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Abstract—In this paper, we have proposed the linearization
problem of second-order ordinary differential equation under
the generalized linearizing transformation. We found the nec-
essary form for reducing the second-order ordinary differential
equation to simple linear equation. We also obtained sufficient
condition for making the above form to be linear. Further,
the procedure of linear transformation within the study is
demonstrated in the explicit form. Moreover, we apply the
obtained linearization criteria to the interesting problems
of nonlinear ordinary differential equations and nonlinear
partial differential equations, for examples the parachute
equation, the Painlevé - Gambier XI equation, the equation
for the variable frequency oscillator, the one-dimensional non-
polynomial oscillator, the equation that can be linearizable by
point and Sundman transformations, the modified generalized
Vakhnenko equation.

Index Terms—linearization problem, generalized lineariz-
ing transformation, nonlinear second-order ordinary differen-
tial equation.

I. Introduction

THE linearization problem is one of the important
branches in differential equation field. A number

of mathematicians has been studying this branch con-
tinuously until the present time. To discover theory for
finding new knowledge has shown to be a great benefit
for academic world and country development. It is known
that theories and new knowledge obtained from research
not only offer benefits to improve existing knowledge
within the branch itself, but also they can be applied
to other branches or fields and can be key fundamental
to develop basic science which is basic research to build
many other new knowledge. This would be a fundamental
step to develop the country.

The linearization problem is a branch of study that
can be applied widely in particular to the study involving
solving the equations. Most important physical problems
are in the form of nonlinear differential equations which
are normally difficult to solve and there are relatively
few method to find their exact solutions. Numerical
method therefore is often used to solve these nonlinear
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differential equations but the obtained solutions are just
the approximate solutions. However, the exact solution
is claimed to be more interesting because it can be used
to analyze the properties of the studied equations. One
of the methods used to determine the exact solutions
is to linearize the interested equation and find solutions
directly by fundamental method. The solutions obtained
from such linear equation are yet still solutions of initial
equation. By mentioned above, we are required to seek
for transformation in order to transform initial equation
to be linear equation.

There are a number of interesting transformations.
For example, in the case that the transformation con-
sists of derivative, we call it as tangent transforma-
tion, in the case that the transformation depends only
on independent and dependent variables, we call it
as point transformation and we will call the tangent
transformation which the independent and dependent
variables can be changed and involves the first deriva-
tive as contact transformation. In addition, another
type of transformation which its transformation set is
different from any mentioned above since there is a
nonlocal term T =

∫
G (t, x) dt, such transformation

is called generalized Sundman transformation. In this
paper, we use the generalized linearizing transformation
which is an extended transformation from generalized
Sundman transformation where the selected G function
is G (t, x, x′).

Up to the present time, all researchers who study
the linearization of second-order ordinary differential
equations via generalized linearizing transformation have
not covered all cases yet. Therefore, in this paper we
focus on the remaining cases that have not yet been
studied, which we also find that those cases can be
applied to solve several nonlinear equations in real-world
phenomenon.

A. Historical Review
From above facts as mentioned, the researcher would

like to give a brief background of this study. Since 19th
century the linearization problem of ordinary differen-
tial equation has attracted some interests from various
well-known mathematicians e.g. S. Lie and E. Cartan
etc. The first person who could solve the linearization
problem of ordinary differential equation is Lie [1]. Lie
could discover the standard form of every second-order
ordinary differential equation which could be reduced
the form to become linear equation via changing the
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independent and dependent variables (or can be called
point transformation). Later, Liouville [2] and Tresse
[3] used the relative invariants of equivalence group
under point transformation to solve the equivalence of
second-order ordinary differential equations which can be
reduced from second-order nonlinear ordinary differential
equations to second-order linear ordinary differential
equations. Moreover, Lie discovered that every second-
order ordinary differential equation can be reduced to
second-order linear ordinary differential equation with-
out any conditions via contact transformation.

Having mentioned some methods above, there are yet
still other methods to solve linearization problem of
second-order ordinary differential equation. For example,
the method of Cartan [4], the reducing order method, the
differential substitution method etc.

