lz|| < My(x) 3

and o(Tx) > b for x € K(v, 0, a, b, ¢, d); _

(S2) a(Tx) >b for x € K(v, o, b, d)
with 0(Tx) > ¢;
(S3) 0 & R(v, ¥, a, d) and y(Tx) < a
for x € R(~, ¥, a, d) with ¢¥(z) = a.

Then T has at least three fixed points, zo, x3 €
K(~, d), such that

’Y(Il) Sd fOT 1= 172737
b < alz),
a < P(x2), with  a(x2) < b,

and

u(t) = —

for somec;, c; € R can be got fromDg, u(t) + y(t) = 0
by using Lemma 2.2 and Definition 2.1.

1 = —

w0

- _% /On(n = 5)"7?y(s)ds + e,

¥(z3) < a.
Lemma 2.41f y € C[0,1], 1 < a <2, then

u(t):/o G(t,s)y(s)ds,

is a unique solution of

D u(t) +y(t) =0,
u(0) — Bu'(€) = 0,

0<t<l,
u(l) —yu'(n) =0,

(=8t (BB —s) ]
I'(a) AT (o)
L (B2 = AB+ BH)(E = s) 2
ATl (a—1)
Byt —s)*?
ATl (a—1) '
s < E, s < tv
(B+t)(1—s)t
AT (@)
L (B2 = AB+ BH)(E = s5)* 2
ATl (a—1)
(By +t)(n—5)*~2
T ATa—1) 0 fsetss
(=)t (B —s)!

F(a)t a_QAF(a)
_(671}();77_—1;) . f£<s<n s<t
(B+HA=9)""  (By+t)(n—1s)""

AT'(o) Al'(a —1) 7

§<s<m t<s,
C(t=s) ! + B+HA = s)*"
I'(a) AT () 7
n<s, s<t,
(B+t)(1 —s)*!
AT(a) nEs s
4
1 't a—1
m /0 (t — 5) y(S)dS + c1 + cat,

B ¢ a—2
m/o (€ =) "y(s)ds + 25,

1 1
$)2 Ly (s)ds + 1 + ¢z

Pla—1

canbe got from condition (2).
Here it is

AI‘(ij— 1) 5077(77 )" yle)da
ﬂ a—2
T Tao ), £ s
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! 1 —1)(F - A
co = AFl(a) /0 (1—9)*"ty(s)ds OréltaglG(t,s) < Chihs (aAF()c(f B+0)
¢ a— (1 - S)a72
+ M(S_l)/o (& =) ?y(s)ds —M(1—s)22, 0<s<l.
- ﬁ /On(n —8)*?y(s)ds. Therefore,
Therefore T = min{{ [(1—n) — (e =13
L | (R R R TR
- _ _ a—1 Y — -—1n)— (o — y
u= ﬂgyé“ls) vs)ds +W+IH%%@D@§—A6+M ’
+1t _ a—1 1O+ 7
'*gwgé(lsi s {orore s}
— t
_ AﬂFV(C;F ’Ytl) /n(n $)°=2y(s)ds %rgntigg G(t,s) >TM(1—s)2% 0<s<l.
- 0
1
= /0 G(t,s)y(s)ds u
is the unique solution of this problem. The proof is complete. [I1. MAIN RESULT

u We define the norm
Let

(B+1)+ (a—1)(8* - AB+ )

: ®)
AT () 1 . .
Thus we haveX = C'[0,1] is a Banach space in the above
Lemma 2.5 Assumethat (H;), (H2) hold. In addition, norm case.

the functionG(t, s) described by (4) matches the following x - X is a cone defined by
relationship

