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Abstract—This paper addresses interval-valued optimality
problems with the sub-derivative. By using the new concept
of differentiability, we prove optimality conditions more op-
erational and less restrictive than before in interval-valued
nonconstrained problems.

Index Terms—sub-derivative; Interval-valued optimality
problem; Optimality condition.

I. INTRODUCTION

UNCERTAINTY arises widely in many practical engi-
neering and economic fields [1], [4], [7], [10], [17],

[25], [32], [34]. In most cases, due to the increasingly
complex environment and the inherent subjectivity of human
thinking, decision information is often uncertain. Therefore,
it is a challenge to quantify their opinions accurately with
crisp numbers [11], [13]–[15], [21], [25], [30]. Fuzzy time
series have been widely used to deal with forecasting prob-
lems [12]. In view of the low prediction accuracy of the
filtering method used in parameter learning of adaptive neural
fuzzy inference system, a training method based on improved
square root unscented Kalman filter and noise statistical
estimator is proposed [30]. In [33], optimization of convex
and generalized convex fuzzy mappings are derived and
studied the fuzzy differential equations in the quotient space
of fuzzy numbers. Hence, interval analysis is introduced to
deal with the uncertainty in many deterministic phenomena in
the real world [27]–[29], [31]. Interval-valued optimization
problems can provide a more useful choice for evaluating
uncertainty in optimization problems [9], [13]–[15].

Interval-valued optimization is an optimization problem
which objective function is an interval-valued function. In
the practical application, it often has trouble determining
the probability distribution function of random parameters
and membership function of fuzzy parameters, nevertheless
it is comparatively easy to obtain the range of parameters
[8], [16], [19], [26], [33]. Therefore, interval planning can
better solve the optimization problem of uncertain systems
[15]. Derivative is an important concept for interval-valued
optimization problems. The derivative describes the changing
trend of the function [3], [22]–[24]. In this paper, the theory
of sub-derivative is introduced, which is more applicable
than generalized Hukuhara derivative [22]. The limitation
of necessary and sufficient condition for the existence of
generalized Hukuhara derivative shows in [5]. By using
the sub-derivative, this paper establishes the optimization
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conditions of interval-valued function. Compared with other
methods found in the literature, these methods are more
operational and less restrictive [5], [6]. If the one-sided
derivatives of the lower and upper endpoint functions of
interval-valued functions exist, the sub-derivative of interval-
valued functions exists. At the same time, the relationship
between the local minimum point and the global minimum
point of interval-valued function is explained, and the con-
clusion that all the global minimum points of interval-valued
functions constitute an interval is given. Section 2 presents
the basic definitions and conclusions that will be used later.
In Section 3, the optimization conditions of interval-valued
optimization problems are given. Examples are given to
illustrate the applicability of the conditions. Section 4 is a
summary.

II. PRELIMINARIES

The definitions and results which will be used throughout
the paper are introduced in this section.

The R denotes the family of all real numbers, U(c, δ) =
(c−δ, c+δ) denotes the neighborhood of c ∈ R, U−(c, δ) =
(c− δ, c] and U+(c, δ) = [c, c+ δ) denote the left and right
neighborhood of c ∈ R, respectively. Let Kc be the bounded
and closed intervals of R, i.e.,

Kc = {[a, a]|a, a ∈ R, a ≤ a}.

For any A = [a, a], B = [b, b] and λ ∈ R, the sum and scalar
multiplication are defined by

A+B = [a, a] + [b, b] = [a+ b, a+ b], (1)

λ ·A =

{
[λa, λa], if λ ≥ 0,
[λa, λa], if λ < 0.

(2)

Stefanini and Bede [22] introduced the gH-difference of
two intervals.

Definition 1: [22] The generalized Hukuhara difference
of two intervals, A and B, (gH-difference for short) is an
interval C such that

A	gHB = C ⇔
{

(i) A = B + C
or (ii) B = A− C .

The gH-difference of two intervals A = [a, a] and B = [b, b]
always exists and equals to

A	gHB = [min{a− b, a− b},max{a− b, a− b}].

