Conditions of Interval-Valued Optimality Problems under Subdifferentiability

Chenxi Ouyang, Dong Qiu, Jiafeng Xiao and Senglin Xiang

Abstract

This paper addresses interval-valued optimality problems with the sub-derivative. By using the new concept of differentiability, we prove optimality conditions more operational and less restrictive than before in interval-valued nonconstrained problems.

Index Terms-sub-derivative; Interval-valued optimality problem; Optimality condition.

I. INTRODUCTION

UNCERTAINTY arises widely in many practical engineering and economic fields [1], [4], [7], [10], [17], [25], [32], [34]. In most cases, due to the increasingly complex environment and the inherent subjectivity of human thinking, decision information is often uncertain. Therefore, it is a challenge to quantify their opinions accurately with crisp numbers [11], [13]-[15], [21], [25], [30]. Fuzzy time series have been widely used to deal with forecasting problems [12]. In view of the low prediction accuracy of the filtering method used in parameter learning of adaptive neural fuzzy inference system, a training method based on improved square root unscented Kalman filter and noise statistical estimator is proposed [30]. In [33], optimization of convex and generalized convex fuzzy mappings are derived and studied the fuzzy differential equations in the quotient space of fuzzy numbers. Hence, interval analysis is introduced to deal with the uncertainty in many deterministic phenomena in the real world [27]-[29], [31]. Interval-valued optimization problems can provide a more useful choice for evaluating uncertainty in optimization problems [9], [13]-[15].

Interval-valued optimization is an optimization problem which objective function is an interval-valued function. In the practical application, it often has trouble determining the probability distribution function of random parameters and membership function of fuzzy parameters, nevertheless it is comparatively easy to obtain the range of parameters [8], [16], [19], [26], [33]. Therefore, interval planning can better solve the optimization problem of uncertain systems [15]. Derivative is an important concept for interval-valued optimization problems. The derivative describes the changing trend of the function [3], [22]-[24]. In this paper, the theory of sub-derivative is introduced, which is more applicable than generalized Hukuhara derivative [22]. The limitation of necessary and sufficient condition for the existence of generalized Hukuhara derivative shows in [5]. By using the sub-derivative, this paper establishes the optimization

Manuscript received Jul. 29, 2020; revised Sept. 23, 2020. This work was supported by The National Natural Science Foundations of China (Grant no. 11671001 and 61876201).
D. Qiu is with College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Nanan, Chongqing, 400065, PR China e-mail: dongqiumath@163.com; qiudong@cqupt.edu.cn
C. Ouyang, J. Xiao and S. Xiang are with the same university as D. Qiu.
conditions of interval-valued function. Compared with other methods found in the literature, these methods are more operational and less restrictive [5], [6]. If the one-sided derivatives of the lower and upper endpoint functions of interval-valued functions exist, the sub-derivative of intervalvalued functions exists. At the same time, the relationship between the local minimum point and the global minimum point of interval-valued function is explained, and the conclusion that all the global minimum points of interval-valued functions constitute an interval is given. Section 2 presents the basic definitions and conclusions that will be used later. In Section 3, the optimization conditions of interval-valued optimization problems are given. Examples are given to illustrate the applicability of the conditions. Section 4 is a summary.

II. Preliminaries

The definitions and results which will be used throughout the paper are introduced in this section.

The \mathbb{R} denotes the family of all real numbers, $U(c, \delta)=$ $(c-\delta, c+\delta)$ denotes the neighborhood of $c \in \mathbb{R}, U^{-}(c, \delta)=$ $(c-\delta, c]$ and $U^{+}(c, \delta)=[c, c+\delta)$ denote the left and right neighborhood of $c \in \mathbb{R}$, respectively. Let \mathcal{K}_{c} be the bounded and closed intervals of \mathbb{R}, i.e.,

$$
\mathcal{K}_{c}=\{[\underline{a}, \bar{a}] \mid \underline{a}, \bar{a} \in \mathbb{R}, \underline{a} \leq \bar{a}\}
$$

For any $A=[\underline{a}, \bar{a}], B=[\underline{b}, \bar{b}]$ and $\lambda \in \mathbb{R}$, the sum and scalar multiplication are defined by

$$
\begin{align*}
A+B & =[\underline{a}, \bar{a}]+[\underline{b}, \bar{b}]=[\underline{a}+\underline{b}, \bar{a}+\bar{b}] \tag{1}\\
\lambda \cdot A & = \begin{cases}{[\lambda \underline{a}, \lambda \bar{a}],} & \text { if } \lambda \geq 0 \\
{[\lambda \bar{a}, \lambda \underline{a}],} & \text { if } \lambda<0\end{cases} \tag{2}
\end{align*}
$$

Stefanini and Bede [22] introduced the $g H$-difference of two intervals.

Definition 1: [22] The generalized Hukuhara difference of two intervals, A and $B,(g H$-difference for short) is an interval C such that

$$
A \ominus_{g H} B=C \Leftrightarrow\left\{\begin{array}{c}
\quad(i) \quad A=B+C \\
\text { or } \quad(i i) \quad B=A-C
\end{array}\right.
$$

The $g H$-difference of two intervals $A=[\underline{a}, \bar{a}]$ and $B=[\underline{b}, \bar{b}]$ always exists and equals to

$$
A \ominus_{g H} B=[\min \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}, \max \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}] .
$$

We suppose that M is an open and nonempty subset of \mathbb{R}^{n} and $F: M \rightarrow \mathcal{K}_{c}$ is an interval-valued function. Then we obtain $F(x)=[\underline{F}(x), \bar{F}(x)]$, where $\underline{F}(x) \leq \bar{F}(x)$ for $x \in M . \underline{F}(x)$ and $\overline{\bar{F}}(x)$ are called the lower and upper endpoint functions of $F(x)$. Based on the $g H$-difference, Stefanini and Bede [22] introduced the following derivative for interval-valued functions.