Another transformation that is very interesting and
has not been mentioned yet is the generalized Sundman
transformation

X = F (t, x), dT = G(t, x)dt. (1)

Duarte, Moreira and Santos [5] used generalized Sund-
man transformation to determine the conditions for
linearizing the second-order ordinary differential equa-
tion to be simple linear equation. In [6] Nakpim and
Meleshko demonstrated that the general linear equation
in the canonical form of Laguerre was not sufficient for
solving linearization problem via generalized Sundman
transformation. The canonical form of Laguerre could
only particularly be applied with point and contact
transformations. Therefore, in [6] they found the condi-
tions for linearizing the second-order ordinary differential
equation to be general linear equation.

In this paper, we extend the generalized Sundman
transformation which was studied before as shown in
[7]-[9], where they called such a transformation in this
form as generalized linearizing transformation

X = F (t, x), dT = G(t, x, x′)dt. (2)

They demonstrated that this transformation can be
used to linearize a more extensive class of nonlinear
standard differential equations including some equations
that can’t be linearized by the non-point and invertible
point transformations. In the case that the function
G in (2) does not depend on the variable x′ , then
it can be turned into a non-point transformation. If
G is a differentiable function, then it turns into an
invertible point transformation. In this way, (2) is a
unified transformation as it incorporates non-point and
invertible point transformations as extraordinary cases.
A case of an equation that can be linearized by a change
of the structure (2) is given in [8].

In [7], Chandrasekar, Senthilvelan and Lakshmanan
applied a particular class of transformations (2), where
the function G(t, x, x′) is linear with respect to x′.

They payed attention to the case where G is a
polynomial function in x′ and in particular where it is
linear in x′ with coefficients which are arbitrary functions
of t and x. To be specific, they focused here on the case

X = F (t, x) , dT = (G1 (t, x)x
′ +G2 (t, x)) dt.

Notice that for the case G1 = 0, the generalized lin-
earizing transformation becomes a generalized Sundman
transformation, so that they assumed G1 ̸= 0.

The authors of [7] obtained that any second-order
linearizable ordinary differential equation which can be
mapped into the equation X

′′
= 0 via a generalized

limearizing transformation has to be of the form

x
′′
+A3(t, x)x

′3 +A2(t, x)x
′2 +A1(t, x)x

′

+A0(t, x) = 0,
(3)

and the functions Ai’s (i = 0, 1, 2, 3) are connected to
the transform functions F and G through the relations

A3 = (G1Fxx − FxG1x)/M,
A2 = (G2Fxx + 2G1Fxt − FxG2x − FtG1x

−FxG1t)/M,
A1 = (2G2Fxt +G1Ftt − FxG2t − FtG2x

−FtG1t)/M,
A0 = (G2Ftt − FtG2t)/M

(4)

with M = FxG2 − FtG1 ̸= 0.
They have analyzed a particular case of equation (3),

namely, A3 = 0 and A2 = 0 in equation (4). Complete
analysis of the compatibility of arising equations is given
for the case Fx ̸= 0.

Therefore, in this paper we will apply the generalized
linearizing transformation with second-order ordinary
differential equation to complete the remaining cases
(Fx = 0) which are different from the work by Chan-
drasekar and Lakshmanan [7].

II. Formulation of the Linearization Theorems
A. Obtaining Necessary Condition of Linearization

We begin with investigating the necessary conditions
for linearization. We consider the second-order ordinary
differential equation

x
′′
= F (t, x, x′) (5)

which can be transformed to a simplest linear equation

X
′′
= 0 (6)

under the generalized linearizing transformation
X = F (t, x) ,
dT = [G1 (t, x)x

′ +G2 (t, x)] dt,
(7)

where G1 ̸= 0. So, we arrive at the following theorem.
Theorem 2.1: Any second-order ordinary differential

equations (5) obtained from a linear equation (6) by a
generalized linearizing transformation (7) has to be the
form

x
′′
+A3(t, x)x

′3 +A2(t, x)x
′2 +A1(t, x)x

′

+A0(t, x) = 0,
(8)

where

A3 =(−FxxG1 + FxG1x)/(FtG1 − FxG2), (9)
A2 =(−2FtxG1 + FtG1x − FxxG2 + FxG1t

+ FxG2x)/(FtG1 − FxG2), (10)
A1 =(−2FtxG2 − FttG1 + FtG1t + FtG2x

+ FxG2t)/(FtG1 − FxG2), (11)
A0 =(−FttG2 + FtG2t)/(FtG1 − FxG2). (12)
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Proof. Applying a generalized linearizing transformation
(7), one obtains the following transformations