We suppose that M is an open and nonempty subset of
Rn and F : M → Kc is an interval-valued function. Then
we obtain F (x) =

[
F (x) , F (x)

]
, where F (x) ≤ F (x)

for x ∈ M . F (x) and F (x) are called the lower and upper
endpoint functions of F (x). Based on the gH-difference,
Stefanini and Bede [22] introduced the following derivative
for interval-valued functions.
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Definition 2: [22] Let x0 ∈ M ⊂ R and h be such that
x0 + h ∈ M , then the gH-derivative of an interval-valued
function F at x0 is defined as

F ′gH (x0) = lim
h→0

1

h
[F (x0 + h)	gHF (x0)] . (3)

If F ′gH (x0) ∈ Kc satisfying Equation (3) exists, we
say that F (x) is generalized Hukuhara differentiable (gH-
differentiable for short) at x0.

The limitation in Definition 2 is taken in the metric space
(Kc, H), where H is defined by

H(A,B) = max{max
a∈A

d(a,B),max
b∈B

d(b, A)},

with d(a,B) = minb∈B |a− b|. The necessary and sufficient
condition for the existence of gH-derivative of interval-
valued functions is given in [5].

Theorem 1: [5] F (x) is gH-differentiable at x0 ∈ M if
and only if one of the following cases holds:
(a) F (x) and F (x) are differentiable at x0 and F ′gH(x0) is
equal to[

min{(F )′(x0), (F )
′
(x0)},max{(F )′(x0), (F )

′
(x0)}

]
.

(b) (F )′−(x0), (F )
′
+(x0), (F )

′
−(x0) and (F )′+(x0) exist

and satisfy (F )′−(x0) = (F )′+(x0) and (F )′+(x0) =

(F )′−(x0). Moreover F
′

gH(x0) is equal to

[min{(F )
′

+(x0), (F )
′

+(x0)},max{(F )
′

+(x0), (F )
′

+(x0)}]
= [min{(F )

′

−(x0), (F )
′

−(x0)},max{(F )
′

−(x0), (F )
′

−(x0)}].

Obviously, real-valued functions are special interval-
valued functions. For the function f(x) = |x|, it gets the
minimum at point 0 but are not gH-differentiable at 0. In
order to enlarging the class of differentiable interval-valued
functions, following concept is introduced.

Definition 3: Let F : M ⊂ R → Kc be an interval-
valued function and x0 ∈ M . We define that F (x) is sub-
differentiable at x0, if the one-sided derivatives (F )′−(x0),
(F )′+(x0), (F )′−(x0) and (F )′+(x0) exist, thus the sub-
derivative of F : M → Kc at x0, ∂F (x0) is defined as

[min

{
(F )′−(x0), (F )

′
+(x0),

(F )′−(x0), (F )
′
+(x0)

}
,

max

{
(F )′−(x0), (F )

′
+(x0),

(F )′−(x0), (F )
′
+(x0)

}
].

(4)

It is straightforward that when interval-valued function
satisfies Theorem 1, the sub-derivative of interval-valued
function is consistent with gH-derivative. Definition 3 can
also be appropriate for real-valued functions. And the sub-
derivative of f(x) = |x| at point x0 = 0 is

∂f(0) = [min{f ′−(0), f ′+(0)},max{f ′−(0), f ′+(0)}] = [−1, 1].

Example 1: The interval-valued function F (x) =
[F (x), F (x)] is defined by

F (x) =

{
−x, x ≤ 0
2x, x > 0,

F (x) = x− 10, x ∈ R.

The right and left derivative of F (x) and F (x) are
(F )′−(0) = (F )′+(0) = 1, but (F )′−(0) = −1 6=

(F )′+(0) = 2. Thus F (x) is not gH-differentiable at x0 = 0.
However, by Definition 3, we can obtain

∂F (0) = [min{F ′−(0), F
′
+(0), F

′
−(0), F

′
+(0)},

max{F ′−(0), F
′
+(0), F

′
−(0), F

′
+(0)}]

= [min{1, 1,−1, 2},max{1, 1,−1, 2}]
= [−1, 2] .