Definition 2: [22] Let $x_{0} \in M \subset \mathbb{R}$ and h be such that $x_{0}+h \in M$, then the $g H$-derivative of an interval-valued function F at x_{0} is defined as

$$
\begin{equation*}
F_{g H}^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left[F\left(x_{0}+h\right) \ominus_{g H} F\left(x_{0}\right)\right] . \tag{3}
\end{equation*}
$$

If $F_{g H}^{\prime}\left(x_{0}\right) \in \mathcal{K}_{c}$ satisfying Equation (3) exists, we say that $F(x)$ is generalized Hukuhara differentiable ($g H-$ differentiable for short) at x_{0}.

The limitation in Definition 2 is taken in the metric space $\left(\mathcal{K}_{c}, H\right)$, where H is defined by

$$
H(A, B)=\max \left\{\max _{a \in A} d(a, B), \max _{b \in B} d(b, A)\right\},
$$

with $d(a, B)=\min _{b \in B}|a-b|$. The necessary and sufficient condition for the existence of $g H$-derivative of intervalvalued functions is given in [5].

Theorem 1: [5] $F(x)$ is $g H$-differentiable at $x_{0} \in M$ if and only if one of the following cases holds:
(a) $\underline{F}(x)$ and $\bar{F}(x)$ are differentiable at x_{0} and $F_{g H}^{\prime}\left(x_{0}\right)$ is equal to

$$
\left[\min \left\{(\underline{F})^{\prime}\left(x_{0}\right),(\bar{F})^{\prime}\left(x_{0}\right)\right\}, \max \left\{(\underline{F})^{\prime}\left(x_{0}\right),(\bar{F})^{\prime}\left(x_{0}\right)\right\}\right] .
$$

(b) $(\underline{F})^{\prime} _\left(x_{0}\right),(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right),(\bar{F})^{\prime} _\left(x_{0}\right)$ and $(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)$ exist and satisfy $(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)=(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)$ and $(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)=$ $(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)$. Moreover $F_{g H}^{\prime}\left(x_{0}\right)$ is equal to

$$
\begin{aligned}
& {\left[\min \left\{(\underline{F})_{+}^{\prime}\left(x_{0}\right),(\bar{F})_{+}^{\prime}\left(x_{0}\right)\right\}, \max \left\{(\underline{F})_{+}^{\prime}\left(x_{0}\right),(\bar{F})_{+}^{\prime}\left(x_{0}\right)\right\}\right]} \\
& =\left[\min \left\{(\underline{F})_{-}^{\prime}\left(x_{0}\right),(\bar{F})_{-}^{\prime}\left(x_{0}\right)\right\}, \max \left\{(\underline{F})_{-}^{\prime}\left(x_{0}\right),(\bar{F})_{-}^{\prime}\left(x_{0}\right)\right\}\right] .
\end{aligned}
$$

Obviously, real-valued functions are special intervalvalued functions. For the function $f(x)=|x|$, it gets the minimum at point 0 but are not $g H$-differentiable at 0 . In order to enlarging the class of differentiable interval-valued functions, following concept is introduced.

Definition 3: Let $F: M \subset \mathbb{R} \rightarrow \mathcal{K}_{c}$ be an intervalvalued function and $x_{0} \in M$. We define that $F(x)$ is subdifferentiable at x_{0}, if the one-sided derivatives $(\underline{F})_{-}^{\prime}\left(x_{0}\right)$, $(\underline{F})_{+}^{\prime}\left(x_{0}\right),(\bar{F})_{-}^{\prime}\left(x_{0}\right)$ and $(\bar{F})_{+}^{\prime}\left(x_{0}\right)$ exist, thus the subderivative of $F: M \rightarrow \mathcal{K}_{c}$ at $x_{0}, \partial F\left(x_{0}\right)$ is defined as

$$
\begin{align*}
& {\left[\min \left\{\begin{array}{l}
(\underline{F})^{\prime}-\left(x_{0}\right),(\bar{F})^{\prime}+\left(x_{0}\right), \\
(\overline{\bar{F}})^{\prime}-\left(x_{0}\right),(\overline{\bar{F}})^{\prime}+\left(x_{0}\right)
\end{array}\right\},\right.} \\
& \left.\max \left\{\begin{array}{l}
(\bar{F})^{\prime}-\left(x_{0}\right),(\bar{F})^{\prime}+\left(x_{0}\right), \\
(\bar{F})^{\prime}-\left(x_{0}\right),(\bar{F})^{\prime}+{ }_{+}\left(x_{0}\right)
\end{array}\right\}\right] . \tag{4}
\end{align*}
$$

It is straightforward that when interval-valued function satisfies Theorem 1, the sub-derivative of interval-valued function is consistent with $g H$-derivative. Definition 3 can also be appropriate for real-valued functions. And the subderivative of $f(x)=|x|$ at point $x_{0}=0$ is
$\partial f(0)=\left[\min \left\{f_{-}^{\prime}(0), f_{+}^{\prime}(0)\right\}, \max \left\{f_{-}^{\prime}(0), f_{+}^{\prime}(0)\right\}\right]=[-1,1]$.
Example 1: The interval-valued function $F(x)=$ $[\underline{F}(x), \bar{F}(x)]$ is defined by

$$
\begin{gathered}
\bar{F}(x)=\left\{\begin{array}{rr}
-x, & x \leq 0 \\
2 x, & x>0,
\end{array}\right. \\
\underline{F}(x)=x-10, x \in \mathbb{R} .
\end{gathered}
$$