X ′ (T ) =
DtF

Dt

∫
[G1x

′ +G2]dt

=
Ft + x′Fx

G1x
′ +G2

=P (t, x, x′),

X ′′ (T ) =
DtP

Dt

∫
[G1x

′ +G2]dt

=
Pt + Pxx

′ + Px′x′′

G1x
′ +G2

,

where

Pt =
Ftt(G1x

′ +G2)− Ft(G1x
′′ +G1tx

′ +G2t)

(G1x′ +G2)2
,

Px =
Ftx(G1x

′ +G2)− Ft(G1xx
′ +G2x)

(G1x′ +G2)2
,

Px′ =− FtG1x
′′

(G1x′ +G2)2
,

and Dt = ∂
∂t + x′ ∂

∂x + x′′ ∂
∂x′ + ... is a total derivative.

Substituting the resulting expression into the linear
equation (6) we arrive at the necessary form (8), where
A0, A1, A2 and A3 are some functions of t and x as
defined in system of equations (9)-(12).

B. Obtaining Sufficient Conditions of Linearization and
Linearizing Transformation

For obtaining sufficient conditions of linearizability of
equation (8), one has to solve the compatibility problem
of the system of equations (9)-(12), considering it as
overdetermined system of partial differential equations
for the functions F,G1 and G2 with given coefficients Ai

of equation (8).
For convenience of calculations, we set

G3 =
G2

G1
.

So that system of equations (9)-(12) become

A3 =(−FxxG1 + FxG1x)/(G1(Ft − FxG3)), (13)
A2 =(−2FtxG1 + FtG1x − FxxG1G3 + FxG1t

+ FxG1xG3 + FxG3xG1)/(G1(Ft − FxG3)), (14)
A1 =(−2FtxG1G3 − FttG1 + FtG1t + FtG1xG3

+ FtG3xG1 + FxG1tG3

+ FxG3tG1)/(G1(Ft − FxG3)), (15)
A0 =(−FttG1G3 + FtG1tG3

+ FtG3tG1)/(G1(Ft − FxG3)). (16)

According to the notation K = G1(FxG3−Ft), we define
the derivative Ft as

Ft = (FxG1G3 −K)/G1. (17)

Solving equations (13)-(16) with respect to Fxx,Kx,Kt

and G3t, one finds

Fxx =(FxG1x +A3K)/G1, (18)
Kx =(−FxG1tG1 + FxG1xG1G3 + FxG3xG

2
1

+ 3G1xK −A2G1K + 3A3G1G3K)/(2G1), (19)
Kt =(−FxG1tG1G3 + FxG1xG1G

2
3 + FxG3xG

2
1G3

+ 4G1tK −G1xG3K + 2G3xG1K − 2A1G1K

+ 3A2G1G3K − 3A3G1G
2
3K)/(2G1), (20)

G3t =G3xG3 +A0 −A1G3 +A2G
2
3 −A3G

3
3. (21)