For any two intervals A = [a, a] and B = [b, b], we say
A≤B if a ≤ b and a ≤ b, and A<B if a < b and a < b.
If the relationship between A = [a, a] and B = [b, b] can
not be judged, we can have the result that A and B are
not comparable. Thus, the definition of minimum point of
interval-valued function is shown as follows.

Definition 4: [9] Let F : M ⊂ Rn → Kc and x0 ∈ M .
x0 is a global minimum point of F (x) if there exists no
x ∈ M such that F (x) < F (x0). Correspondingly, x0 is a
local minimum point of F (x) if there exists a neighborhood
U(x, δ) such that no x ∈ U(x, δ) satisfying F (x) < F (x0).

Remark 1: Note that if x0 is a local minimum point for
one of the endpoint functions of F (x), then x0 is the local
minimum point of F (x). Without loss of generality, suppose
that x0 is a local minimum point of F (x). Thus there is not
any x ∈ U(x0, δ) such that F (x) < F (x0) for neighborhood
U(x, δ). Further derivation, there is not any x ∈ U(x0, δ)
such that F (x) < F (x0). By Definition 4, x0 is the local
minimum point of F (x).

Remark 2: If F (x) is not comparable with any x ∈
U(x0, δ) at point x0, there is not any x ∈ U(x0, δ) such
that F (x) < F (x0). According to Definition 4, x0 is a local
minimum point of F (x).

Definition 5: Let F (x) be an interval-valued function de-
fined on M ⊂ Rn and x0 = (x1, ..., xn) be an element
of M . Considering the interval-valued function h(xi) =
F (x1, ..., xi, .., xn), if h(xi) exists the sub-derivative at xi,
F (x) has the ith partial sub-derivative at x0 and is defined
as

∂xi
F (x0) = ∂h(xi).

Definition 6: Let F : M ⊂ Rn → Kc. If all the partial sub-
derivatives of function F (x) exist at x0 = (x1, x2, . . . , xn)
and the n-dimensional interval-valued vector is defined as

∇̃F (x0) = (∂x1
F (x0) , ∂x2

F (x0) , . . . , ∂xn
F (x0)) .

We define ∇̃F (x0) as the sub-gradient of F (x) at x0. For
any d = (d1, . . . , dn) ∈ Rn, we have

dT ∇̃F (x0) = (∂x1
F (x0) d1, ∂x2

F (x0) d2, . . . , ∂xn
F (x0) dn) .

Definition 7: [18] Let F be an interval-valued function.
The F (x) is convex at x0 if

F (λx0 + (1− λ)x) ≤ λF (x0) + (1− λ)F (x) ,

for all λ ∈ [0, 1] and each x ∈M .
Remark 3: Let F (x) be an interval-valued function. It is

easy to obtain that F (x) is convex at x0 if and only if all
the endpoint functions of F (x) are convex at x0.

Lemma 1: Let f(x) : R→ R. If f(x) is sub-differentiable
and convex at x, then f(y) − f(x) ≥ k · (y − x) for each
k ∈ ∂f(x) and y ∈M .
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Proof. Because of the convexity of f(x), it follows f ′−(x) ≤
f ′+(x) and f(y)−f(x)

y−x is a monotone nondecreasing function
about y. Thus, whenever y − x < 0, we get

f(y)− f(x)
y − x

≤ f ′−(x).

For k ∈ [f ′−(x), f
′
+(x)], we have

f(y)− f(x) ≥ f ′−(x)(y − x) ≥ k(y − x).

For the same reason, whenever y − x > 0,

f(y)− f(x)
y − x

≥ f ′+(x).

Thus for k ∈ [f ′−(x), f
′
+(x)], we obtain

f(y)− f(x) ≥ f ′+(x)(y − x) ≥ k(y − x).

It is clear that f(y)−f(x) ≥ k ·(y−x) for any k ∈ ∂f(x) =
[f ′−(x), f

′
+(x)]. 2

III. OPTIMIZATION CONDITIONS OF INTERVAL-VALUED
FUNCTIONS

In this section, we will give a series of optimization con-
ditions of interval-valued functions based on sub-derivative.