The right and left derivative of $\underline{\underline{F}}(x)$ and $\bar{F}(x)$ are $(\underline{F})^{\prime}{ }_{-}(0)=(\underline{F})^{\prime}{ }_{+}(0)=1$, but $(\bar{F})^{\prime}{ }_{-}(0)=-1 \neq$
$(\bar{F})^{\prime}+(0)=2$. Thus $F(x)$ is not $g H$-differentiable at $x_{0}=0$. However, by Definition 3, we can obtain

$$
\begin{aligned}
\partial F(0) & =\left[\min \left\{\underline{F}_{-}^{\prime}(0), \underline{F}_{+}^{\prime}(0), \bar{F}_{-}^{\prime}(0), \bar{F}_{+}^{\prime}(0)\right\},\right. \\
& \left.\max \left\{\underline{F}_{-}^{\prime}(0), \underline{F_{+}^{\prime}}(0), \bar{F}_{-}^{\prime}(0), \bar{F}_{+}^{\prime}(0)\right\}\right] \\
& =[\min \{1,1,-1,2\}, \max \{1,1,-1,2\}] \\
& =[-1,2] .
\end{aligned}
$$

For any two intervals $A=[\underline{a}, \bar{a}]$ and $B=[\underline{b}, \bar{b}]$, we say $A \leq B$ if $\underline{a} \leq \underline{b}$ and $\bar{a} \leq \bar{b}$, and $A<B$ if $\underline{a}<\underline{b}$ and $\bar{a}<\bar{b}$. If the relationship between $A=[\underline{a}, \bar{a}]$ and $B=[\underline{b}, \bar{b}]$ can not be judged, we can have the result that A and B are not comparable. Thus, the definition of minimum point of interval-valued function is shown as follows.
Definition 4: [9] Let $F: M \subset \mathbb{R}^{n} \rightarrow \mathcal{K}_{c}$ and $x_{0} \in M$. x_{0} is a global minimum point of $F(x)$ if there exists no $x \in M$ such that $F(x)<F\left(x_{0}\right)$. Correspondingly, x_{0} is a local minimum point of $F(x)$ if there exists a neighborhood $U(x, \delta)$ such that no $x \in U(x, \delta)$ satisfying $F(x)<F\left(x_{0}\right)$.
Remark 1: Note that if x_{0} is a local minimum point for one of the endpoint functions of $F(x)$, then x_{0} is the local minimum point of $F(x)$. Without loss of generality, suppose that x_{0} is a local minimum point of $\underline{F}(x)$. Thus there is not any $x \in U\left(x_{0}, \delta\right)$ such that $\underline{F}(x)<\underline{F}\left(x_{0}\right)$ for neighborhood $U(x, \delta)$. Further derivation, there is not any $x \in U\left(x_{0}, \delta\right)$ such that $F(x)<F\left(x_{0}\right)$. By Definition 4, x_{0} is the local minimum point of $F(x)$.
Remark 2: If $F(x)$ is not comparable with any $x \in$ $U\left(x_{0}, \delta\right)$ at point x_{0}, there is not any $x \in U\left(x_{0}, \delta\right)$ such that $F(x)<F\left(x_{0}\right)$. According to Definition $4, x_{0}$ is a local minimum point of $F(x)$.
Definition 5: Let $F(x)$ be an interval-valued function defined on $M \subset \mathbb{R}^{n}$ and $x_{0}=\left(x_{1}, \ldots, x_{n}\right)$ be an element of M. Considering the interval-valued function $h\left(x_{i}\right)=$ $F\left(x_{1}, \ldots, x_{i}, . ., x_{n}\right)$, if $h\left(x_{i}\right)$ exists the sub-derivative at x_{i}, $F(x)$ has the i th partial sub-derivative at x_{0} and is defined as

$$
\partial_{x_{i}} F\left(x_{0}\right)=\partial h\left(x_{i}\right)
$$

Definition 6: Let $F: M \subset \mathbb{R}^{n} \rightarrow \mathcal{K}_{c}$. If all the partial subderivatives of function $F(x)$ exist at $x_{0}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the n-dimensional interval-valued vector is defined as

$$
\widetilde{\nabla} F\left(x_{0}\right)=\left(\partial_{x_{1}} F\left(x_{0}\right), \partial_{x_{2}} F\left(x_{0}\right), \ldots, \partial_{x_{n}} F\left(x_{0}\right)\right) .
$$

We define $\widetilde{\nabla} F\left(x_{0}\right)$ as the sub-gradient of $F(x)$ at x_{0}. For any $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n}$, we have
$d^{T} \widetilde{\nabla} F\left(x_{0}\right)=\left(\partial_{x_{1}} F\left(x_{0}\right) d_{1}, \partial_{x_{2}} F\left(x_{0}\right) d_{2}, \ldots, \partial_{x_{n}} F\left(x_{0}\right) d_{n}\right)$.
Definition 7: [18] Let F be an interval-valued function. The $F(x)$ is convex at x_{0} if

$$
F\left(\lambda x_{0}+(1-\lambda) x\right) \leq \lambda F\left(x_{0}\right)+(1-\lambda) F(x),
$$

for all $\lambda \in[0,1]$ and each $x \in M$.
Remark 3: Let $F(x)$ be an interval-valued function. It is easy to obtain that $F(x)$ is convex at x_{0} if and only if all the endpoint functions of $F(x)$ are convex at x_{0}.

Lemma 1: Let $f(x): \mathbb{R} \rightarrow \mathbb{R}$. If $f(x)$ is sub-differentiable and convex at x, then $f(y)-f(x) \geq k \cdot(y-x)$ for each $k \in \partial f(x)$ and $y \in M$.