lul| = max{ max |u(t)|, max |u’(t)} :
M — 0<t<1 0<t<1

(1) G € C([0,1]x[0,1)) and0 < G(t, s) < M(1—s)>"2, K ={ue X|u(t) >0, u(0) - u'(§) =0,
for t,s € (0,1); .
(2) There have positiv&l satisfying ;;12% u(t) 2 To?%“(t)}'
min_ G(t,s) > TM(1 — 5)*2, 1 <s< § (6) Lemma 3.1Just foru € K,
isrsd ! ! max |u(t)] < (1+ 3) max |u'(t)]. @
Proof: The definition of G(¢, s) implies G € C([0, 1] x 0st<l1 ost<l1
[0,1)). Proof:
G(t,s) >0 .
— / /
can be got by(H;). u(t) —u(0) = /o u'(s)ds < (nax lW'(@)], tel0,1] (8)
(1=n)—(a— 1)7]15(1 _ge2 can be got by the definition of first order derivative. More-
AT () over, taking into account that is nonnegative, just
(=D —n) —(a—-1)By
AT(a) u(0) = fu’(€) < B max [u'(t)]-
min G(t,5) > ¢ (1 —s)*2, -
<< 1 3 Thus,
—<s<t<Z, < /
g4t 4 4 X qnax [u(t)] < (1+6) max [u'(t)]
3 (1-5)272 —<t<s< <, -
AT (« 4 4 _ . )
[(1—n) — (a—1)q]3 ) Let the nonnegative continuous concave functional
AT(a) (1 —s)72, the nonnegative continuous convex functiofialy and the
(v=1)(1=1) = (a —1)8y Y nonnegative continuous functionalbe defined on the cone
> AF(Oz) ; (1 - S) y K by
Deacrd ol = ma ()] () = 0w = max u(t)
iB+ ‘1*)(1 gy L, .3 au) = min_[u(t).
AT ’ . 4 - -4 - (9)
> wmin { [(L—n) - ((a —lg the relations
- AT (@)
TO(u) < a(u) < O(u) = ¥(u)
(-1 —n) —(a—1)8y ’ 10
+ AT 7 Jull = max{o(a), 2()} < (1 + By @O
i(ﬁ + i) 1 2 hold by lemma 2.5 and Lemma 3.1, for alle K.
AT () (1 —9)""% So the condition (3) of Theorem 2.3 is met.
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Lemma 3.2 OperatorrelationT : K — X described by SoT : K — K is completely continuous in view of the
1 Arzela-Ascoli theorem. [ |
:/ G(t, 8)f(s,u(s),u'(s))ds. (11) Theorem 3.3 Assume tha{H;), (H2) hold. In addition,
0 there exist0 < a,b,d satisfya < b < d,c = %, and if we

is a completely continuous operator. can find f satisfies:

Proof: AaT(a)

: (A1) f(t, by k) < - d,
- / . Ao+ 1+ a(fg=T + )
() = [ G(t.s) f(s.uls) ' (5))ds = 0 e }a AR
(Tw)(0)=B(Tu) (€) = 0, %gltig%(TU)(t) > T max (Tu)(t) (As) f(t, h, k) > ——b,
- 1 3 b .

can be got by (4) and (11). Just we hale K — K. The for (t, h, k) € [Z’az]_x (b ] > [=d. dJ;
operatorl’ : K — K is continuous in view of the continuity (A3) f(t, h, k) < a,
of function G(¢, s) and f (¢, u(t), v’ (t)). If we assumed) C for (t, h, k) €10,1] x [0,a] x [—d,d].

K is a bounded set. Then we can find a positive consta
Ry > 0 satisfies|u|| < Ry, u € Q. Write
R= o [ u®), v ()] + 1. (12)

0< <1 4 < =1,2
t [nax lui(t)| < d for i=1,2,3,

r11en at least three positive solutions, u, andusz can be
got. In addition, the solutions satisfy

Then foru € Q, we have
b< min_ |ui(t)], max |ui(t)] < (1+ B)d,

ITul < Jy Gt )l (s,uls), w/(Dlds g y<i<i 0=t<1
<Rf0 1—5)0‘ 2ds = iﬂz a<0rél%xl|u2(t)\ <%,
Ty ()] = \—F(Of_l) / (1= )% (s, uls) d (3))ds with  min, Jus(t)] <

1 ! a—1 /

+AF(0¢) /0 (1—8)* " f(s,u(s), v (s))ds nd mas st <o

+M(S_1)/ (€= 5)" 2 f(s,u(s), w/(s))ds Proof: Obviously, if u(t) satisfies the relation

n

‘m /0 (1= 8)" 72 f(s,u(s), u'(s)) ) / G(t,5)f(s,u(s), ' (s))ds = (Tu)(t). (18)

R R BRE*  yRy™~

" () Al(e+1) = Al(a) Arglz%) u(t). Thus we set out to prove thdt satisfies the Avery-

: Peterson fixed point theorem.
Hence, T'(Q?) is abounded set. Fon € Q, tq,t2 € [0,1],
@ vtz €[01] Foru € K(v,d), there havey(u) = max |v/(¢)] < d.
|Tu(te) — Tu(t1)] 0<t<1
t

Then max lu(t)] < (1 + B)d can be got by lemma 3.1.