Theorem 2: Let F : M ⊂ R → Kc be an interval-valued
function and be sub-differentiable on M . If x0 is a local
minimum point of F (x), then we have

0 ∈ ∂F (x0). (5)

Proof. Suppose Equation (5) dose not hold and ∂F (x0) >
[0, 0]. By Definition 3, we obtain[

min

{
(F )′+(x0), (F )

′
−(x0),

(F )′+(x0), (F )
′
−(x0)

}
,

max

{
(F )′+(x0), (F )

′
−(x0),

(F )′+(x0), (F )
′
−(x0)

}]
> [0, 0].

(6)

From Equation (6), we know that (F )′−(x0) > 0 which
implies

lim
h→0−

F (x0 + h)− F (x0)
h

> 0. (7)

From Equation (7), there exists h < 0 such that F (x0 +
h) < F (x0), which implies there exists U−(x0, δ1) such
that x0 + h ∈ U−(x0, δ1),

F (x0 + h) < F (x0).

By Equation (6), we also get (F )′−(x0) > 0 which implies

lim
h→0−

F (x0 + h)− F (x0)
h

> 0. (8)

It follows that there exists U−(x0, δ1) such that whenever
x0 + h ∈ U−(x0, δ2),

F (x0 + h) < F (x0).

Let δ0 = min{δ1, δ2}. For x0 + h ∈ U−(x0, δ0), we have

F (x0 + h) < F (x0).

It would be a contradiction in fact that x0 is a local minimum
point of F (x). 2

Theorem 3: Let F : M ⊂ R → Kc be an interval-
valued function. If F (x) is sub-differentiable and convex in

U(x0, δ), 0 ∈ ∂F (x0), then x0 is a local minimum point of
F (x).
Proof. Considering Definition 3, we divide 0 ∈ ∂F (x0) into
the following two cases

(1)(F )′−(x0) · (F )′+(x0) · (F )′−(x0) · (F )′+(x0) = 0,

(2)(F )′−(x0) · (F )′+(x0) · (F )′−(x0) · (F )′+(x0) 6= 0.

For Case (1), since (F )′−(x0) · (F )′+(x0) · (F )′−(x0) ·
(F )′+(x0) = 0, we obtain that one of (F )′−(x0),
(F )′+(x0), (F )

′
−(x0) and (F )′+(x0) equals to 0. We as-

sume (F )′−(x0) = 0. Taking into account the convexity of
F (x), F (x) is convex and (F )′+(x0) ≥ 0. From the first
sufficient condition of extremum [2], x0 is a local minimum
point of F (x). By Remark 1, x0 is also a local minimum
point of F (x).

In Case (2), it can be divided into the following cases:

(a)(F )′+(x0) > (F )′−(x0) > 0,

(F )′−(x0) < (F )′+(x0) < 0;

(b)(F )′−(x0) < (F )′+(x0) < 0,

(F )′+(x0) > (F )′−(x0) > 0;

(c)(F )′−(x0) < 0, (F )′+(x0) > 0,

(F )′−(x0) < (F )′+(x0) < 0;

(d)(F )′−(x0) < 0, (F )′+(x0) > 0,

(F )′+(x0) > (F )′−(x0) > 0;

(e)(F )′−(x0) < 0, (F )′+(x0) > 0,
(F )′−(x0) < (F )′+(x0) < 0;

(f)(F )′−(x0) < 0, (F )′+(x0) > 0,
(F )′+(x0) > (F )′−(x0) > 0;

(g)(F )′+(x0) > 0, (F )′+(x0) > 0,

(F )′−(x0) < 0, (F )′−(x0) < 0.

For Case (a) and Case (b), take Case (a) as an example. We
obtain that F (x) is not comparable with any x ∈ U(x0, δ) at
point x0. From Remark 2, we get that x0 is a local minimum
point of F (x). From Case (c) to Case (g), we first prove Case
(c). In Case (c), because of (F )′−(x0) < 0, (F )′+(x0) >
0, we get that x0 is a local minimum point of F (x) [2].
According to Remark 1, we know that x0 is a local minimum
point of F (x). Similar to Case (c), we can get the proof from
Case (d) to Case (g).