Proof. Because of the convexity of $f(x)$, it follows $f_{-}^{\prime}(x) \leq$ $f_{+}^{\prime}(x)$ and $\frac{f(y)-f(x)}{y-x}$ is a monotone nondecreasing function about y. Thus, whenever $y-x<0$, we get

$$
\frac{f(y)-f(x)}{y-x} \leq f_{-}^{\prime}(x)
$$

For $k \in\left[f_{-}^{\prime}(x), f_{+}^{\prime}(x)\right]$, we have

$$
f(y)-f(x) \geq f_{-}^{\prime}(x)(y-x) \geq k(y-x) .
$$

For the same reason, whenever $y-x>0$,

$$
\frac{f(y)-f(x)}{y-x} \geq f_{+}^{\prime}(x)
$$

Thus for $k \in\left[f_{-}^{\prime}(x), f_{+}^{\prime}(x)\right]$, we obtain

$$
f(y)-f(x) \geq f_{+}^{\prime}(x)(y-x) \geq k(y-x)
$$

It is clear that $f(y)-f(x) \geq k \cdot(y-x)$ for any $k \in \partial f(x)=$ $\left[f_{-}^{\prime}(x), f_{+}^{\prime}(x)\right]$.

III. Optimization conditions of interval-valued FUNCTIONS

In this section, we will give a series of optimization conditions of interval-valued functions based on sub-derivative.

Theorem 2: Let $F: M \subset \mathbb{R} \rightarrow \mathcal{K}_{c}$ be an interval-valued function and be sub-differentiable on M. If x_{0} is a local minimum point of $F(x)$, then we have

$$
\begin{equation*}
0 \in \partial F\left(x_{0}\right) \tag{5}
\end{equation*}
$$

Proof. Suppose Equation (5) dose not hold and $\partial F\left(x_{0}\right)>$ [0, 0]. By Definition 3, we obtain

$$
\begin{align*}
& {\left[\min \left\{\begin{array}{l}
(\underline{F})^{\prime}+\left(x_{0}\right),(\bar{F})^{\prime}-\left(x_{0}\right), \\
(\overline{\bar{F}})^{\prime}+\left(x_{0}\right),(\overline{\bar{F}})^{\prime}-\left(x_{0}\right)
\end{array}\right\},\right.} \\
& \left.\max \left\{\begin{array}{l}
(\bar{F})^{\prime}+\left(x_{0}\right),(\underline{F})^{\prime}-\left(x_{0}\right), \\
(\overline{\bar{F}})^{\prime}{ }_{+}\left(x_{0}\right),(\overline{\bar{F}})^{\prime}-\left(x_{0}\right)
\end{array}\right\}\right]>[0,0] . \tag{6}
\end{align*}
$$

From Equation (6), we know that $(\bar{F})_{-}^{\prime}\left(x_{0}\right)>0$ which implies

$$
\begin{equation*}
\lim _{h \rightarrow 0^{-}} \frac{\bar{F}\left(x_{0}+h\right)-\bar{F}\left(x_{0}\right)}{h}>0 \tag{7}
\end{equation*}
$$

From Equation (7), there exists $h<0$ such that $\bar{F}\left(x_{0}+\right.$ $h)<\bar{F}\left(x_{0}\right)$, which implies there exists $U^{-}\left(x_{0}, \delta_{1}\right)$ such that $x_{0}+h \in U^{-}\left(x_{0}, \delta_{1}\right)$,

$$
\bar{F}\left(x_{0}+h\right)<\bar{F}\left(x_{0}\right) .
$$

By Equation (6), we also get $(\underline{F})_{-}^{\prime}\left(x_{0}\right)>0$ which implies

$$
\begin{equation*}
\lim _{h \rightarrow 0^{-}} \frac{F\left(x_{0}+h\right)-\underline{F}\left(x_{0}\right)}{h}>0 \tag{8}
\end{equation*}
$$

It follows that there exists $U^{-}\left(x_{0}, \delta_{1}\right)$ such that whenever $x_{0}+h \in U^{-}\left(x_{0}, \delta_{2}\right)$,

$$
\underline{F}\left(x_{0}+h\right)<\underline{F}\left(x_{0}\right) .
$$

Let $\delta_{0}=\min \left\{\delta_{1}, \delta_{2}\right\}$. For $x_{0}+h \in U^{-}\left(x_{0}, \delta_{0}\right)$, we have

$$
F\left(x_{0}+h\right)<F\left(x_{0}\right) .
$$

It would be a contradiction in fact that x_{0} is a local minimum point of $F(x)$. \square
Theorem 3: Let $F: M \subset \mathbb{R} \rightarrow \mathcal{K}_{c}$ be an intervalvalued function. If $F(x)$ is sub-differentiable and convex in
$U\left(x_{0}, \delta\right), 0 \in \partial F\left(x_{0}\right)$, then x_{0} is a local minimum point of $F(x)$.
Proof. Considering Definition 3, we divide $0 \in \partial F\left(x_{0}\right)$ into the following two cases

$$
\begin{aligned}
& (1)(\underline{F})_{-}^{\prime}\left(x_{0}\right) \cdot(\underline{F})_{+}^{\prime}\left(x_{0}\right) \cdot(\bar{F})_{-}^{\prime}\left(x_{0}\right) \cdot(\bar{F})_{+}^{\prime}\left(x_{0}\right)=0, \\
& (2)(\underline{F})_{-}^{\prime}\left(x_{0}\right) \cdot(\underline{F})_{+}^{\prime}\left(x_{0}\right) \cdot(\bar{F})_{-}^{\prime}\left(x_{0}\right) \cdot(\bar{F})_{+}^{\prime}\left(x_{0}\right) \neq 0 .
\end{aligned}
$$

For Case (1), since $(\underline{F})_{-}^{\prime}\left(x_{0}\right) \cdot(\underline{F})_{+}^{\prime}\left(x_{0}\right) \cdot(\bar{F})_{-}^{\prime}\left(x_{0}\right)$. $(\bar{F})_{+}^{\prime}\left(x_{0}\right)=0$, we obtain that one of $(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)$, $(\underline{F})^{\prime}+\left(x_{0}\right),(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)$ and $(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)$ equals to 0 . We assume $(\underline{F})^{\prime} _\left(x_{0}\right)=0$. Taking into account the convexity of $F(x), \underline{F}(x)$ is convex and $(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right) \geq 0$. From the first sufficient condition of extremum [2], x_{0} is a local minimum point of $\underline{F}(x)$. By Remark $1, x_{0}$ is also a local minimum point of $F(x)$.