Comparing the mixed derivative (Kx)t = (Kt)x, one
obtains

G3xx =(2A0xFxG
3
1 − 2A1xFxG

3
1G3 + 4A1xG

2
1K

− 2A2tG
2
1K + 2A2xFxG

3
1G

2
3 − 6A2xG

2
1G3K

+ 6A3tG
2
1G3K − 2A3xFxG

3
1G

3
3 + 6A3xG

2
1G

2
3K

+ 4FxG1txG
2
1G3 − 2FxG1ttG

2
1 + 3FxG

2
1tG1

− 6FxG1tG1xG1G3 + 2FxG1tG3xG
2
1

− 2FxG1tA1G
2
1 + 4FxG1tA2G

2
1G3

− 6FxG1tA3G
2
1G

2
3 − 2FxG1xxG

2
1G

2
3

+ 3FxG
2
1xG1G

2
3 − 2FxG1xG3xG

2
1G3

+ 2FxG1xA0G
2
1 − 2FxG1xA2G

2
1G

2
3

+ 4FxG1xA3G
2
1G

3
3 − FxG

2
3xG

3
1 − 2G1txG1K

+ 3G1tG1xK −G1tA2G1K + 3G1tA3G1G3K

+ 2G1xxG1G3K − 3G2
1xG3K +G1xG3xG1K

+G1xA2G1G3K − 3G1xA3G1G
2
3K

− 5G3xA2G
2
1K + 15G3xA3G

2
1G3K

+ 6A0A3G
2
1K − 6A1A3G

2
1G3K

+ 6A2A3G
2
1G

2
3K − 6A2

3G
2
1G

3
3K)/(4G2

1K). (22)

The compatibility analysis depends on the value of
Fx. A complete study of all cases is cumbersome. Here
a complete solution is given for the case where Fx = 0.

Case Fx = 0

Since Fx = 0, then substituting it into Fxx in equation
(18), one gets the condition

A3 = 0. (23)

Comparing the mixed derivative (Ft)x = (Fx)t, one
obtains the derivative

G1x = A2G1 − 3A3G1G3 (24)

and this satisfies equation (Fxx)t = (Ft)xx. Setting

λ1 =−A1x + 2A2t,

λ2 =−A0xx −A0xA2 +A2tt +A2tA1 −A2xA0

− λ1t −A1λ1

then, equation (G3xx)t = (G3t)xx becomes

G3xλ1 +G3A2λ1 + λ2 = 0. (25)

The compatibility analysis depends on the value of λ1.
A complete study of all cases is given here.
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3.3.1. Case λ1 = 0
From equation (25), one finds the condition

λ2 = 0. (26)
3.3.2. Case λ1 ̸= 0
Equation (25) provides the derivative

G3x = −(G3A2λ1 + λ2)/λ1. (27)
Subtituting G3x into G3xx in equation (22), one arrives
at the condition

λ2x = (−A2tλ
2
1 + λ1xλ2 + λ3

1)/λ1. (28)
Comparing the mixed derivaties (G3x)t = (G3t)x, one
gets the condition

λ2t =− (A0xλ
2
1 − λ1tλ2 +A0A2λ

2
1

+A1λ1λ2 + λ2
2)/λ1. (29)

Combining all derived results in the case Fx = 0 the
following theorems are proven.

Theorem 2.2: Sufficient conditions for equation (8) to
be equivalent to a linear equation (6) via generalized
linearizing transformation (7) with the function F =
F (t) is the equation (23) and the additional conditions
are as follows.

(a) If λ1 = 0, then the condition is equation (26).
(b) If λ1 ̸= 0, then the conditions are equations (28)

and (29).
Theorem 2.3: Provided that the sufficient conditions

in Theorem 2.2 are satisfied, the transformation (7) with
the function F = F (t) mapping equation (8) to a linear
equation (6) is obtained by solving the compatible system
of equations :

(a) (17), (19), (20), (21), (22), and (24).
(b) (17), (19), (20), (21), (24), and (27).

III. Some Applications
In this section we focus on finding some applications

which satisfy Theorem 2.1, Theorem 2.2 and Theorem
2.3. The obtained results are as follows.

A. Parachute Equation
An application to this equation can be applied to a

model of motion for a parachutist by using Newton’s law
II which is

∑
F = ma. The movement of skydiver when

the coefficient of air opposition changes between free-fall
and the last consistent state drop with the parachute is
slowly conveyed.

Consider the parachute equation [10], in the form
x′′ − kx′2 + g = 0, (30)

with initial conditions x(0) = 0 and x′(0) = 0.
Here k = πρCdD

2

8m , where
• m is the mass of the body and parachute,
• ρ is the density of the fluid in which the body moves,
• Cd is the drag coefficient for the parachute

(1.5 for parabolic profile and 0.75 for flat),
• D is the effective diameter of the parachute.