In summary, if 0 ∈ ∂F (x0), then x0 is a local minimum
point of F (x). 2

Theorem 4: Let F : M ⊂ R → Kc be an interval-valued
function and be convex on M . If x0 is a local minimum
point of F (x), then x0 is also a global minimum point of
F (x).
Proof. Suppose that x0 is a local minimum point of F (x),
that is, there exists a neighborhood U(x0, δ) such that F (x)
is not less than F (x0) for all x ∈ U(x0, δ). Suppose that
there exists x1 ∈M satisfying

F (x1) < F (x0). (9)

The Equation (9) implies{
F (x1) < F (x0)
F (x1) < F (x0).
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By the convexity of F (x), we get

F (λx0 + (1− λ)x1) ≤ λF (x0) + (1− λ)F (x1),

for any λ ∈ [0, 1]. On account of F (x1) < F (x0), we have

F (λx0 + (1− λ)x1) < F (x0).

Similarly, we obtain

F (λx0 + (1− λ)x1) < F (x0).

On the one hand, if 1 − λ is small enough, then we get
|λx0 + (1− λ)x1 − x0| = (1−λ) |x1 − x0| < δ. That means
there exists λx0 + (1− λ)x1 ∈ U(x0, δ) such that F (λx0 +
(1 − λ)x1) < F (x0). This is in contradiction with the fact
that x0 is a local minimum point of F (x). 2

Theorem 5: Let F (x) be a one-variable interval-valued
function. If F (x) is convex, then the set of all the global
minimum points of F (x) is an interval.
Proof. If there exists only one global minimum point of
F (x), the conclusion is obvious. Suppose that x1 and x2
are global minimum points of F (x) and x1 < x2. If F (x1)
and F (x2) are comparable, then F (x1) = F (x2). For any
x0 satisfying x1 < x0 < x2, according to the definition of
convex function, we know

F (x0) ≤ F (x1).

If there exists x3 such that F (x3) < F (x0), then F (x3) <
F (x1). It contradicts that x1 is a global minimum point of
F (x). Thus there is no such x3, that is to say, x0 is a global
minimum point of F (x).

If F (x1) and F (x2) are not comparable, suppose that
F (x2) < F (x1) and F (x1) < F (x2). For any x0 such that
x1 < x0 < x2, if F (x0) < F (x2), then F (x0) ≥ F (x2).
On the other hand, by the convexity of F (x), we know
F (x0) < F (x2). Therefore, F (x1) > F (x0) ≥ F (x2) and
F (x1) ≤ F (x0) < F (x2).

If there exists x3 satisfying F (x3) < F (x0) and x3 < x1,
then F (x3) < F (x0) < F (x1). There is a contradiction
that F (x) is convex at [x3, x0]. If x1 < x3 < x0, then
F (x0) > F (x3) and F (x0) ≥ F (x2). It contradicts that
F (x) is convex at [x3, x2]. Similarly, it can be proved that
x3 can not be greater than x0. Therefore there does not exist
x3 such that F (x3) < F (x0) and x0 is a global minimum
point of F (x). 2

Example 2: Let F : R→ Kc be

F (x) =

{
x− 10, x ≤ 0
2x− 10, x > 0,

F (x) = x2, x ∈ R.

By Definition 3, the sub-derivative of F (x) is

∂F (x) =


[2x, 1], x < 0
[0, 2], x = 0
[2x, 2], 0 < x ≤ 1
[2, 2x], x > 1.

We obtain that 0 ∈ ∂F (x) for any x ≤ 0. According to
Theorem 3 and 4, all x ≤ 0 are global minimum points of
F (x).

In the following part, we give the optimal conditions
for global minimum points of multi-variable interval-valued
functions.

Theorem 6: Let F : M → Kc be a multi-variable
interval-valued function and be sub-differential at x0. If
x0 = {x1, ..., xn} is a global minimum point of F (x), then
the next inequalities system does not have a solution for any
y ∈ Rn

y∇̃F (x0) < [0, 0]n.