In Case (2), it can be divided into the following cases:
$(a)(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)>0$,
$(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)<(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)<0$;
$(b)(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)<(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)<0$, $(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)>(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)>0 ;$
$(c)(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)<0,(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>0$, $(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)<(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)<0$;
$(d)(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)<0,(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>0$, $(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)>(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)>0 ;$
$(e)(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)<0,(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)>0$, $(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)<(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)<0 ;$
$(f)(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)<0,(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)>0$, $(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)>0 ;$
$(g)(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>0,(\bar{F})^{\prime}{ }_{+}\left(x_{0}\right)>0$, $(\underline{F})^{\prime} _\left(x_{0}\right)<0,(\bar{F})^{\prime}{ }_{-}\left(x_{0}\right)<0$.

For Case (a) and Case (b), take Case (a) as an example. We obtain that $F(x)$ is not comparable with any $x \in U\left(x_{0}, \delta\right)$ at point x_{0}. From Remark 2, we get that x_{0} is a local minimum point of $F(x)$. From Case (c) to Case (g), we first prove Case (c). In Case (c), because of $(\underline{F})^{\prime}{ }_{-}\left(x_{0}\right)<0,(\underline{F})^{\prime}{ }_{+}\left(x_{0}\right)>$ 0 , we get that x_{0} is a local minimum point of $\underline{F}(x)$ [2]. According to Remark 1, we know that x_{0} is a local minimum point of $F(x)$. Similar to Case (c), we can get the proof from Case (d) to Case (g).

In summary, if $0 \in \partial F\left(x_{0}\right)$, then x_{0} is a local minimum point of $F(x)$. \square

Theorem 4: Let $F: M \subset \mathbb{R} \rightarrow \mathcal{K}_{c}$ be an interval-valued function and be convex on M. If x_{0} is a local minimum point of $F(x)$, then x_{0} is also a global minimum point of $F(x)$.
Proof. Suppose that x_{0} is a local minimum point of $F(x)$, that is, there exists a neighborhood $U\left(x_{0}, \delta\right)$ such that $F(x)$ is not less than $F\left(x_{0}\right)$ for all $x \in U\left(x_{0}, \delta\right)$. Suppose that there exists $x_{1} \in M$ satisfying

$$
\begin{equation*}
F\left(x_{1}\right)<F\left(x_{0}\right) . \tag{9}
\end{equation*}
$$

The Equation (9) implies

$$
\left\{\begin{array}{l}
\frac{F}{F}\left(x_{1}\right)<\underline{F}\left(x_{0}\right) \\
\overline{\bar{F}}\left(x_{1}\right)<\overline{\bar{F}}\left(x_{0}\right) .
\end{array}\right.
$$

By the convexity of $\underline{F}(x)$, we get

$$
\underline{F}\left(\lambda x_{0}+(1-\lambda) x_{1}\right) \leq \lambda \underline{F}\left(x_{0}\right)+(1-\lambda) \underline{F}\left(x_{1}\right),
$$

for any $\lambda \in[0,1]$. On account of $\underline{F}\left(x_{1}\right)<\underline{F}\left(x_{0}\right)$, we have

$$
\underline{F}\left(\lambda x_{0}+(1-\lambda) x_{1}\right)<\underline{F}\left(x_{0}\right) .
$$

Similarly, we obtain

$$
\bar{F}\left(\lambda x_{0}+(1-\lambda) x_{1}\right)<\bar{F}\left(x_{0}\right)
$$

On the one hand, if $1-\lambda$ is small enough, then we get $\left|\lambda x_{0}+(1-\lambda) x_{1}-x_{0}\right|=(1-\lambda)\left|x_{1}-x_{0}\right|<\delta$. That means there exists $\lambda x_{0}+(1-\lambda) x_{1} \in U\left(x_{0}, \delta\right)$ such that $F\left(\lambda x_{0}+\right.$ $\left.(1-\lambda) x_{1}\right)<F\left(x_{0}\right)$. This is in contradiction with the fact that x_{0} is a local minimum point of $F(x)$.
Theorem 5: Let $F(x)$ be a one-variable interval-valued function. If $F(x)$ is convex, then the set of all the global minimum points of $F(x)$ is an interval.
Proof. If there exists only one global minimum point of $F(x)$, the conclusion is obvious. Suppose that x_{1} and x_{2} are global minimum points of $F(x)$ and $x_{1}<x_{2}$. If $F\left(x_{1}\right)$ and $F\left(x_{2}\right)$ are comparable, then $F\left(x_{1}\right)=F\left(x_{2}\right)$. For any x_{0} satisfying $x_{1}<x_{0}<x_{2}$, according to the definition of convex function, we know