Equation (30) is an equation of the form (8) in Theorem
2.1 with the coefficients

A3 = 0, A2 = k, A1 = 0, A0 = g, λ1 = 0, λ2 = 0.

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (30) is
linearizable via a generalized linearizing transformation.
For finding the functions F , G1 and G2 we have to solve
equations in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = kK, Kt =
K(2G1t+G1G3k)

G1
,

G3t = g +G2
3k, G3xx = 0, G1x = G1k.

(31)

One can find the particular solution for equations in (31)
as

G1 = ekx, G3 =
√

g
k i, G2 =

√
g
k ie

kx,

K = ekx+
√
kgit, F = i√

kg
e
√
kgit.

So that, one obtains the linearizing transformation

X =
i√
kg

e
√
kgit, dT = (ekxx′ +

√
g

k
iekx)dt. (32)

Hence, equation (30) is mapped by the transformation
(32) into the linear equation

X
′′
= 0. (33)

The general solution of equation (33) is

X = c1T + c2, (34)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (32) to equation
(34), we obtain that the general solution of equation
(30) is

i√
kg

e
√
kgit = c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation

dT

dt
= (x′ +

√
g

k
i)ekx.

B. Painlevé - Gambier XI Equation
In [11], Koudahoun, Akande, Adjai, Kpomahou and

Monsia considered the Painlevé - Gambier XI equation

x′′ +
x′2

x
= 0. (35)

To investigate the exact classical and quantum me-
chanical solutions, they offered a generalized singular
differential equation of quadratic Lienard type.

By using our obtained theorems, we get the results as
follow. Equation (35) is an equation of the form (8) in
Theorem 2.1 with the coefficients

A3 = 0, A2 =
1

x
, A1 = 0, A0 = 0, λ1 = 0, λ2 = 0.

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (35) is
linearizable via a generalized linearizing transformation.
For finding the functions F , G1 and G2 we have to solve
equations in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = K
x , Kt =

K(2G1tx+G1G3)
G1x

,

G3t =
G2

3

x , G3xx = G3

x2 , G1x = G1

x .
(36)

One can find the particular solution for equations in (36)
as

G1 = x, G3 = 0, G2 = 0, K = x, F = −t.
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So that, one obtains the linearizing transformation
X = −t, dT = xx′dt. (37)

Hence, equation (35) is mapped by the transformation
(37) into the linear equation

X
′′
= 0. (38)

The general solution of equation (38) is
X = c1T + c2, (39)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (37) to equation
(39), we obtain that the general solution of equation
(35) is

−t = c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
= xx′.

C. Equation for the Variable Frequency Oscillator
In 2013, Mastafa, Al-Dueik and Mara’beh [12] consid-

ered the ordinary differential for the variable frequency
oscillator

x′′ + xx′2 = 0. (40)
They showed that this equation can be linearizable by
generalized Sundman transformation.

By using our obtained theorems, we get the results as
follow. Equation (40) is an equation of the form (8) in
Theorem 2.1 with the coefficients

A3 = 0, A2 = x, A1 = 0, A0 = 0, λ1 = 0, λ2 = 0.

One can check that these coefficients obey the condi-
tions in Theorem 2.2. case (a). Thus, equation (40) is
linearizable via a generalized linearizing transformation.
For finding the functions F , G1 and G2 we have to solve
equations in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = xK, Kt =
K(2G1t+G1G3x)

G1
,

G3t = G2
3x, G3xx = −G3, G1x = G1x.

(41)

One can find the particular solution for equations in (41)
as

G1 = e
x2

2 , G3 = 0, G2 = 0, K = e
x2

2 , F = −t.

So that, one obtains the linearizing transformation

X = −t, dT = e
x2

2 x′dt. (42)
Hence, equation (40) is mapped by the transformation
(42) into the linear equation

X
′′
= 0. (43)

The general solution of equation (43) is
X = c1T + c2, (44)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (42) to equation
(44), we obtain that the general solution of equation
(40) is

−t = c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
= e

x2

2 x′.