Proof. Arguing by contradiction, suppose that for each i =
1, ..., n, there exists yi ∈ R such that

yi[min{(F )′−(xi), (F )′+(xi),
(F )′−(xi), (F )

′
+(xi)}

max{(F )′−(xi), (F )′+(xi),
(F )′−(xi), (F )

′
+(xi)}] < [0, 0].

(10)

If yi < 0, then from the Equation (10), we know

yi lim
hi→0+

F (x1, ..., xi + yihi, ..., xn)− F (x0)
yihi

< 0.

Therefore, we get

lim
hi→0+

F (x1, ..., xi + yihi, ..., xn)− F (x0)
hi

< 0.

It follows that there exists U−(x0, δ1) such that if
(x1, ..., xi + yihi, ..., xn) ∈ U−(x0, δ1), then we have

F (x1, ..., xi + yihi, ..., xn) < F (x0).

Similarly, by

yi lim
hi→0+

F (x1, ..., xi + yihi, ..., xn)− F (x0)
yihi

< 0,

there exists U−(x0, δ2) such that if (x1, ..., xi +
yihi, ..., xn) ∈ U−(x0, δ2), then

F (x1, ..., xi + yihi, ..., xn) < F (x0).

Let δ0 = min{δ1, δ2}. For any (x1, ..., xi + yihi, ..., xn) ∈
U−(x0, δ0), we obtain that

F (x1, ..., xi + yihi, ..., xn) < F (x0).

In summary, there is a contradiction that x0 is a global
minimum point of F (x). 2

Theorem 7: Let F : M → Kc be sub-differentiable
and convex at x0. If the sub-gradients of F (x) and F (x)
satisfying 0n ∈ ∇̃F (x0) or 0n ∈ ∇̃F (x0), then x0 is a
global minimum point of F (x).
Proof. Because of 0n ∈ ∇̃F (x0), then

0n ∈ ∇̃F (x0) = (∂x1
F (x0) , ∂x2

F (x0) , . . . , ∂xn
F (x0)) .

(11)
Equation (11) implies 0 ∈ ∂xiF (x0), (i = 1, ..., n). It is easy
to get from Remark 3 that F (x) is convex at x0. According
to Lemma 1, we know that x0 is a global minimum point
of F (x). Thus, from Remark 1, x0 is a global minimum
point of F (x). When 0n ∈ ∇̃F (x0), the proof is similar to
0n ∈ ∇̃F (x0). 2

Example 3: The interval-valued function F : Rn → Kc is
defined by

F (x) = x2 − 100, x ∈ R2,

F (x) = x21 + x22, x ∈ R2.

By Definition 6, we get

∇̃F (x) = ([0, 0], [1, 1]), x ∈ R2,
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∇̃F (x) = ([2x1, 2x1], [2x2, 2x2]), x ∈ R2,

∇̃F (x) =


([2x1, 0], [2x2, 1]), x1 ≤ 0 and x2 ≤ 1

2
([2x1, 0], [1, 2x2]), x1 ≤ 0 and x2 >

1
2

([0, 2x1], [2x2, 1]), x1 > 0 and x2 ≤ 1
2

([0, 2x1], [1, 2x2]), x1 > 0 and x2 >
1
2 .

We obtain 0n ∈ ∇̃F (x) and 0n ∈ ∇̃F (x) at x = (0, 0).
According to Theorem 6 and 7, we can find that x = (0, 0)
is a global minimum point of F (x).

IV. CONCLUSION

The generalized Hukuhara derivative is a general tool
for dealing with interval-valued optimization problems [22].
In order to extend the application of generalized Hukuhara
derivative, we first introduce the concept of sub-derivative.
The new concept of sub-derivative unifies and extends others
appeared in the recent literature [5], [6]. Thanks to a char-
acterization result of sub-derivative, that we have provided
on sub-differentiability, an interesting interpretation of the
sub-derivative in terms of condition has been introduced.
Based on the sub-derivative of interval-valued functions, this
paper studies the conditions of interval-valued optimization
problems, and gives examples to illustrate the applicability
of the optimization conditions.
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