$$
F\left(x_{0}\right) \leq F\left(x_{1}\right)
$$

If there exists x_{3} such that $F\left(x_{3}\right)<F\left(x_{0}\right)$, then $F\left(x_{3}\right)<$ $F\left(x_{1}\right)$. It contradicts that x_{1} is a global minimum point of $F(x)$. Thus there is no such x_{3}, that is to say, x_{0} is a global minimum point of $F(x)$.
If $F\left(x_{1}\right)$ and $F\left(x_{2}\right)$ are not comparable, suppose that $\underline{F}\left(x_{2}\right)<\underline{F}\left(x_{1}\right)$ and $\bar{F}\left(x_{1}\right)<\bar{F}\left(x_{2}\right)$. For any x_{0} such that $x_{1}<x_{0}<x_{2}$, if $\underline{F}\left(x_{0}\right)<\underline{F}\left(x_{2}\right)$, then $\bar{F}\left(x_{0}\right) \geq \bar{F}\left(x_{2}\right)$. On the other hand, by the convexity of $\bar{F}(x)$, we know $\bar{F}\left(x_{0}\right)<\bar{F}\left(x_{2}\right)$. Therefore, $\underline{F}\left(x_{1}\right)>\underline{F}\left(x_{0}\right) \geq \underline{F}\left(x_{2}\right)$ and $\bar{F}\left(x_{1}\right) \leq \bar{F}\left(x_{0}\right)<\bar{F}\left(x_{2}\right)$.

If there exists x_{3} satisfying $F\left(x_{3}\right)<F\left(x_{0}\right)$ and $x_{3}<x_{1}$, then $\underline{F}\left(x_{3}\right)<\underline{F}\left(x_{0}\right)<\underline{F}\left(x_{1}\right)$. There is a contradiction that $\underline{F}(x)$ is convex at $\left[x_{3}, x_{0}\right]$. If $x_{1}<x_{3}<x_{0}$, then $\underline{F}\left(x_{0}\right)>\underline{F}\left(x_{3}\right)$ and $\underline{F}\left(x_{0}\right) \geq \underline{F}\left(x_{2}\right)$. It contradicts that $\underline{F}(x)$ is convex at $\left[x_{3}, x_{2}\right]$. Similarly, it can be proved that x_{3} can not be greater than x_{0}. Therefore there does not exist x_{3} such that $F\left(x_{3}\right)<F\left(x_{0}\right)$ and x_{0} is a global minimum point of $F(x)$. \square

Example 2: Let $F: \mathbb{R} \rightarrow \mathcal{K}_{c}$ be

$$
\begin{gathered}
\underline{F}(x)=\left\{\begin{array}{rc}
x-10, & x \leq 0 \\
2 x-10, & x>0
\end{array}\right. \\
\bar{F}(x)=x^{2}, x \in \mathbb{R} .
\end{gathered}
$$

By Definition 3, the sub-derivative of $F(x)$ is

$$
\partial F(x)=\left\{\begin{array}{cc}
{[2 x, 1],} & x<0 \\
{[0,2],} & x=0 \\
{[2 x, 2],} & 0<x \leq 1 \\
{[2,2 x],} & x>1
\end{array}\right.
$$

We obtain that $0 \in \partial F(x)$ for any $x \leq 0$. According to Theorem 3 and 4, all $x \leq 0$ are global minimum points of $F(x)$.

In the following part, we give the optimal conditions for global minimum points of multi-variable interval-valued functions.

Theorem 6: Let $F: M \rightarrow \mathcal{K}_{c}$ be a multi-variable interval-valued function and be sub-differential at x_{0}. If $x_{0}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a global minimum point of $F(x)$, then the next inequalities system does not have a solution for any $y \in \mathbb{R}^{n}$

$$
y \widetilde{\nabla} F\left(x_{0}\right)<[0,0]^{n} .
$$

Proof. Arguing by contradiction, suppose that for each $i=$ $1, \ldots, n$, there exists $y_{i} \in \mathbb{R}$ such that

$$
\begin{align*}
& y_{i}\left[\operatorname { m i n } \left\{(\underline{F})_{-}^{\prime}\left(x_{i}\right),(\underline{F})^{\prime}{ }_{+}\left(x_{i}\right),\right.\right. \\
& \left.(\bar{F})^{\prime}{ }_{-}\left(x_{i}\right),(\bar{F})^{\prime}{ }_{+}\left(x_{i}\right)\right\} \tag{10}\\
& \quad \max \left\{(\underline{F})_{-}^{\prime}\left(x_{i}\right),(\underline{F})^{\prime}+\left(x_{i}\right),\right. \\
& \left.\left.(\bar{F})^{\prime}{ }_{-}\left(x_{i}\right),(\bar{F})^{\prime}{ }_{+}\left(x_{i}\right)\right\}\right]<[0,0] .
\end{align*}
$$

If $y_{i}<0$, then from the Equation (10), we know

$$
y_{i} \lim _{h_{i} \rightarrow 0^{+}} \frac{\underline{F}\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)-\underline{F}\left(x_{0}\right)}{y_{i} h_{i}}<0 .
$$

Therefore, we get

$$
\lim _{h_{i} \rightarrow 0^{+}} \frac{\underline{F}\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)-\underline{F}\left(x_{0}\right)}{h_{i}}<0
$$

It follows that there exists $U^{-}\left(x_{0}, \delta_{1}\right)$ such that if $\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right) \in U^{-}\left(x_{0}, \delta_{1}\right)$, then we have

$$
\underline{F}\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)<\underline{F}\left(x_{0}\right) .
$$

Similarly, by

$$
y_{i} \lim _{h_{i} \rightarrow 0^{+}} \frac{\bar{F}\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)-\bar{F}\left(x_{0}\right)}{y_{i} h_{i}}<0,
$$

there exists $U^{-}\left(x_{0}, \delta_{2}\right)$ such that if $\left(x_{1}, \ldots, x_{i}+\right.$ $\left.y_{i} h_{i}, \ldots, x_{n}\right) \in U^{-}\left(x_{0}, \delta_{2}\right)$, then

$$
\bar{F}\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)<\bar{F}\left(x_{0}\right)
$$