D. The One-Dimensional Non-Polynomial Oscillator
In the note [13], Mathew and Lakshmanan presented

a remarkable nonlinear system that all its bounded
periodic motions are simple harmonic. The system is a
particle obeying the highly nonlinear equation of motion

(1 + λx2)x′′ + (α− λx′2)x = 0, (45)

where λ and α are arbitrary parameters.
By using our obtained theorems, we get the results as

follow. Equation (45) is an equation of the form (8) in
Theorem 2.1 with the coefficients

A3 = 0, A2 = − λx

(λx2 + 1)
, A1 = 0, A0 =

αx

(λx2 + 1)
,

λ1 = 0, λ2 = αλx(−λx2 + 2).

One can check that the condition (23) in Theorem 2.2.
case (a) are satisfied. Now, the condition (26) is satisfied
when the following condition holds, that is,

αλx(−λx2 + 2) = 0.

Two cases arise, that are α = 0 and λ = 2
x2 . (Note that

for λ = 0 equation (45) is linear equation.)
Here we consider only case α = 0. In this case, the

equation (45) takes the form

(1 + λx2)x′′λxx′2 = 0. (46)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = − λxK
(1+λx2) ,

Kt =
K(2G1tλx

2+2G1t−λxG1G3)
G1(1+λx2) ,

G3t = − λx2G2
3

(1+λx2) , G3xx = λG3(−λx2+1)
(1+λx2)2 ,

G1x = − λxG1

(1+λx2) .

(47)

One can find the particular solution for equations in (47)
as

G1 = 1

(1+λx2)
1
2
, G3 = 0, G2 = 0,

K = 1

(1+λx2)
1
2
, F = −t.

So that, one obtains the linearizing transformation

X = −t, dT =
1

(1 + λx2)
1
2

x′dt. (48)

Hence, equation (46) is mapped by the transformation
(48) into the linear equation

X
′′
= 0. (49)

The general solution of equation (49) is

X = c1T + c2, (50)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (48) to equation
(50), we obtain that the general solution of equation
(46) is

−t = c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
=

1

(1 + λx2)
1
2

x′.
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E. Equation That Can Be Linearizable by Point and
Sundman Transformations

Consider the nonlinear second-order ordinary differen-
tial equation

x′′ + µ3x
k3x′2 + µ2x

k2x′ + µ1x
k1 = 0, (51)

where k3, k2, k1, µ1, µ2 and µ3 ̸= 0 are arbitrary con-
stants. The Lie criteria [1], showed that the nonlinear
equation (51) is linearizable by a point transformation if
and only if µ1 = 0 and µ2 = 0. In [6], Nakpim and
Meleshko showed that the nonlinear equation (51) is
linearizable by a generalized Sundman transformation
if and only if µ2 ̸= 0 and µ1 = 0.

By using our obtained theorems, we get the results as
follow. Equation (51) is an equation of the form (8) in
Theorem 2.1 with the coefficients

A3 = 0, A2 = µ3x
k3 , A1 = µ2x

k2 ,
A0 = µ1x

k1 , λ1 = k2µ2x
k2 ,

λ2 =x(k1+k3)µ1µ3k1x+ x(k1+k3)µ1µ3k3x

+ xk1µ1k
2
1 + xk1µ1k1 − x2k2µ2

2k2x.

Now, the conditions in Theorem 2.2. case (a) is satisfied
when the following conditions holds, that are,

k2µ2x
k2 = 0,

x(k1+k3)µ1µ3k1x+ x(k1+k3)µ1µ3k3x+ xk1µ1k
2
1

+xk1µ1k1 − x2k2µ2
2k2x = 0.

Two cases arise.

Case 1: µ2 = 0 and µ1 = 0
In this case, the equation (51) takes the form

x′′ + µ3x
k3x′2 = 0. (52)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = µ3x
k3K,

Kt =
K(2G1t+µ3x

k3G1G3)
G1

, G3t = µ3x
k3G2

3,

G3xx = −µ3k3x
k3G3

x , G1x = µ3x
k3G1.