1 ? a—1 /
S v ty — f(s, ; d
F(Oz) (/0 ( 2 5) (S U(S) U (S)) S f(t,u(t)7ul(t)) < Ao Tin f((z;l;((xa)l " a—l)d' can be
- otl(tl —5)* 71 f (s, uls),u'(s))ds got by condition(A;). Conversely, foruﬁyé7 K, there have
1 1 o1 , Tu € K,
+M(%) |a )" ) e x = i |
+m /On(i —8)* 2 f(s,u(s),u/(s))ds x [ta — t1] = Juax —ﬁ/{) (t—8)*72f(s,u(s),u'(s))ds
v a— / 1
+%F|t(g _tp'/o (n —2 2f(s,u(s), ' (s))ds x [ta — 1] +ﬁ(a)/o (1= )% £ (s, u(s), u'(s))ds
2 U
_ﬂFR(gij_ll_?_ R|:aAlI(a + 1) +AF(§—1) /) (g - 5)a72f(57u(s)7u/(5))d5
74 n
* ATl (@) } Xtz =t (15) AF((Z—l)/O (n—8)*"2f(s,u(s),u'(s))ds
[(Tu)'(t2) = (Tu)(t)] = <I‘(1a) * AF(; Y igra(:) + AF(a1)>
< ‘1_‘(1_1) </ (t1 — 8)* 2 f(s,u(s),u'(s))ds Aal'(a) _d
o o N Aa+1+a(fget +amo=t) "
o (t2 = 8T (5, uls) (s) S>’ Just,T: K(7,d) — K(v,d).
< R ~ |tgfl _t{ffl‘, In order to check conditior(S;) of Theorem 2.3, we
I(a) 16 chooseu(t) = £ € K(v, 0, a, b, ¢, d) anda(u) > b,
Thus (16) implies that{u € K(v, 0, «, b, ¢, d)|a(u) > b} # 0.

Hence, foru € K(v, 6, a, b, ¢, d), there isb < u(t) <
[(Tw)(te) — (Tu)(t1)| = 0forty —to, we Q. (A7) L, |W/(t)|<d for 1<t <

>J>\OJ
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Thus, by condltlon 3142 of th|s theorem, we have 4.916, L_la ~ 0.010195 can be got by a direct
ft u(t),w'(t)) 1 <+ < 3 and combining calculation.
the conditions ofa and K, Takinga =1, b =10, d = 10000, we get
we have F(t, h, k) <13 < 323.72
. 1
a(Tu) = %Iéltlgg fo G(t,s)f(s,u(s),u'(s))ds = 5T S(Oégia)l o)
a-1, lTM(l—s)o‘*zds:b. for0<t<1, 0<h<16500, —10000 < k < 10000;
- TM o F(t, b, k) >12.5 > 4.916 = %b,
e, a(Tu) > bforalue K(v, 0, a, b, &, d}. This for i <t< 3,10 <h <482, —10000 < k < 10000;
shg\évsot:;;condmorqsl) of Theorem 2.3 is satisfied. F(t, b, k) < 0.00325 < 0.010195 — a— o,

for0<¢<1, 0<h<1, —10000 < k& < 10000.
o(Tu) > YO(Tu) > YL = b, for all u €
K(7, a, b,d) with 6(Tu) > c. can be got by Lemma 3.2. Then all conditions of Theorem 3.3 hold. Thus, with The-

orem 3.3, problem (19), (20) has at least three positive

Thus, condition(S2) of Theorem 2.3 is satisfied. solutionsu,, us andus such that

Finally, we declare that conditiofiSs;) of Theorem 2.3 '
also holds. Clearly, ag(0) = 0 < a, there holds0 ¢ Jhax |u;(t)] < 10000 for i=1,2,3,
R(v, %, a, d). Suppose that. € R(v, %, a, d) with

Y(u) = a. 10 < r<n13 lui (t)], fax luy ()| < 165000,
Then, | < max Jus(t)] < 482,
Y(Tu) = max |(Tu)(t)] 0<t<1

0<t<1 . .
Té N with  min_ lua(t)] < 10,
= max t,s)f(s,u(s),u'(s))ds 1<i<d
max |y G(t, ) f (s, u(s), ' (s) r<is
1
a—1
< a M(1— 5)a72d5 =a. and max |u <1
M 0 0<t< 1‘ 3(0)] '
can begot by the condition(A3). So, the condition(.Ss)
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