Let $\delta_{0}=\min \left\{\delta_{1}, \delta_{2}\right\}$. For any $\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right) \in$ $U^{-}\left(x_{0}, \delta_{0}\right)$, we obtain that

$$
F\left(x_{1}, \ldots, x_{i}+y_{i} h_{i}, \ldots, x_{n}\right)<F\left(x_{0}\right)
$$

In summary, there is a contradiction that x_{0} is a global minimum point of $F(x)$. \square

Theorem 7: Let $F: M \rightarrow \mathcal{K}_{c}$ be sub-differentiable and convex at x_{0}. If the sub-gradients of $\underline{F}(x)$ and $\bar{F}(x)$ satisfying $0^{n} \in \widetilde{\nabla} \underline{F}\left(x_{0}\right)$ or $0^{n} \in \widetilde{\nabla} \bar{F}\left(x_{0}\right)$, then x_{0} is a global minimum point of $F(x)$.
Proof. Because of $0^{n} \in \widetilde{\nabla} \underline{F}\left(x_{0}\right)$, then

$$
\begin{equation*}
0^{n} \in \widetilde{\nabla} \underline{F}\left(x_{0}\right)=\left(\partial_{x_{1}} \underline{F}\left(x_{0}\right), \partial_{x_{2}} \underline{F}\left(x_{0}\right), \ldots, \partial_{x_{n}} \underline{F}\left(x_{0}\right)\right) . \tag{11}
\end{equation*}
$$

Equation (11) implies $0 \in \partial_{x_{i}} \underline{F}\left(x_{0}\right),(i=1, \ldots, n)$. It is easy to get from Remark 3 that $\underline{F}(x)$ is convex at x_{0}. According to Lemma 1, we know that x_{0} is a global minimum point of $\underline{F}(x)$. Thus, from Remark $1, x_{0}$ is a global minimum point of $F(x)$. When $0^{n} \in \widetilde{\nabla} \bar{F}\left(x_{0}\right)$, the proof is similar to $0^{n} \in \widetilde{\nabla} \underline{F}\left(x_{0}\right)$.

Example 3: The interval-valued function $F: \mathbb{R}^{n} \rightarrow \mathcal{K}_{c}$ is defined by

$$
\begin{aligned}
& \underline{F}(x)=x_{2}-100, x \in \mathbb{R}^{2}, \\
& \bar{F}(x)=x_{1}^{2}+x_{2}^{2}, x \in \mathbb{R}^{2} .
\end{aligned}
$$

By Definition 6, we get

$$
\widetilde{\nabla} \underline{F}(x)=([0,0],[1,1]), x \in \mathbb{R}^{2},
$$

$$
\begin{gathered}
\widetilde{\nabla} \bar{F}(x)=\left(\left[2 x_{1}, 2 x_{1}\right],\left[2 x_{2}, 2 x_{2}\right]\right), x \in \mathbb{R}^{2}, \\
\widetilde{\nabla} F(x)= \begin{cases}\left(\left[2 x_{1}, 0\right],\left[2 x_{2}, 1\right]\right), & x_{1} \leq 0 \text { and } x_{2} \leq \frac{1}{2} \\
\left(\left[2 x_{1}, 0\right],\left[1,2 x_{2}\right]\right), & x_{1} \leq 0 \text { and } x_{2}>\frac{1}{2} \\
\left(\left[0,2 x_{1}\right],\left[2 x_{2}, 1\right]\right), & x_{1}>0 \text { and } x_{2} \leq \frac{1}{2} \\
\left(\left[0,2 x_{1}\right],\left[1,2 x_{2}\right]\right), & x_{1}>0 \text { and } x_{2}>\frac{1}{2}\end{cases}
\end{gathered}
$$

We obtain $0^{n} \in \widetilde{\nabla} \bar{F}(x)$ and $0^{n} \in \widetilde{\nabla} F(x)$ at $x=(0,0)$. According to Theorem 6 and 7 , we can find that $x=(0,0)$ is a global minimum point of $F(x)$.

IV. CONCLUSION

The generalized Hukuhara derivative is a general tool for dealing with interval-valued optimization problems [22]. In order to extend the application of generalized Hukuhara derivative, we first introduce the concept of sub-derivative. The new concept of sub-derivative unifies and extends others appeared in the recent literature [5], [6]. Thanks to a characterization result of sub-derivative, that we have provided on sub-differentiability, an interesting interpretation of the sub-derivative in terms of condition has been introduced. Based on the sub-derivative of interval-valued functions, this paper studies the conditions of interval-valued optimization problems, and gives examples to illustrate the applicability of the optimization conditions.