(53)

One can find the particular solution for equations in (53)
as

G1 = e
µ3xk3+1

k3+1 , G3 = 0, G2 = 0,

K = e
µ3xk3

k3+1 , F = −t.

So that, one obtains the linearizing transformation

X = −t, dT = e
µ3xk3+1

k3+1 x′dt. (54)

Hence, equation (52) is mapped by the transformation
(54) into the linear equation

X
′′
= 0. (55)

The general solution of equation (55) is

X = c1T + c2, (56)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (54) to equation

(56), we obtain that the general solution of equation
(52) is

−t = c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
= e

µ3xk3+1

k3+1 x′,

where k3 ̸= −1.

For k3 = −1, one can find the particular solution for
equations in (53) as

G1 = xµ3 , G3 = 0, G2 = 0, K = xµ3 , F = −t.

So that, one obtains the linearizing transformation

X = −t, dT = xµ3x′dt. (57)

Hence, equation (51) is mapped by the transformation
(57) into the linear equation

X
′′
= 0. (58)

The general solution of equation (58) is

X = c1T + c2, (59)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (57) to equation
(59), we obtain that the general solution of equation
(51) is

−t = c1ϕ(t) + c2,

where the funtion T = ϕ(t) is a solution of the equation
dT

dt
= xµ3x′.

Case 2: k2 = 0 and µ1 = 0
In this case, the equation (51) takes the form

x′′ + µ3x
k3x′2 + µ2x

′ = 0. (60)

The linearizing transformation is found by solving equa-
tions in Theorem 2.3 case (a), which become

Ft = − K
G1

, Kx = Kµ3x
k3 ,

Kt =
K(2G1t+µ3x

k3G1G3−µ2G1)
G1

,

G3t = G3(x
k3G3µ3 − µ2), G3xx = −G3µ3k3x

k3

x ,
G1x = G1µ3x

k3 .

(61)

One can find the particular solution for equations in (61)
as

G1 = e
µ3xk3+1

k3+1 , G3 = 0, G2 = 0,

K = e
µ3xk3

k3+1 −µ2t, F = eµ2t

µ2
.

So that, one obtains the linearizing transformation

X =
eµ2t

µ2
, dT = e

µ3xk3+1

k3+1 x′dt. (62)

Hence, equation (60) is mapped by the transformation
(62) into the linear equation

X
′′
= 0. (63)

The general solution of equation (63) is

X = c1T + c2, (64)
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where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (62) to equation
(64), we obtain that the general solution of equation
(60) is

eµ2t

µ2
= c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
= e

µ3xk3+1

k3+1 x′,

where k3 ̸= −1.

For k3 = −1, one can find the particular solution for
equations in (61) as

G1 = xµ3 , G3 = 0, G2 = 0,

K = xµ3e−µ2t, F = eµ2t

µ2
.

So that, one obtains the linearizing transformation

X =
eµ2t

µ2
, dT = xµ3x′dt. (65)

Hence, equation (60) is mapped by the transformation
(65) into the linear equation

X
′′
= 0. (66)

The general solution of equation (66) is

X = c1T + c2, (67)

where c1 and c2 are arbitrary constants. Applying the
generalized linearizing transformation (65) to equation
(67), we obtain that the general solution of equation
(60) is

eµ2t

µ2
= c1ϕ(t) + c2,

where the function T = ϕ(t) is a solution of the equation
dT

dt
= xµ3x′,

Remark 3.1: The conditions in Theorem 2.2. case (b)
are satisfied if only if µ1 = 0.

F. Modified Generalized Vakhnenko Equation
In 2009, Ma, Li and Wang [14] focus on a modified

generalized Vakhnenko equation (mGVE),
∂

∂x
(L2u+

1

2
pu2 + βu) + qLu = 0, L =

∂

∂t
+ u

∂

∂x
, (68)

where ρ, q, β are arbitrary non-zero constants.
To develop the specific solutions for mGVE is exceed-

ingly significant. For models, when ρ = β = 0 and q = 1,
equation (68) is reduced to notable Vakhnenko equation
(VE), which oversees the nonlinear engendering of high-
recurrence wave in a loosening up medium [15]-[17]. The
VE has solition solutions [17]. When ρ = q = 1 and β
an arbitrary non-zero constant, equation (68) is become
as the generalized VE (GVE), in [18] it was indicated
that GVE has N-soliton solution. When ρ = 2q and β
is an arbitrary non-zero constant, equation (68) has a
loop-like, hump-like and cusp-like soliton solutions [19].
In [20], it was appeared that equation (68) has travelling
wave solution and single-soliton solution.

Consider a modified generalized Vakhnenko equation
(68), we can rewrite it in the form

2ututx + 2[uuxutx + ut(uuxx + u2
x)] + 2u2uxx

+2uu3
x + ρuux + βux + q(ut + uux) = 0.

(69)

Of particular interest among solutions of equation (69)
are travelling wave solutions:

u(t, x) = H(x−Dt),

where D is a constant phase velocity and the argument
x − Dt is a phase of the wave. Substituting the repre-
sentation of a solution into equation (69), one finds

2D2H ′H ′′ − 2DH ′(2HH ′′ +H ′2)
+2H2H ′H ′′ + 2HH ′3 + ρHH ′ + βH ′

+q(−DH ′ +HH ′) = 0.
(70)

By using the obtained theorems, we get the results as
follow. Equation (70) is an equation of the form in
Theorem 2.1 with the coefficients

A3 = 0, A2 = − 1
(D−H) , A1 = 0,

A0 = ρH+β−qD+qH
2(D2−2DH+H2) , λ1 = 0, λ2 = ρD + β.

From Theorem 2.2. case (a), equation (70) is linearizable
if only if ρD + β = 0.

G. Burgers’ Equation
Burgers’ equation is acquired because of the rela-

tionship between nonlinear wave movement and linear
diffusion. It is the model for the investigation of consol-
idated impact of nonlinear advection and diffusion. The
presence of the viscous term covers the wave-breaking,
smooth out stun discontinuities, and thus we wish to get
a tide and smooth solution. Also, as the dispersion term
turns out to be vanishingly small, the smooth viscous
solutions converge non-uniformly to the appropriate
discontinuous shock wave, causing to another system for
examining traditionalist nonlinear dynamical processes.

Consider the nonlinear convection-diffusion equation
∂u

∂t
+ u

∂u

∂x
− v

∂2u

∂x2
= 0, v > 0, (71)

which is known as Burgers’ equation. This equation
balances between time advancement, nonlinearity, and
dissemination. This is the nonlinear model equation for
diffusive waves in fluid dynamics. Burgers (1948) first
built up this equation basically to illuminate disturbance
depicted by the collaboration of two inverse impacts of
convection and dissemination.

The term uux will have a stunning up impact that will
make waves break and the term vuxx is a diffusion term
like the one appearing in the heat equation.

Of particular interest among solutions of equation (71)
are travelling wave solutions:

u(t, x) = H(x−Dt),

where D is a constant phase velocity and the argument
x − Dt is a phase of the wave. Substituting the repre-
sentation of a solution into equation (71), one finds

−DH ′ +HH ′ − vH ′′ = 0. (72)
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By using the obtained theorems, we get the results as
follow. Equation (72) is an equation of the form in
Theorem 2.1 with the coefficients

A3 = 0, A2 = 0, A1 = D−H
v , A0 = 0,

λ1 = 1
v , λ2 = −D+H

v2 .

One can check that these coefficients obey the condi-
tion in Theorem 2.2. case (b). Thus, equation (72) is
linearizable via a generalized linearizing transformation.

IV. Conclusion
In this paper, the necessary condition which guarantee

that the second-order ordinary differential equation can
be linearized by generalized linearizing transformation
is found in Theorem 2.1. Theorem 2.2 case (a) and case
(b) are sufficient conditions for the linearization problem,
they are selected by the value of λ1. A new algorithm
for finding linearizing transformation is summarized in
Theorem 2.3. Finally, some applications are provided to
demonstrate our procedure.
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