References

[1] G. C. Aye. "Fiscal policy uncertainty and economic activity in south africa: an asymmetric analysis," Working Papers, 2019.
[2] S. Boyd, L. Vandenberghe. "Convex Optimization," World Book Inc, 2004.
[3] B. Bede, S. G. Gal. "Solutions of fuzzy differential equations based on generalized differentiability," Commun. Math. Anal., vol. 9, no. 4, pp. 22-41, 2010.
[4] B. D. Chung, T. Yao, C. Xie, A. Thorsen. "Robust optimization model for a dynamic network design problem under demand uncertainty," Netw. Spat. Econ., vol. 11, no.1, pp. 371-389, 2010.
[5] Y. Chalco-Cano, H. Román-Flores, M. D. Jiménez-Gamero. "Generalized derivative and π-derivative for set-valued functions," Inf. Sci., vol. 181, no. 11, pp. 2177-2188, 2011.
[6] Y. Chalco-Cano, W. A. Lodwick, A. Rufian-Lizana. "Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative," Fuzzy Optim. Decis. Mak., vol. 12, no. 3, pp. 305-322, 2013.
[7] A. Cesa-Bianchi, M. H. Pesaran, A. Rebucci. "Uncertainty and economic activity: a multi-country perspective," Cepr. Discussion Papers, 2018.
[8] D. Ghosh. "Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions," J. Appl. Math. Comput., vol. 53, no.1, pp. 709-731, 2017.
[9] D. Ghosh, A. Singh, K. K. Shukla, K. Manchanda. "Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines," Inf. Sci., vol. 504, pp. 276-292, 2019.
[10] Huanxin Guan, Bo Yang, Herong Wang, Di Wu, Baixiang Zhao, Jing Bo Liu and Tong Wu. "Multiple Faults Diagnosis of Distribution Network Lines Based on Convolution Neural Network with Fuzzy Optimization," IAENG International Journal of Computer Science, vol. 47, no. 3, pp. 567-571, 2020.
[11] Indarsih. "Backorders Case in Inventory Model with Fuzzy Demand and Fuzzy Lead Time," IAENG International Journal of Computer Science, vol. 46, no. 3, pp. 425-429, 2019.
[12] Xiongbiao Li, Yong Liu, Xuerong Gou and Yingzhe Li. "A Novel Fuzzy Time Series Model Based on Fuzzy Logical Relationships Tree," IAENG International Journal of Computer Science, vol. 43, no. 4, pp. 463-468, 2016.
[13] R. E. Moore. "Interval analysis," Prentice-Hall, Englewood Cliffs. New Jersey, 1966.
[14] S. Markov. "Calculus for interval functions of a real variable," Computing, vol. 22, no.1, pp. 325-337, 1979.
[15] R. E. Moore. "Method and applications of interval analysis," Soc. Ind. Appl. Math., 1987.
[16] S. M. Mousavi, J. Antucheviien, E. K. Zavadskas, et al. "A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty," Transport, vol. 34, no. 1, pp. 30-40, 2019.
[17] A. Mahanipour, H. Nezamabadi-Pour. "GSP: an automatic programming technique with gravitational search algorithm," Appl. Intell., vol. 49, no. 2, pp. 1502-1516, 2019.
[18] S. Nanda, K. Kar. "Convex fuzzy mappings," Fuzzy Sets Syst., vol. 48, no.1, pp. 129-132, 1992.
[19] I. Otay, M. Jaller. "Multi-expert disaster risk management \& response capabilities assessment using interval-valued intuitionistic fuzzy sets," J. Intell. Fuzzy Syst., vol. 38, no.1, pp. 835-852, 2020.
[20] Basuki Rahmat, Endra Joelianto, I Ketut Eddy Purnama and Mauridhi Hery Purnomo. "An Improved Mean Shift Using Adaptive Fuzzy Gaussian Kernel for Indonesia Vehicle License Plate Tracking," IAENG International Journal of Computer Science, vol. 45, no. 3, pp. 458-471, 2018.
[21] YongSang Ryu, YoungSoo Park, JinSoo Kim and SangHun Lee. "Image Edge Detection using Fuzzy C-means and Three Directions Image Shift Method," IAENG International Journal of Computer Science, vol. 45, no. 1, pp. 1-6, 2018.
[22] L. Stefanini, B. Bede. "Generalized Hukuhara differentiability of interval-valued functions and interval differential equations," Nonlinear Anal Theory Methods Appl., vol. 71, no.3, pp. 1311-1328, 2009.
[23] L. Stefanini. "A generalization of Hukuhara difference and division for interval and fuzzy arithmetic," Fuzzy Sets Syst., vol. 161, no.1, pp. 1564-1584, 2010.
[24] L. Stefanini, A. J. Manuel. "Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability," Fuzzy Sets Syst., vol. 362, no. 1, pp. 1-34, 2019.
[25] Zhiqiang Song, Wu Fang, Xiaozhao Liu and Aihong Lu. "Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Bounded Control Inputs," Engineering Letters, vol. 28, no. 3, pp. 820-826, 2020.
[26] J. Tao, Z. Zhang. "Properties of interval-valued function space under the gH -difference and their application to semi-linear interval differential equations," Adv Differ Equ., vol. 2016, no. 1, pp. 45, 2016.
[27] H. C. Wu. "The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function," Eur. J. Oper. Res., vol 176, no. 3, pp. 46-59, 2007.
[28] H. C. Wu. "The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions," Fuzzy Optim. Decis. Mak., vol. 8, no. 1, pp. 295-321, 2009.
[29] H. C. Wu. "Duality theory for optimization problems with intervalvalued objective function," J. Optim. Theory Appl., vol. 144, no. 3, pp. 615-628, 2010.
[30] Hong Wang and Tonghui Gao. "Training Algorithm of Adaptive Neural Fuzzy Inference System Based on Improved SRUKF," IAENG International Journal of Computer Science, vol. 44, no. 4, pp. 396-403, 2017.
[31] H. C. Wu. "Solving set optimization problems based on the concept of null set." J. Math. Anal. Appl., vol. 472, no. 2, pp. 1741-1761, 2018.
[32] Yechun Yu, Xue Deng, Chuangjie Chen and Kai Cheng. "Research on Fuzzy Multi-objective Multi-period Portfolio by Hybrid Genetic Algorithm with Wavelet Neural Network," Engineering Letters, vol. 28, no. 2, pp. 594-600, 2020.
[33] Wei Zhang, Dong Qiu and Meilin Dong. "Optimizations of Convex and Generalized Convex Fuzzy Mappings in The Quotient Space of Fuzzy Numbers," IAENG International Journal of Applied Mathematics, vol. 47, no. 4, pp. 431-436, 2017.
[34] Xin Zhang, B. Beranger, S. A. Sisson. "Constructing likelihood functions for interval-valued random variables," Scand J Stat., vol. 47, no. 1, pp. 23-35, 2020.

